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Abstrat

The oupling between two dissimilar numerial methods presents a major hallenge, espeially in ase of

disrete-ontinuum oupling. The Arlequin approah provides a �exible framework and presents several

advantages in omparison to alternative approahes. Many studies have analyzed, in statis, the ingredients

of this approah in 1D on�gurations under several partiular onditions. The present study extends the

Arlequin parameter studies to inorporate a dynami behavior using 3D models. Based on these studies,

a new 3D oupling method adapted for dynami simulations is developed. This method ouples two 3D

odes: DEM-based ode and CNEM-based ode. The 3D oupling method was applied to several referene

dynamis tests. Good results are obtained using this method, ompared with the analytial and numerial

results of both DEM and CNEM.

Keywords: multisale method, oupling method, disrete element, natural element, Arlequin approah,

dynami simulation

1. Introdution

The disrete element method (DEM) [1, 2℄ presents an alternative way to study physial phenomena

requiring a very small sale analysis or those whih annot be easily treated by ontinuum mehanis,

suh as wear, frature and abrasion problems. In the past deades, an inreasing interest in the disrete

element method has led to the development of many interesting variations of this method. The most

reent variation involves modeling the interation between partiles by ohesive beams [1℄. This method

orretly simulates the 3D linear elasti behavior of the ontinua. However, numerial simulations are

very time onsuming (CPU-wise). Furthermore, a very great number of partiles are required to disretize

small domains. This method does not onsider large struture simulations. However, in most situations,

the e�ets that must be aptured by DEM are loalized in a small portion of the studied domain. Thus,

the use of a spei� multisale method to treat the phenomena at eah sale appears to be advantageous.

A hallenge that arises in the multisale oupling approah is that the high frequeny portion of waves are

often spuriously re�eted at the small/oarse sale interfae. This phenomenon has already been addressed

using the �nite element model with di�erent element sizes [3℄.

The importane of this multisale approah has attrated many researhers. Therefore, several papers

have been published on the subjet, and many oupling methods have been developed. These methods

an be divided in two lasses: edge to edge methods and methods with overlapping zones (alled overlap

methods). The �rst lass [4, 5℄ is mainly applied to stati studies. Indeed, using this method, it is very

di�ult to redue spurious re�etions at the interfae between models. Therefore, this lass will not be

treated in this paper. The seond lass seems to be more appliable to dynami studies, whih is the sope

of the present work.

Ben Dhia [6, 7, 8℄, in a pioneer work, developed the Arlequin approah as a general framework that

allows the intermixing of various mehanial models for strutural analysis and omputation.
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Abraham et al. [9, 10℄ developed a methodology that ouples the tight-bending quantum mehanis

with the moleular dynamis suh that the two Hamiltonians are averaged in an overlapping zone. A

damping was used in the overlapping zone to redue the spurious re�etions at the interfae between the

two models. Nevertheless, the hoie of the damping oe�ient remains di�ult.

Smirnova et al. [11℄ developed a ombined moleular dynamis (MD) and �nite element method (FEM)

model with a transition zone in whih the FEM nodes oinide with the positions of the partiles in the

MD region. The partiles in the transition zone interat via the interation potential with the MD region.

At the same time, they experiene the nodal fores due to the FEM grid.

Belytshko and Xiao [4, 12℄ have developed a oupling method for moleular dynamis and ontinuum

mehanis models based on a bridging domain method. In this method, the two models are overlaid at

the interfae and onstrained with a Lagrange multiplier model in the overlapping subdomain.

Jaob et al. [13℄ formulated an atomisti-ontinuum oupling method based on a blend of the ontinuum

stress and the atomisti fore. In term of equations, this method is very similar to the Arlequin method.

In an interesting work, Chamoin et al. [14℄ have analyzed the main spurious e�ets in the atomi-

to-ontinuum oupling approahes and they proposed a orretive method based on the omputation and

injetion of dead fores in the Arlequin formulation to o�set these e�ets.

Aubertin et al. [15℄ applied the Arlequin approah to ouple the extended �nite element method

XFEM with the moleular dynamis MD to study dynami rak propagation.

Bauman et al. [16℄ developed a 3D multisale method, based on the Arlequin approah, between highly

heterogeneous partile models and nonlinear elasti ontinuum models.

Reently, Combesure et al. [17℄ formulated a 3D oupling method, applied for fast transient simula-

tions, between the smoothed partile hydrodynamis SPH and the �nite element method. This oupling

method is, also, based on the Arlequin approah.

For more details, a review of these methods an be found in [18℄. A ommon feature of overlap oupling

methods is that a weight funtion is introdued to partition a ertain quantity in the overlapping zone.

Herein, the Arlequin approah [6, 7, 19℄ is used to develop a 3D multisale method adapted for dynami

simulations between the onstrained natural element method (CNEM) and the disrete element method

(DEM). The DEM version, whih is used in this work, is the most reent version developed by André [1℄.

The CNEM is a mesh-free method, but it is very lose to the �nite element method. The oupling method

developed here an avoid spurious wave re�etions without any additional �ltering or damping. Indeed,

the �ne sale solution is projeted onto the oarse sale solution in the overlapping zone at eah time step.

Thus, it �lters the high frequenies oming from the �ne sale model (disrete model), whih are greater

than the uto� frequeny of the oarse sale model (ontinuum model). This paper is organized as follows:

in Setion 2, the governing equations of both the DEM and CNEM models are given. Subsequently, we

desribe how both models are oupled using the Arlequin approah in the most general ase. In Setion 3,

several interesting previous studies on the Arlequin parameter are summarized: inluding mathematial

studies of Ben Dhia et al. [7, 20℄, the studies of Bauman et al. [21℄ and the stati 1D numerial studies of

Guidault et al. [22℄. After, the di�erent Arlequin parameters are studied dynamially using 3D models. In

Setion 4, this new oupling method is validated for tensile-ompression, bending and torsional loadings

on beams. Setion 5 presents the onlusions and outlooks.

2. The problem statements

A domain Ω is onsidered with boundary ∂Ω = ∂Ωu + ∂ΩT
suh that displaements and trations are

presribed on ∂Ωu
and ∂ΩT

, respetively. This domain is divided into two subdomains, ΩC and Ωd, whih

are modeled using the ontinuum approah and the disrete approah, respetively. An isotropi linear

elasti behavior and small deformation gradients are assumed for simpliity. The governing equations of

both the ontinuum and the disrete subdomains are realled in Subsetions 2.1 and 2.2, while ignoring

the oupling onditions. These onditions will be introdued after detailing the oupling approah in

Subsetion 2.3.
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2.1. Continuum subdomain ΩC

As an isolated system, the governing equations in the ontinuum subdomain ΩC an be written as:

∀ x ∈ ΩC(t) and t ∈ [0, T ], given the initial onditions, �nd (u,σ) ∈ [H1(ΩC)]
3 × [L2(ΩC)]

6
suh that:























div(σ) + ρf = ρü in ΩC

σ = A : ε(u)
ε(u) = 1

2(∇u+∇tu)
u = ud on ∂Ωu

C

σ.n = T d on ∂ΩT
C

(1)

where ρ is the density, u is the ontinuum displaement vetor, σ is the Cauhy stress tensor, ε is the

strain tensor, A is the sti�ness tensor, f is the body fore vetor, ud de�nes the presribed displaement

vetor on ∂Ωu
C and T d is the presribed tration vetor on ∂ΩT

C .

