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ABSTRACT

The paper presents a new mother wavelet adapted from a
specific pattern. Wavelet multi-resolution analysis uses this
wavelet to detect the position of the pattern in an Infra-Red
(IR) signal under scale variation and the presence of noise.
IR signal is extracted from IR image sequence recorded by an
IR camera, Time of Flight (TOF) sensor configuration. The
maximum correlation between the pattern and the signal of in-
terest will be used as a criterion to define the mother wavelet.
The proposed mother wavelet were tested and verified under
the scale variation and the presence of noise. The experimen-
tal tests and performance analysis show promising results for
both scale variation and noisy signal. 90% accuracy for the
proposed wavelet under intensive noisy condition (50% of the
signal amplitude) is guaranteed and high precision is expected
under real condition.

Index Terms— IR image, adapted mother wavelet, pat-
tern detection, multi-resolution analysis

1. INTRODUCTION

Wavelet transform introduces a method that cuts up signals
into different frequency components, and then studies each
component with a resolution matched to its scale [1]. One of
the advantages of wavelet over Fourier analysis is the flexibil-
ity in the “shape” and the “form” of the analyzer. However,
the difficult task of choosing or designing a suitable mother
wavelet for a specific signal comes with the flexibility.

Applying Multi-Resolution Decomposition (MRD) to a
signal in the presence of noise using a matched wavelet [2]
would generate a sharper peak in time-scale space as com-
pared to standard non-matched wavelets. Wavelet design
methods developed up to now do not specifically address the
need for maximizing correlation with the signal decomposi-
tion.

Daubechies [3] proposed a technique for finding orthonor-
mal wavelet bases with compact support and over limited
number of scales, totally independent of the signal being an-
alyzed. Jorgensen et al. [4] have developed and extended a
technique for finding the optimal orthonormal wavelet basis
for representing a specified signal within a finite number of
scales. Mallat [5] developed non-orthonormal wavelet bases
for MRD in such a way that some error cost function is min-

imized. This approach employs a set of mother wavelets and
combined them to build a new wavelet. Aldroubi [6] matched
a wavelet basis to a desired signal by both projecting the de-
sired signal onto an existing wavelet basis, and transforming
the wavelet basis under certain conditions such that it opti-
mizes the error norm between the desired signal and the new
basis.

Gait analysis [7], human locomotion perception and inter-
pretation, is an important task in many automotive vision sys-
tems and plays a key role in designing a gesture-based human-
machine interface (HMI) [8].

The initial step of most of the gait recognition algorithms
is human silhouette extraction [9]. Many gait recognition sys-
tems use CCD sensors similar to one existing in RGB cam-
eras. However, it is very likely that some part of the human
body or clothing has colors similar to the background. Hu-
man silhouette extraction usually fails on this part. Moreover,
the existence of shadows and poor lighting conditions is an-
other problem [10]. To avoid these problems and other envi-
ronmental effects, Infra-Red (IR) sensor is used in a carefully
arranged laser projector-IR sensor configuration.

Preis et al. [11] presented an approach for gait recognition
with Microsoft Kinect and an integrated depth sensor allow-
ing for skeleton detection and gait tracking in real-time based
on nave Bayesian filter. Stone [12] [13] proposed a webcam-
Kinect set-up and local maximum and minimum as feature
to detect left and right gait. Iwashita [14] proposed multiple
thresholds to detect the gait with scale variation.

Although, gait pattern recognition is a complicated task
and requires better detection approaches. The main problem
is the variation of the signal amplitude with the alternation of
the distance between the target (human body) and the sensor.

The paper proposed a new method based on wavelet
Multi-Resolution Analysis (MRA) and pattern localization to
solve this problem. A mother wavelet will be adapted directly
from gait pattern in the proposed approach (section 3, 4).

The paper is organized into following sections: Section 2
contains information on how gait signal is extracted from IR
images. Optoelectronic setup for image acquisition and TOF
theory will be introduced in this section. Section 3 explains
the theory and formulation of wavelet MRA for use through-
out the paper. We will adapt a mother wavelet to match the
amplitude and phase of the pattern in Section 4 by applying
matched filter theory to the wavelet decomposition. Section 5



Fig. 1: Typical TOF sensor configuration with an optical de-
vice

applies our technique to the signal of interest to demonstrate
the performance of the proposed mother wavelet and compare
the result with other standard mother wavelets.