The assoiated weak formulation an be written as: �nd u ∈ Uad
suh that, given the initial onditions,

∀ δu ∈ Uad,0
:

ˆ

∂ΩT
C

δu̇ · T d dΓ−

ˆ

ΩC

ε(δu̇) : A : ε(u) dΩ+

ˆ

ΩC

ρ δu̇ · f dΩ =

ˆ

ΩC

ρ δu̇ · ü dΩ (2)

with δu̇ as a test funtion and the admissible solution spaes, Uad
and Uad,0

, are de�ned as follows:

Uad =
{

u = u(x, t) ∈ [H1(ΩC)]
3;u = ud on ∂Ωu

C ;∀ t ∈ [0, T ]
}

Uad,0 =
{

u = u(x, t) ∈ [H1(ΩC)]
3;u = 0 on ∂Ωu

C ;∀ t ∈ [0, T ]
}

2.2. Disrete subdomain Ωd

In an isolated system of the disrete domain Ωd whih is a set of spherial partiles that interat via

ohesive beams, the governing equations an be written as: for i = 1..np and t ∈ [0, T ], given the initial

onditions, �nd (di,θi,f
int
/i , c

int
/i ) ∈ R

3 × R
3 × R

3 × R
3
suh that:

{

f ext
/i + f int

/i = mid̈i

cext/i + cint/i = Iiθ̈i
(3)

with di, θi, mi and Ii representing the displaement vetor, the rotation vetor, the mass and the mass

moment of inertia of the ith partile, respetively. fext
/i and cext/i represent the total external fores and

the total external torques applied on the ith partile, respetively. f int
/i and cint/i are the total internal

fores and the total internal torques applied by other partiles via the ohesive beams on the ith partile,

respetively.























f int
i =

nnp
∑

j=0

f ij =

nnp
∑

j=0

(EµSµ
∆lµ
lµ

x−
6EµIµ

l2µ
((θjz + θiz)y + (θjy + θiy)z))

cinti =

nnp
∑

j=0

cij =
∑nnp

j=0(
GµIOµ

lµ
(θjx − θix)x−

2EµIµ
l2µ

((θjy + 2 θiy)y + (θjz + 2 θiz)z))

(4)

With:

• nnp is total number of neighbor partiles of the ith partile

• f ij and cij are beam reation fores and torques ating on the ith partile by the jth one, respetively.

• (Oi,x,y,z) is loal frame assoiated to the beam onneting ith and jth partiles.

• θi(θix, θiy, θiz) and θj(θjx, θjy, θjz) are the rotations of beam ross setions expressed in the beam

loal frame.
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PSfrag replaements

Ω

ΩC

ΩO

Ωd

Figure 1: Global domain deomposition

• lµ, Sµ, IOµ and Iµ are the beam length, beam ross setion area, polar moment of inertia and moment

of inertia along y and z.

• Eµ and Gµ are the beam Young and shear modulus.

As in the ontinuum, the assoiated weak formulation an be de�ned as follows: �nd (d,θ,f , c) ∈
Dad ×Oad ×Fad × Cad

suh that, given the initial onditions, ∀ (δḋ, δθ̇) ∈ Ḋad,0 × Ȯad,0
:

np
∑

i=1

f ext
/i · δḋi +

np
∑

i=1

f int
/i · δḋi +

np
∑

i=1

cext/i · δθ̇i +

np
∑

i=1

cint/i · δθ̇i =

np
∑

i=1

mid̈i · δḋi +

np
∑

i=1

Iiθ̈i · δθ̇i (5)

with:

Dad = {d = di(t) i = [1..np] ∀t ∈ [0, T ]}
Oad = {θ = θi(t) i = [1..np] ∀t ∈ [0, T ]}
Fad = {f = f int

/i (t) i = [1..np] ∀t ∈ [0, T ]}

Cad = {c = cint/i (t) i = [1..np] ∀t ∈ [0, T ]}
np: total number of DEM partiles.

2.3. Coupling approah

As mentioned in the previous setions, the oupling approah used here is based on the Arlequin

approah [6, 7, 8℄. This approah onsists of:

1. A superposition of mehanial states in the given subdomains ΩC and Ωd with an overlapping zone

ΩO (Fig. 1).

2. A weak oupling (based on the weak formulation):

(a) De�nition of the gluing zone ΩG:

In this study, the gluing zone ΩG is the same as the overlapping zone ΩO. Hereafter, the term

�overlapping zone� will be used to design the overlapping zone or the gluing zone.

(b) Mediator spae M:

To ensure the orret dialogue between the models, the ontrol quantities in the overlapping

zone must be hosen arefully. Here, the veloity oupling, in a weak sense in ΩO), is hosen.

From an algorithmi point of view, the veloity oupling is easier than the displaement oupling

(Remark2). The mediator spae denoted by M is de�ned as the spae of the veloities de�ned

in ΩO.
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Figure 2: Examples of weight funtions

() Projetion operator and juntion model:

The projetion operator Π projets the ontinuum and disrete veloities on the mediator spae.

The juntion model de�nes the linking onditions between the two models in the overlapping

zone. To projet the veloities on M, an interpolation, whose shape funtions will be de�ned

later, is used. The juntion model used in this work is the H1(ΩO) salar produt de�ned by:

< λ, q >H1(ΩO)=

ˆ

ΩO

λ · (Πu̇−Πḋ) + l2ε(λ) : ε(Πu̇−Πḋ) dΩ (6)

where (Πu̇ − Πḋ) is the di�erene between the projeted ontinuum and disrete veloities

on ΩO, λ is the Lagrange multiplier �eld and l, the juntion parameter, is an H1
oupling

parameter.This parameter has the unit of a length, it is added to ensure the homogeneity of

the integral terms of the H1
oupling model. In this work, l is onsidered a variable parameter

and will be studied in Setion 3. If l = 0, the H1(ΩO) salar produt beomes equivalent to

the L2(ΩO) salar produt (7) known as the Lagrange multiplier model.

< λ,u >L2(ΩO)=

ˆ

ΩO

λ · (Πu̇−Πḋ) dΩ (7)

The displaement and veloity �elds in ΩC and Ωd do not have the same nature. Indeed, ΩC

is a ontinuum whereas the Ωd is a disrete subdomain. The disrete �eld assoiated with Ωd

is de�ned only at the partile positions. To be able to ompute the juntion models (6) and

(7), an intepolation is de�ned on the DEM partiles in ΩO using shape funtions, whih will be

de�ned later.

3. The energy partition between the ontinuum and disrete media in the overlapping zone:

As shown in Figure 1, the two models oexist in ΩO. Therefore, the energies in this zone must be

weighted, and, a kind of partition of unity in terms of energy is performed. Three weight funtions,

α(x), β(x) and γ(x), are introdued for the internal energy, the kineti energy and the external

work of the ontinuum subdomain, respetively. All of the funtions verify the following:

f(x) : Ω → [0, 1]

x →







1 in ΩC\ΩO

[0, 1] in ΩC ∩ ΩO

0 otherwise

(8)

In a omplementary manner, the internal energy, the kineti energy and the external work of the

disrete subdomain are weighted by ᾱ(x) = 1 − α(x), β̄(x) = 1 − β(x) and γ̄(x) = 1 − γ(x),
respetively. Figure 2 presents examples of weight funtions.

This oupling approah is applied to ouple the ontinuum and the disrete models de�ned on ΩC and

Ωd, respetively. By introduing the weight funtions, in (2) and (5), and the oupling ondition (6), the

global weighted weak formulation beomes: �nd (u,d,θ,λ) ∈ Uad ×Dad ×Oad ×M suh that, given the

initial onditions, ∀ (δu̇, δḋ, δθ̇, δλ̇) ∈ Uad,0 ×Dad,0 ×Oad,0 ×M:
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´

ΩC
β ρ δu̇ · ü dΩ+

´

ΩC
α ε(δu̇) : A : ε(u) dΩ−

´

∂ΩT
C
γ δu̇ · T d dΓ−

´

ΩC
γ ρ δu̇ · f dΩ

+

np
∑

i=1

β̄i mi d̈i · δḋi +

np
∑

i=1

β̄i Ii θ̈i · δθ̇i −

np
∑

i=1

(γ̄i f
ext
/i + ᾱi f

int
/i ) · δḋi

−

np
∑

i=1

(γ̄i c
ext
/i + ᾱi c

int
/i ) · δθ̇i + δ

ˆ

ΩO

λ · (Πu̇−Πḋ) + l2ε(λ) : ε(Πu̇−Πḋ) dΩ = 0

(9)

2.4. Spatial disretization and integration issues

In the previous subsetions, the global weak formulation (9) is presented in a ontinuous form. Now,

the spatial disretization is introdued. In the literature, there are many interesting ontinuum methods

used for solving partial di�erential equations, suh as SPH [23℄, NEM [24℄ and FEM [25℄. Eah method

is distinguished by its apability to spatially disretize the studied model. Among them, the onstrained

natural element method CNEM [26, 27, 28℄, whih is an extension of the natural element method (NEM)

[29℄ to non-onvex domains, is hosen in this study. This method has pratially all of the advantages

of the FEM approah, and it irumvents the major drawbaks related to the meshing. Indeed, using

the FEM approah, the approximation is dependent on the mesh quality. In ontrast, using the CNEM

approah, the approximation is dependent only on the relative position of the nodes [30℄. Unlike the

other mesh-free approahes: (i) the supports of onstrained natural neighbor (CNN) shape funtions used

in CNEM approah are automatially de�ned, (ii) the values of CNN shape funtions assoiated with

internal nodes are null on the border of the domain. This last property is partiularly interesting beause

it allows a diret imposition of the boundary onditions, exatly as in the �nite elements framework. Given

the broad similarity between the CNEM and FEM approahes, the CNEM-DEM oupling have the same

performanes as the FEM-DEM oupling with better appliability on omplex domains and/or behaviors.

Therefore, the ontinuum subdomain in ΩC is disretized with the CNEM approah. Consequently, ΩC is

approximated by a set of nodes in whih onnetivity is not neessary [26℄.

To obtain a ontinuous �eld from the disrete quantities de�ned at the DEM partile positions in ΩO,

a onstrained natural neighbor (CNN) interpolation is introdued in Ωd|ΩO
. Thus, the partiles assoiated

with this subdomain are also onsidered CNEM nodes. The CNN interpolation is only applied in Ωd|ΩO
,

whih is assumed to be far from the �ne sale e�ets. The mediator spae is also disretized with the

CNEM approah. We denote byMh
C , M

h
d andMh

O the disretized spaes of Uad
, Dad

and M, respetively.

The assoiated disretized subdomains are designed Ωh
C , Ω

h
d and Ωh

O, respetively. The disrete domain

Ωd is a set of partiles, then it is naturally disretized and Ωh
d = Ωd. Aording to the on�gurations of

the disretized spaes in the overlapping zone, four ases an be distinguished (Fig. 3).

In this study and ontrary to previous studies on ontinuum/disrete oupling approahes, no oinidene

onditions are imposed on the oexisting disretized subdomains in ΩO. Therefore, the fourth on�guration

is studied here (Fig. 3-d) as the general on�guration that inludes the three other on�gurations. This

simpli�es the use of this method in 3D omplex domains. Indeed, in this ase, it is su�ient to disretize

the subdomains independently and mount them as indiated in Figure 3-d. In fat, using this on�guration,

it is very di�ult to prove mathematially the existene and uniqueness of the solution. Also and ontrary

to the three other on�gurations, there are no numerial works, in literature, studying this on�guration.

Thus, the well posedness of the global problem will be analyzed numerially in this paper.

Using the CNN interpolation on the di�erent disretized subdomains, Ωh
C , Ω

h
O and Ωh

d|ΩO
, the displae-

ment �elds u and d and the Lagrange multiplier unknowns λ are approximated by:

uh(x) =

nC
∑

i=1

NC
i (x)ui (10)
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Figure 3: The di�erent on�gurations of the disretized subdomains

dh(x) =

npO
∑

i=1

Nd
i (x)di (11)

λh(x) =

nO
∑

i=1

NO
i (x)λi (12)

where nC and nO are total number of nodes loated in Ωh
C and Ωh

O, respetively. npO is total number of

partiles loated in Ωh
d|ΩO

. ui is the nodal displaements, di are the partile displaements and λi are the

nodal Lagrange multipliers. NC
i , N

O
i and Nd

i are the CNN shape funtions onstruted on Ωh
C , Ω

h
O and

Ωh
d|ΩO

, respetively.

For the remainder of this paper, the supersript �h� will be omitted from the approximated quantities for

larity. Beause the global weighted weak formulation (9) is true for any small arbitrary variations of u̇,

ḋ, θ̇ and λ, it an be reformulated as follows: �nd (u,d,θ,λ) ∈ Uad × Dad ×Oad ×M suh that, given

the initial onditions, ∀ (δu̇, δḋ, δθ̇, δλ̇) ∈ Uad,0 ×Dad,0 ×Oad,0 ×M:

´

ΩC
β ρ δu̇ · ü dΩ−

´

∂ΩT
C
γ δu̇ · T dΓ +

´

ΩC
α ε(δu̇) : A : ε(u) dΩ−

´

ΩC
γ ρ δu̇ · f dΩ

+
´

ΩO
λ · δΠu̇+ l2ε(λ) : ε(δΠu̇) dΩ = 0

(13)

np
∑

i=1

β̄i mi d̈i · δḋi −

np
∑

i=1

(γ̄i f
ext
/i + ᾱi f

int
/i ) · δḋi −

´

Ωc
λ.δΠḋ + l2ε(λ) : ε(δΠḋ) dΩ = 0

(14)

np
∑

i=1

β̄i Ii θ̈i · δθ̇i −

np
∑

i=1

(γ̄i c
ext
/i + ᾱi c

int
/i ) · δθ̇i = 0 (15)

´

ΩO
δλ · (Πu̇−Πḋ) + l2ε(δλ) : ε(Πu̇−Πḋ) dΩ = 0

(16)

The integral terms will be omputed numerially using an integration tehnique. Integration by a Gauss

quadrature in the CNEM method adds onsiderable omplexity to the solution proedure. The stabilized
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onforming nodal integration [31, 32℄ presents a suitable alternative. This integration tehnique is used

to ompute the ontinuum terms using the Voronoï ells as the bakground of the integration. However,

onerning the oupling terms, this tehnique annot be applied diretly. Indeed, the integrands inlude

variables de�ned on di�erent Voronoï diagrams. The issue here is how to hoose the bakground of

the integration. In this work, the Voronoï ells assoiated with the mediator spae Mh
O are hosen as

bakground of integration in the overlapping zone ΩO. All of the variables that are not de�ned on Mh
O

are projeted on this spae.

By replaing ü, δu̇, ḋ, δḋ,λ and δλ by their approximated expressions in (13), (14), (15) and (16), the

disretized equations an be written as:

• DEM equations:

[mβ]
{

d̈
}

=
{

f int
α

}

+
{

f ext
γ

}

+ {f c}

[Iβ]
{

θ̈
}

=
{

cintα

}

+
{

cextγ

}
(17)

where (mβ)ij = β̄i δij · mi, (Iβ)ij = β̄i δij Ii, (c
int
α )i = ᾱi c

int
/i , (c

ext
γ )i = γ̄i c

ext
/i , (f

int
α )i = ᾱi f

int
/i ,

(f ext
γ )i = γ̄i f

ext
/i and {f c} = [cd] {λ} = ([cL

2

d ] + l2[cH
1

d ]) {λ} represents the total oupling fore.

cL
2

d ≈

nO
∑

K=1

V O
I

[

Nd(xI)
]T

[

NO(xI)
]

dΩ And cH
1

d ≈

nO
∑

K=1

V O
I

[

B̃d(xI)
]T [

B̃O(xI)
]

Where xI are the oordinates of the I
th
node of Ωh

O, V
O
I is the volume of the Voronoï ell assoiated

with Ith node of Ωh
O,

[

Nd
]

and

[

NO
]

are the interpolation matries assoiated with Ωh
d and Ωh

O,

respetively.

[

B̃d
]

and

[

B̃O
]

are the smoothed gradient matries [31, 32℄ assoiated with Ωh
d and

Ωh
O, respetively.

• CNEM equations

[Mβ ] {ü} = −
{

F int
α

}

+
{

F ext
γ

}

− {F c} (18)

where (Mβ)ij = δij β(xi)Mi, Mi is the lumped mass of the ith node loated at xi position,
{

F int
α

}

=

[Kα] {u}, [Kα] is the weighted sti�ness matrix and {F c} = [CC ] {λ} = ([CL2

C ] + l2[CH1

C ]) {λ} repre-

sents the total oupling fore.

CL2

C ≈

nO
∑

K=1

V O
I

[

NC(xI)
]T [

NO(xI)
]

dΩ And CH1

C ≈

nO
∑

K=1

V O
I

[

B̃C(xI)
]T [

B̃O(xI)
]

Where

[

NC
]

and

[

B̃C
]

are, respetively, the interpolation and smoothed gradient matries assoiated

with Ωh
C .

• Interfae equations: Equation 16 leads to:

[CO]
{ .
u
}

− [co]
{ .
d
}

= 0

where: [CO] =
[

CL2

O

]

+l2
[

CH1

O

]

=
[

CL2

C

]T
+ l2

[

CH1

C

]T
and [co] =

[

cL
2

o

]

+l2
[

cH
1

o

]

=
[

cL
2

d

]T
+ l2

[

cH
1

d

]T
.
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2.5. Time integration sheme and implementation

The numerial time integration is based on an expliit integration sheme that is well adapted for

dynami omputations. Many expliit shemes an be used, suh as the Runge-Kutta, position Verlet

and veloity Verlet shemes. A omparison between these shemes an be found in [33℄. Aording to

this referene [33℄, the veloity Verlet sheme provides good results and is also easy to implement. For

these reasons, this sheme is used in this paper to solve the global dynami problem. This sheme gives

an O(h3) approximation for both veloities and displaements. Thus, the veloity oupling, used in this

work, does not a�et the oupling approah auray ompared to the displaement oupling.

2.5.1. DEM algorithm (DEM ode)

• Initialization

{

d̈
}

n
,

{ .
d
}

n
,{d}n,

{

θ̈
}

n
,

{ .
θ
}

n
and {θ}n: The initial onditions or the interfae results.

• Computation of {d}n+1 and {θ}n+1:

{d}n+1 = {d}n +∆t
{ .
d
}

n
+ ∆t2

2

{

d̈
}

n

{θ}n+1 = {θ}n +∆t
{ .
θ
}

n
+ ∆t2

2

{

θ̈
}

n

(19)

• Computation of

{

f int
α

}

n+1
,

{

fext
γ

}

n+1
,

{

cintα

}

n+1
et

{

cextγ

}

n+1

• Computation of the preditive linear aelerations

{

d̈
}∗

n+1
(omitting the oupling fores {f c} from

Equation 17).

{

d̈
}∗

n+1
= [mβ]

−1 (
{

f int
α

}

n+1
+

{

f ext
γ

}

n+1
) (20)

• Computation of the angular aelerations

{

θ̈
}

n+1
:

{

θ̈
}

n+1
= [Iβ]

−1 (
{

cintα

}

n+1
+

{

cextγ

}

n+1
) (21)

• Computation of the preditive linear veloities

{ .
d
}∗

n+1
:

{ .
d
}∗

n+1
=

{ .
d
}

n
+

∆t

2
(
{

d̈
}

n
+

{

d̈
}∗

n+1
)

• Computation of the angular veloities

{ .
θ
}

n+1
:

{ .
θ
}

n+1
=

{ .
θ
}

n
+ ∆t

2 (
{

θ̈
}

n
+
{

θ̈
}

n+1
)

• Transfer of the preditive linear veloities and aelerations to the interfae:

{ .
d
}∗

n+1
and

{

d̈
}∗

n+1

2.5.2. CNEM algorithm (CNEM ode)

• Initialization {ü}n,
{ .
u
}

n
et {u}n: The initial onditions or the interfae results.

• Computation of {u}n+1:

{u}n+1 = {u}n +∆t
{ .
u
}

n
+

∆t2

2
{ü}n (22)

• Computation of the preditive linear aelerations {ü}∗n+1: (omitting the oupling fores {F c} from

Equation 18).

{ü}∗n+1 = [Mβ ]
−1 (−

{

F int
α

}

n+1
+

{

F ext
γ

}

n+1
) (23)

• Computation of the preditive linear veloities

{ .
u
}∗

n+1
:

{ .
u
}∗

n+1
=

{ .
u
}

n
+ ∆t

2 ({ü}n + {ü}∗n+1)

• Transfer of the preditive linear veloities and aelerations to the interfae:

{ .
u
}∗

n+1
and {ü}∗n+1

9



2.5.3. Interfae algorithm (Interfae developed separately to ouple the CNEM and DEM odes):

• Reovery of the preditive linear veloities from both the CNEM and DEM odes:

{ .
u
}∗

n+1
and

{ .
d
}∗

n+1

• Computation of {λ}n+1

{ .
u
}

n+1
=

{ .
u
}∗

n+1
− ∆t

2 [Mβ ]
−1 {F c}n+1

{ .
d
}

n+1
=

{ .
d
}∗

n
+ ∆t

2 [mβ]
−1 {f c}n+1

(24)

{F c}n+1 = [CC ] {λ}n+1

{f c}n+1 = [cd] {λ}n+1

(25)

[CO]
{ .
u
}

n+1
− [co]

{ .
d
}

n+1
= 0 (26)

By introduing Equations 24 and 25 into Equation 26, the interfae system of equations an be

written as:

[A] {λ}n+1 = {b}n+1 (27)

where the oupling matrix [A] and {b}n+1 are de�ned, respetively, as:

[A] =
∆t

2
([CO] [Mβ ]

−1 [CC ] + [co] [mβ]
−1 [cd]) (28)

{b}n+1 = [CO]
{ .
u
}∗

n+1
− [co]

{ .
d
}∗

n+1
(29)

By solving Equation 27, {λ}n+1 an be obtained.

• Computation of {F c}n+1 and {f c}n+1 using Equation 25.

• Computation of the linear veloities

{ .
u
}

n+1
and

{ .
d
}

n+1
using Equation 24.

• The linear aeleration orretions: {ü}n+1 and

{

d̈
}

n+1
:

{ü}n+1 = {ü}∗n+1 − [Mβ]
−1 {F c}n+1

{

d̈
}

n+1
=

{

d̈
}∗

n+1
+ [mβ]

−1 {f c}n+1
(30)

• Transfer of {ü}n+1 and
{ .
u
}

n+1
to the CNEM proess and

{

d̈
}

n+1
and

{ .
d
}

n+1
the DEM proess.

Remark1:. The system (27) is solved using the well-known LU deomposition method [34℄. Conerning

the system (28), sine the mass matries of both ontinuum and disrete models are diagonals, it is easy

to derive their inverse matries and ompute the oupling matrix A.

Remark2:. From an algorithmi point of view, the veloity oupling used in this work is easier than the

displaement oupling. This is beause the displaement oupling requires, in addition to the preditive

aelerations and veloities, the omputation of the preditive displaements whih must be sent to the

Interfae ode for orretion. Therefore, in the ase of displaement oupling, additional steps are neessary

to ompute and orret the preditive displaements. Whereas, in the ase of veloity oupling, the orret

displaement are obtained diretly ((19) and (22)), thereby reduing the omputational ost.
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Remark3:. No expliit oupling onditions are applied to orret the angular veloities and aelerations

of the partiles in the overlapping zone. These quantities are orreted impliitly. Indeed, the internal

fores are omputed aounting for partile displaements and rotations. These fores are later used to

ompute the new displaements whih are orreted using the oupling ondition (16).

Remark4:. To be able to ompute the preditive aelerations (Eqs. 20, 21 and 23), the lumped mass

matries must be invertible. Thus, the weight funtions β and β̄ must be stritly positive in ΩO and at

the border ∂ΩO. Then, a small ε will be used instead of zero at the nodes assigned to ∂ΩO. Therefore,

the de�nition of this weight funtion β (8) is slightly modi�ed as:

β(x) : Ω → [0, 1]

x →







1 in ΩC\ΩO

[ε, 1− ε] in ΩC ∩ ΩO

0 otherwise

(31)

where ε is a small stritly positive real number to be hosen.

2.5.4. Implementation

The DEM alulus is ahieved using the GranOO workbenh (Granular Objet Oriented). Granoo was

developed at the Mehanis institute of Bordeaux (I2M) by J.L. Charles et al. The ode provides C++

libraries that implement lasses useful to desribe and solve dynami mehanial problems using DEM and

expliit temporal integration shemes. The CNEM alulus is ahieved using a CNEM-based ode, whih

was developed at the PIMM laboratory by G. Co�gnal et al. It provides C++ libraries that interfae

with Python modules. The oupling between DEM and CNEM, desribed in the previous setions, is

performed by an �interfae� written in the Python language. This interfae ommuniates diretly with

the CNEM-based proess using Python lasses. The Inter Proess Communiation (IPC) tool is used to

ensure a synhronized ommuniation between the GranOO proess and the interfae proess.

3. Parametri study of the oupling parameters

Several works have studied mathematially the Arlequin method for both ontinuum-ontinuum oupling

[7, 19, 20℄ and ontinuum-disrete oupling [21℄. The main results onerning the well-posedness of the ou-

pling problem are realled in this paper. The weight funtion α must be stritly positive in ΩO. Without

this ondition the oerivity of the internal energy annot be veri�ed. Another signi�ant result onern-

ing the oupling juntion models is that for the disretized problem, ontrary to the H1
oupling whih

yields a well-posed problem, the L2
oupling model an lead to an ill-onditioned system of equations,

espeially in the ase of very small mesh size. In this ontext, Bauman et al. [21℄ have studied another

oupling model, the H1
seminorm, in whih the �rst term of the H1

model is removed. This model leads

to a well-posed problem, but it does not onstrain enough the ontinuum and disrete displaements in

the overlapping zone. Other works [22, 35, 21℄ have studied numerially the ingredients of the Arlequin

method using 1D models. Guidault et al. [22, 35℄ noted that, for the L2
oupling model, the weight

funtion α must be ontinuous at the boundary of the gluing zone ∂ΩO. Indeed, the use of a disontinuous

weight funtion an ause undesirable free onditions at ∂ΩO.

Conerning the hoie of the mediator spae, Ben Dhia [7, 20℄ mentioned that in the ase of ontinuous

domains, it is onvenient to hoose M = H1(ΩO); however, it is very di�ult to hoose the �nite approx-

imation spae Mh
O. To address this di�ulty, several works [22, 35, 21℄ proposed a 1D numerial study

of Mh
O. The di�erent on�gurations that were studied are presented in a, b and  of Figure 3. The stati

studies of Guidault et al. [22℄ show that: (i) in the ase of a �ne multiplier spae (Fig. 3-b), the response

of the struture do not depend on the weight funtions and a loking phenomenon takes plae, i.e, the

�ne solution exatly onforms to the oarse solution in the overlapping zone; (ii) in the ase of a oarse
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Young's Modulus Poisson's ratio Radius ratio

Eµ = 265 GPa νµ = 0.3 r̃µ = 0.71

Table 1: The miro properties of the ohesive beam bonds in the DEM subdomain

r̃µ is an adimensional ohesive beam radius, de�ned as the ratio between the beam radius and the mean partile radius; Eµ and νµ are

the miro Young modulus and the Poisson ratio of the beams, respetively.

multiplier spae, the weight funtions has an in�uene on the solutions suh that the larger the weight

funtion on the �ne mesh, the smaller beomes the maximum jump between the two meshes.

This work proposes a 3D numerial dynami study using the general on�guration given in Figure 3-d.

It will be demonstrated that some of the results proven in stati using 1D models are not valid in 3D

dynami simulations.

Assuming the general ase of the approximated Lagrange multiplier spae, the various oupling parameters

studied are:

• The juntion model parameter l,

• The weight funtions α, β and γ,

• The width of the overlapping domain LO,

• The disretization of the approximated Lagrange multipliers spae Mh
O.

A 3D beam model is used for the dynami study (Fig. 4), in whih the length and the diameter are

L = 20mm and D = 2mm, respetively. The model is divided into two subdomains with an overlapping

zone. The left subdomain is modeled by the CNEM approah using 626 nodes (the assoiated harateristi

length is about lc = 0.47mm) and �xed at the left end (x = 0). The right subdomain is modeled by the

DEM approah using 20 000 spherial partiles having rc = 0.05mm as mean radius. Based on the

harateristi length of DEM and CNEM disretization (lc and rc), the uto� frequenies of the two

models an be determined: fCNEM
c = 1.9MHz and fDEM

c = 18.2MHz. To ontrol the high frequeny

wave re�exion at the CNEM-DEM interfae, the free end (x = L) is submitted to a tensile loading with

a very steep slope (Fig. 5). As shown in lower viewgraph of Figure 5, the Fourier spetrum ontains

powerful high frequeny waves (greater than fCNEM
c ). The material of the beam is the silia: Young's

modulus E = 72GPa, Poisson's ratio ν = 0.17 and density ρ = 2200Kg/m3
. The orresponding miro

properties of the ohesive beam bonds in the DEM approah are given in [1℄ and presented in Table 1.

To ontrol the wave propagation in the model, four hek points are plaed along this beam (Fig. 4) as

follows:

• CnemChekPoint: at the middle of the CNEM subdomain where the ontrolled quantities are om-

puted using the CNEM nodes in this zone

• OverlapCnemChekPoint: at the middle of the overlapping zone where the ontrolled quantities are

omputed using only the CNEM nodes in this zone.

• OverlapDemChekPoint: at the middle of the overlapping zone where the ontrolled quantities are

omputed using only the DEM partiles in this zone.

• DemChekPoint: at the middle of the DEM subdomain where the ontrolled quantities are omputed

using the DEM partiles in this zone.

Figure 6 presents the referene results obtained by DEM and CNEM separately. Table 2 presents the

mean displaement of the right end and the �rst three natural frequenies. It an be seen that the results

are in good agreement, and they are also in agreement with the beam theory results. This ensures the

equivalene of the two models.
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Figure 4: Beam model of the parameter studies
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Figure 5: Tensile loading of study model and the assoieted spetral analysis (omputed from FFT)

Umean (mm) f0 (Hz) f1 (Hz) f2 (Hz)

Theory 0.087 71 757 215 272 358 787

DEM 0.083 72 408 217 246 362 072

CNEM 0.088 71 359 214 023 356 491

Table 2: Comparison of DEM, CNEM and analytial results
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Figure 6: The free-end displaements obtained using DEM and CNEM separately and the assoiated spetral analyses

(omputed from FFT)

Remark5:. In this study, for the sake of simpliity, the weight funtions are hosen as follows: α = β = γ.

3.1. In�uene of the juntion parameter l

The parameter l is mainly employed to ompute the oupling matrix A (28). The parameter's in�uene

on the onditioning of A (Cond = ‖A‖.‖A−1‖) is analyzed. Figure 7 shows the onditioning of A with

respet to l obtained for LO = 6 mm using a oarse multiplier spae and ontinuous weight funtions with

ε = 0.005 (ε is de�ned in (31)). The onditioning dereases with l and reahes a minimum at a small

l = lopt. Beyond this value, the onditioning inreases exponentially as l inreases. This is true for any

hoies of LO, the weight funtions and Mh
O. Beause l dereases the onditioning, H1

oupling (6) for a

small value of l, is better than L2
oupling (7). However, ontrary to what is presented in the literature,

H1
oupling beomes worse if l exeeds some small value. In pratie, this parameter an be hosen as

the harateristi length of the overlapping zone disretization lΩO
c (lopt ≈ lΩO

c ).

In the remainder of this setion we will use the H1
oupling with l = lopt.

3.2. In�uene of the weight funtions

In this subsetion, a �ne disretization of the approximated multiplier spae Mh
O is hosen, i.e, at the

same sale as Mh
d . The width of the overlapping zone LO is �xed at 2 mm.

3.2.1. Constant weight funtions αCNEM = αDEM = 0.5

The mean displaement obtained with the oupling method is 0.081 mm. This is in agreement with the

referene mean displaements (Tab. 2). However, the temporal urve (Fig. 8) presents several deviations

with regard to the referene urves. Figure 9 presents the veloities in the di�erent hek points (Figure 4)

for the �rst round trip of the wave propagation. It an be seen that the major part of the high frequeny

waves (HFW) are re�eted without entering the overlapping zone. Indeed, the HFW initially aptured

in the �DemChekPoint� did not appear in �OverlapDemChekPoint� or �OverlapCnemChekPoint�. This

explains the deviation in the temporal displaement eah time the global wave rosses the overlapping zone.

Thus, onstant weight funtions are not a good hoie for dynami simulations. Indeed, the projetion

mehanism, whih ours in ΩO, annot dampen the HFW, and an additional �ltering is required. In

ontrast, the stati studies of Guidault et al. [22℄ showed that onstant weight funtions an be used with

H1
oupling.
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Figure 7: Conditioning of A with respet to l

LO = 6mm, oarse Multiplier spae, ontinuous weight funtions with ε = 0.005

Figure 8: The free-end displaements obtained using DEM and CNEM separately and the oupling method, and the assoiated

spetral analyses (omputed from FFT)

LO = 2mm, �ne Multiplier spae, onstant weight funtions αCNEM = 0.5
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Figure 9: The linear veloities at the hek points for the �rst round trip

LO = 2mm, �ne Multiplier spae, onstant weight funtions αCNEM = 0.5

3.2.2. Constant weight funtions αCNEM 6= 0.5

This sub-subsetion analyzes the in�uene of the weight onstant on the wave propagation. Two ases

are studied here; the �rst ase uses αCNEM = 0.3 (then, αDEM = ᾱCNEM = 0.7), and the seond ase

uses αCNEM = 0.8 (then, αDEM = 0.2). The assoiated results are presented in Figure 10.

Figure 10: The free-end displaements obtained using DEM and CNEM separately and the oupling method, and the

assoiated spetral analyses (omputed from FFT) for di�erent weight onstants

LO = 2mm, �ne Multiplier spae, onstant weight funtions αCNEM = 0.3, αCNEM = 0.5 and αCNEM = 0.8

A large di�erene between the results is observed. In the �rst ase (αCNEM = 0.3), the magnitude of the

free-end displaement is greater than that obtained using αCNEM = 0.5. However, it is smaller for the

ase of αCNEM = 0.8. To provide an explanation for these results, the temporal veloities at the hek

points are presented in Figure 11.

It an be seen that for αCNEM = 0.8, a portion of the priniple wave is positively re�eted at the interfae

between the two models, or more preisely, without entering the overlapping zone. Furthermore, only a

omplementary part is transmitted in the CNEM model. Quantitatively, the transmission and re�etion
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Figure 11: The linear veloities at the hek points for di�erent weight onstants

LO = 2mm, �ne Multiplier spae, onstant weighting αCNEM = 0.3, αCNEM = 0.5 and αCNEM = 0.8
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oe�ients an be introdued as:

tnumDEM−CNEM = magnitude of the transmitted wave
magnitude of the incident wave = 9,90

22,01 = 0.44 and rnumDEM−CNEM = 0.56

By analogy with the wave propagation between media with di�erent aousti impedanes, the transmission

and re�etion oe�ients an theoretially be de�ned as:

tthDEM−CNEM = 2 αDEM

αDEM+αCNEM
and rthDEM−CNEM = αCNEM−αDEM

αDEM+αCNEM

Then, it an be veri�ed that tnumDEM−CNEM and rnumDEM−CNEM are of the same order of magnitude as

tthDEM−CNEM = 0.4 and rthDEM−CNEM = 0.6, respetively. For αCNEM = 0.3, the same re�etion meha-

nism takes plae but with a negative oe�ient. Indeed, the veloity magnitude of the transmitted wave

(measured at �CnemChekPoint�) is greater than the veloity magnitude of the forward wave (initially

measured at �DemChekPoint�).

{

tnumDem−Cnem = 31.49
21.86 = 1.44

rnumDem−Cnem = 1− 31.49
21.86 = −0.44

and

{

tthDem−Cnem = 2×0.7
1 = 1.4

tnumDem−Cnem = 1− 1.4 = −0.4

Then, for the ase of a onstant weighting, αCNEM = αDEM = 0.5 must be used. Otherwise, there will be

a re�etion of a part of the prinipal forward wave. This result proves that the 1D stati studies available

in literature annot be used to perform dynami oupling. In e�et, Guidault et al. [22℄ noted that, in

statis and using a �ne multiplier spae, the solutions do not depend on the weight funtions.

3.2.3. Continuous weight funtions

As explained in Remark 4, the weight funtions must not vanish at the boundary of the overlapping

zone, and a small value ε must be adopted rather than 0 at ∂ΩO. Prior to studying the in�uene of the

ontinuous weight funtions, the in�uene of ε is studied. Figure 12 presents the free-end displaement

using ontinuous weight funtions for ε = 0.05, ε = 0.005 and ε = 0.0005 and the same onditions for

LO and Mh
O. The parameter ε, when less than 0.05, has no pratial in�uene on the results, but a very

small ε an lead to instability problems. Indeed, as shown in Table 3, the smaller the ε, the greater the

onditioning of the oupling matrix A beomes.

Figure 12: The free-end displaements obtained using the oupling method, and the assoiated spetral analyses (omputed

from FFT) for di�erent values of ε

LO = 2mm, �ne Multiplier spae, ontinuous weight funtions

18



ε 0.05 0.005 0.0005

Cond[A(lopt)] 2.53e4 8.93e4 5.67e5

Table 3: Conditioning of A with respet to ε

LO = 2mm, �ne Multiplier spae, ontinuous weight funtions

In the remainder of this paper, ε = 0.05 will be hosen eah time a ontinuous weight funtion is used.

Figure 14 shows the free-end displaement for the ase of a ontinuous weight funtion (Fig. 2-b). No

high frequeny waves (HFW) are re�eted at the interfae between the two models. Using ontinuous

weight funtions, the HFW enter the overlapping zone, and then, they are dampened by the projetion

onto the oarse spae. The lower subplot in Figure 14 evidenes that with a �ne multiplier spae, a small

overlapping zone is su�ient to anel out all of the HFW. As shown in Figure 13, the use of a ontinuous

weight funtion signi�antly improves the results. However, a small deviation from the referene results

still persists and beomes greater eah time the wave travels bak (CNEM-DEM diretion). Beause of

the very �ne disretization of the DEM subdomain, the weight of the partiles in ΩO dereases smoothly

when approahing the CNEM subdomain. Therefore, the forward wave orretly rosses the interfae

between the pure DEM (Ωd\ΩO) and the overlapping zone ΩO. Thus, by examining the �rst round-trip

(Fig. 13), it is apparent that no deviation from the referenes is noted when wave travels from the DEM

subdomain to the CNEM subdomain. In the CNEM subdomain, a oarse disretization is used. The jump

between the weights of two adjaent nodes is relatively large. The disrete weight funtions of the CNEM

subdomain are disontinuous stairase funtions with large jumps. Thus, the same re�etion mehanism,

observed previously, ours when the wave travels bak (CNEM-DEM diretion). To redue the deviation,

the width of the overlapping zone must be inreased to redue the slope of the weight funtions. Another

solution onsists of using ontinuous di�erentiable weight funtions (Fig. 2-) to redue the weighting

jump in the viinity of the overlapping zone boundary ∂ΩO. Figures 19, 20 and 21 present the results

using the two solutions. The wave orretly rosses ΩO without any deviation.

Figure 13: The free-end displaements obtained using DEM and CNEM separately and the oupling method, and the

assoiated spetral analyses (omputed from FFT)

LO = 2mm, �ne Multiplier spae, ontinuous weight funtions, ε = 0.05
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Figure 14: The linear veloities (a) at the di�erent hek points for the ase of ontinuous α and (b) at the "DemChekPoint"

for the ase of ontinuous and onstant α

LO = 2mm, �ne Multiplier spae, ontinuous weight funtions, ε = 0.05

3.3. In�uene of the approximated multiplier spae Mh
O

In the previous subsetion, a �ne multiplier spae was used. In this ase, the veloity in Ωd|ΩO
is

pratially loked at a value equal to the veloity in the ΩC|ΩO
, as shown in the upper subplot of Figure 15.

Indeed, the veloity urve at �OverlapDemChekPoint� oinides with that at �OverlapCnemChekPoint�.

The same loking phenomenon is noted when the seond on�guration (Fig. 3-b) is used [22℄. Now, to

study the in�uene of Mh
O on the results, a oarse multiplier spae is used, i.e, at the same sale as Mh

C .

As shown in the bottom subplot of Figure 15, equality of the veloities in ΩO is satis�ed only in a weak

sense and not in eah multiplier spae node. This allows the �ne model (DEM model) to orretly at

in ΩO. However, in this ase a small overlapping zone is insu�ient to orretly transmit the prinipal

tensile wave and anel the high frequeny waves.

3.4. In�uene of the width of the overlapping zone LO

It is apparent that for the ase of �ne multiplier spae, the loking phenomenon ours and a small LO

is su�ient to anel the high frequeny waves (HFW). Beause the DEM partiles are strongly onstrained

in ΩO, the use of a large overlapping zone an slightly dampen the global free-end displaement (Fig. 16).

For the ase of a oarse multiplier spae, the DEM partiles are able to orretly at in the overlapping

zone. Then, even for the ase of a large ΩO, the global results will not be dampened. As shown in Figure

17, the larger the overlapping zone, the better the results beome. Indeed, the use of a large ΩO redues

the HFW re�etion and allows a better transfer of the forward wave.

3.5. How to hoose the oupling parameters in a general ase?

In a general ase, there is not an obvious method to determine, in a single way, the various oupling

parameters to avoid wave re�exion. This subsetion gives several reommendations and trends to hoose

orretly these parameters. The weight funtions must be ontinuous. Indeed, with onstant weight

funtions, the high frequeny waves (HFW) are re�eted without entering the overlapping zone and annot

be dampened by the projetion mehanism. The hoies of the width of the overlapping zone depends on

the harateristi dimension of the disretization in this zone. In the ase of �ne disretization, a narrow

overlapping zone is su�ient to dampen the HFW, beause, the DEM partiles are strongly onstrained
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Figure 15: Veloity omparison in the overlapping zone using �ne and oarse multipier spaes

LO = 2mm, ontinuous weight funtion, ε = 0.05

Figure 16: The free-end displaements obtained using the oupling method for LO = 2mm, LO = 4mm and LO = 6mm.

Fine Multiplier spae , ontinuous weight funtions, ε = 0.05
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Figure 17: The free-end displaements obtained using the oupling method for LO = 2mm, LO = 4mm and LO = 6mm.

Coarse Multiplier spae , ontinuous weight funtions, ε = 0.05

Dynami simulation

Coupling type H1
oupling

Juntion parameter l l = lopt
Approximated Multiplier spae Coarse Multiplier spae

Width of the overlapping zone LO As large as possible

Weight funtions Continuous , ε = 0.05

Table 4: Reommended Arlequin parameters for dynami simulations

in ΩO. On the ontrary, oarse disretization requires a large ΩO. To minimize the onditioning of the

oupling matrix A, the H1
oupling with l = lopt is reommended. lopt an be hosen as the harateristi

length of the overlapping zone disretization lΩO
c (lopt ≈ lΩO

c ). Table 4 presents the onvenient Arlequin

parameters to orretly perform the oupling.

4. Validation

The previous parametri-based study on tensile loading has allowed us to retain the onvenient pa-

rameters to perform a orret oupling. In this setion, the results of this study are used to validate the

oupling between CNEM and DEM in a general 3D ase. Contrary to the tensile ase, in bending and

torsion, the deformations in the ross setions are signi�ant. To aount for these e�ets, new geometri

harateristis of the 3D model are used: L = 100mm and D = 20mm (L/D = 5). The DEM method

is applied only for the portion loated 20 mm from the right end (the setion loated at x = L) and the

remainder of the model is modeled using the CNEM method (Fig. 18).

The following Arlequin's parameters are hosen: LO = 10mm, ontinuous di�erentiable weight funtions,

ε = 0.05, l = lopt and oarse multiplier spae.

Figures 19 and 20 present the temporal free-end displaements with respet to the x-axis and y-axis,

respetively, using tensile and bending loading. The deviation from the referene, as observed in the

previous simulations when the wave rosses the ΩO, disappeared in the present results. Then, for this

model, LO = 10 mm is su�ient to orretly transmit the wave between the disrete and ontinuum

models.
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Figure 18: Validation model

Figure 19: Test1: The free-end displaements Ux mean obtained by DEM, CNEM and the oupling method

LO = 10mm, oarse Multiplier spae , ontinuous di�erentiable weighting, ε = 0.05

Figure 20: Test2: The free-end displaements Uy mean obtained by DEM, CNEM and the oupling method

LO = 10mm, oarse Multiplier spae , ontinuous di�erentiable weighting, ε = 0.05
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Figure 21: Test3: The free-end rotation θx mean obtained by DEM, CNEM and the oupling method

LO = 10mm, oarse Multiplier spae , ontinuous di�erentiable weight funtions, ε = 0.05

Beam theory DEM CNEM Coupling

Tensile

Ux mean(mm) 4.40e − 3 4.44e − 03 4.49e − 03 4.61e − 03

f0(Hz) 14 351 14 235 14 262 14 425

Bending

Uy mean(mm) 5.85e − 1 5.86e − 1 6.27e − 1 6.13e − 1

f0(Hz) 1 606 15 94 1 557 1 595

Table 5: Comparison of results

LO = 10mm, oarse Multiplier spae , ontinuous di�erentiable weight funtions, ε = 0.05

Figure 21 presents the temporal free-end rotation about the x-axis using the torsional loading. The

oupling results are in good agreement with the DEM results (Tab. 6).

Finally, the oupling method was tested using an initial veloity loading (Test 4 of Figure 18). Figure

22 presents the free-end displaement with respet to x-axis. The oupling result is omparable to the

referene one.

The omparison (Figs. 19, 20, 22 and 21 and Tabs. 5 and 6) between the oupling results and the results

obtained using DEM and CNEM separately, validates the new oupling method.

5. Conlusions

In this paper, based on the Arlequin approah, a 3D oupling method adapted for dynami simula-

tions is developed. This method ouples two dissimilar methods: DEM-based method and CNEM-based

method. Sine the CNEM approah is a mesh-free method and has pratially all the advantages of the

FEM method, this oupling approah has the same performanes as the FEM-DEM oupling with better

appliability on omplex problems.

At the beginning of this work, the Arlequin parameters are studied dynamially, using 3D models. The

most general on�guration is used in the overlapping zone (Fig. 3-d). As shown, the well posedness of the

global problem is veri�ed numerially. The H1
oupling, for the ase of a small juntion parameter lopt,

Beam theory DEM Coupling

Torsion

θx mean(mm) 2.05e − 3 2.34e − 3 2.32e − 3

f0(Hz) 9 382 9 252 9 106

Table 6: Comparison of results

LO = 10mm, oarse Multiplier spae , ontinuous di�erentiable weight funtions, ε = 0.05
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Figure 22: Test4: The free-end displaement Ux mean obtained by DEM and the oupling method

LO = 10mm, oarse Multiplier spae , ontinuous di�erentiable weight funtions, ε = 0.05

is more aurate than the L2
oupling. Indeed, it dereases the onditioning of the oupling matrix A.

However, beyond lopt, it an lead to instability problems or even divergene. Then, it is important to hoose

this parameter arefully. In the ase of onstant weight funtions, αDEM = αCNEM = 0.5 must be hosen

to ensure the orret transmission of the prinipal wave between the two models. Otherwise, a portion of

the wave will be re�eted in suh a way that the re�etion oe�ient is proportional to αDEM −αCNEM .

Additionally, with onstant weight funtions, the high frequeny waves (HFW) are re�eted without

entering the overlapping zone, and, they annot be dampened by the projetion mehanism in ΩO. Thus,

ontinuous weight funtions are better suited for dynami simulations. This allows the HFW to enter

the overlapping zone and be dampened by the projetion mehanism. The results an be improved

using ontinuous di�erentiable weight funtions (Fig. 2-). For the ase of a �ne multiplier spae, the

loking phenomenon takes plae, and a narrow overlapping zone is su�ient to anel the HFW. A large

overlapping zone for the ase of �ne multiplier spae an dampen the global wave, beause the DEM

partiles in ΩO are strongly onstrained. In ontrast, for the ase of a oarse multiplier spae, the larger

the ΩO, the better the results beome. Indeed, large overlapping zone allows a better damping of the

HFW. Additionally, beause the partiles in this zone an behave orretly (not strongly onstrained), no

damping of the global wave is noted.
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