2. IR IMAGE ANALYSIS AND SIGNAL
EXTRACTION

IR image sequence was captured using TOF during practical
experiments. A typical TOF sensor consists in a modulated
light source such as laser or LED-based illumination, image
sensor (linear or rectangular array of pixels, each capable of
detecting the phase of the incoming light) and an ordinary
optical device for focusing the reflected light onto the sensor
(Fig. 1). The light is modulated on an envelope of square
wave which is created by rapidly turning the light source on
and off. Distance is measured by the phase of the transmitted
light as received at the pixel array. Although pulse waves are
employed in practice for modulation, here sinusoidal waves
will be discussed for the ease of explanation. Let us assume
s(t) = sin (2πfmt) be the transmitted light where, fm is the
modulation frequency. The reflected light from the target ob-
ject creates a phase shift φ:

r(t) = R sin (2πfmt− φ) = R sin (2πfm (t− 2d/c)) (1)

Where, R is the amplitude of the reflected light, d is the dis-
tance between the sensor and the target object (range in Fig.
1), and c is the speed of light, 3×108 m/s. The distance, d, is
calculated by d = cφ/ (4πfm). The maximum unambiguous
phase delay that can be detected using TOF is a full cycle of
the modulation period, which corresponds to an unambiguous
range of c/ (2fm). For example, the maximum unambiguous
range for fm = 50MHz is 3m. In practice, phase detection
can be implemented more efficiently as described in [15]. The
reflected laser beam from the target object is recorded by IR
sensor and processed to extract and integrate depth informa-
tion in the image by color (gray scale) coding (Fig. 2.a). Ri-
zon [16] proposed a method to detect the object (e.g., a human
body) in the sequence of image stream. Figure 2.b shows

Fig. 2: RGB and IR image sequence

Fig. 3: Walking signal with constant distance from IR sensor

the detected human body in IR image sequence. The posi-
tion of the red circle is tracked in the sequence and depicted
versus time (or sample), which forms the gait (walking) sig-
nal. An example of this signal with constant step length is
depicted in Fig. 3. When the person walks in parallel with
the image plane of the sensor, the amplitude of the signal is
quite constant, maximum and minimum of the signal are the
same everywhere, because the scale of human body is con-
stant. But, when the person displaces along the z-axis (per-
pendicular to the image plane and outward) of the sensor the
scale changes, the amplitude of the signal varies consequently
(Fig. 4) which makes gait pattern detection very difficult with
ordinary techniques such as constant threshold and adaptive
threshold. Section 3 and 4 will propose a method to detect the
pattern with a new mother wavelet.

3. WAVELET MULTI-RESOLUTION ANALYSIS

Wavelet application to multi-resolution signal decomposition
has been thoroughly discussed in the literature over the past
decades. We will summarize the principle of dyadic MRA
and final equations below. A linear space L of R, L (R), is
divided into a set of subspaces {Vj}. By definition, the sub-
space Vj (j ∈ Z) should satisfy properties (2), (3) as well.

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · (2)⋂
j∈Z

Vj = {0} ,
⋃
j∈Z

Vj = L (R) (3)



Fig. 4: Walking signal with different scales (different dis-
tances from the sensor)

In a MRA a signal (time series), x(t) ∈ V−1, V−1 ⊆ L (R)
can be decomposed into linear combination of an infinite se-
ries of detail functions, {G0, G1, · · · , Gn · · · }, so that

x(t) =

∞∑
k=0

akGk(t) (4)

Where, k is the integer index of the infinite sum and ak is ex-
pansion coefficients. In an orthonormal multiresolution anal-
ysis (OMRA) [17], a signal is represented by a sum of a more
flexible function called mother wavelet ψ(t), localized both in
time and frequency spaces, and scaling function ϕ(t), where∫

ψ(t)dt = 0 (5)∫
ϕ(t)dt = 1 (6)

The set
{
ψj1,k1(t) = 2−j1/2ϕ

(
2−j1t− k1

)
, k1 ∈ Z

}
and{

φj2,k2(t) = 2−j2/2ϕ
(
2−j2t− k2

)
, k2 ∈ Z

}
construct the

orthonormal basis for Vj and Wj respectively. Then Vj for
instance, can be expressed as, Vj = span {ψj,k(t), k ∈ Z}.
This type of decompositions is usually based on a scale factor
2, however any scaling factor can be used for this purpose.
The decomposition based on scale factor 2 is called dyadic
decomposition. The first level decomposition is constructed
by projecting x(t) onto two orthogonal subspaces, V0 andW0,
where V−1 = V0 ⊕W0 is the direct sum operator. The pro-
jection produces x0(t) ∈ V0, a low resolution approximation
of x(t), and y0(t) ∈ W0, the detail lost in going from x(t)
to x0(t). The decomposition continues by projecting x0(t)
onto V1 and W1 and so on. Note that Wj is the orthogonal
complement of spaces Vj and Vj+1 that can be expressed as:

Vj+1 = Vj ⊕Wj (7)

In general,

Vj = Vj0 ⊕Wj0 ⊕ · · · ⊕Wj−1, j � j0 (8)

And

L (R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕W3 · · · (9)

A signal x(t) is projected onto Vj and Wj using projection
equations (10), (11).

xj(t) =

∞∑
k=−∞

djk2−( j
2 )ψ

(
2−jt− k

)
(10)

yj(t) =

∞∑
k=−∞

cjk2−( j
2 )φ

(
2−jt− k

)
(11)

Where, djk = 〈xj−1(t), ψj,k〉 and cjk = 〈xj−1(t), φj,k〉 are
the projection coefficients and 〈., .〉 denotes the inner product
in L2. The inner product of two complex functions u(t) and
v(t) may be defined on the interval a ≤ x ≤ b by (12),

〈u(t), v(t)〉 =

∫ b

a

u(t)v∗(t)dt (12)

The satisfying result comes because of the orthonormal prop-
erty of the basis. It is important to choose an appropriate set
of basis and dual for the signal decomposition. If a particu-
lar basis satisfies the orthonormal property for a given signal
which we want to deal with, it will be easier to find the ex-
pansion coefficients. Fortunately, the coefficients concentrate
on some critical values, while others are close to zero. We
can drop the small coefficients and use the important values
to decrease calculation time and keep more memory space for
more important data. For the MRA to be orthonormal, three
conditions are required:

1. ψj,k and φj,k must be orthonormal bases of Wj and Vj
respectively

2. Wj⊥Wk, for j 6= k

3. Wj⊥Vk,

which leads to the following conditions (13)-(15) on ψ and φ
accordingly

〈φj,k, φj,m〉 = δk,m (13)
〈φj,k, ψj,m〉 = 0 (14)

〈ψj,k, ψl,m〉 = δj,lδk,m (15)

Since φ(t) ∈ V0 ⊂ V−1 and ψ(t) ∈ W0 ⊂ V−1, they can be
represented as linear combinations of the basis of V−1.

φ(t) = 2

∞∑
k=−∞

hkϕ (2t− k) (16)

ψ(t) = 2

∞∑
k=−∞

gkϕ (2t− k) (17)

For orthonormal MRAs, the sequences hk and gk in (16) and
(17) represent the impulse responses of quadrature mirror fil-
ters (QMF) and have the following properties:

H(ω)H (ω + π) +G(ω)G (ω + π) = 0 (18)

|H(ω)|2 + |G(ω)|2 = 1 (19)



Where H(ω) and G(ω) are the Fourier transforms of hk and
gk, respectively, and are therefore both 2π-periodic. Here,

gk = (−1)
k+1

h1−k ⇔ G(ω) = eiωH(ω + π) (20)

Thereby guaranteeing (20) is always satisfied.

4. NEW WAVELET ADAPTATION FROM PATTERN

Using a matched filter bank interpretation of wavelet trans-
forms [18], we propose to design a wavelet that “matches”
the signal of interest such that the output of the matched fil-
ter bank is maximized. The projection equation for the detail
functions, given in (11), is an inner product integral and can
be rewritten in the frequency domain by way of Parseval’s
identity (21)

djk = 〈x(t), ψj,k〉 =
〈
X(ω),Ψj,k

(
2jω
)〉

(21)

Where Ψj,k

(
2jω
)

= 2j/2ei2
jωkΨ

(
2jω
)
, is the Fourier

transform of ψj,k(t). The energy of djk at a particular scale,
j0, and translation, k0, is given by its squared magnitude∣∣∣dj0k0∣∣∣2 =

∣∣〈X(ω),Ψj0,k0

(
2j0ω

)〉∣∣2 (22)

Applying the Cauchy-Schwarz inequality to the right side of
(22) gives ∣∣〈X(ω),Ψj0,k0

(
2j0ω

)〉∣∣2 ≤
〈X(ω), X(ω)〉

〈
Ψj0,k0

(
2j0ω

)
,Ψj0,k0

(
2j0ω

)〉
(23)

where the equality holds if and only if

X(ω) = KΨj0,k0

(
2j0ω

)
(24)

BothX and Ψ are complex spectra. Therefore,
∣∣∣dj0k0∣∣∣2 is max-

imized when the complex frequency spectrum of ψj0,k0 is
identical to that of x(t). Therefore, we would like to develop a
method for matching the complex spectrum of the wavelet to
that of the desired signal while maintaining the conditions for
an orthonormal MRA. However, because the conditions for
orthonormality are on the spectrum amplitude (Poisson sum-
mation) only, our solution matches the spectrum amplitudes
and group delays independently.

To overcome the difficulty in matching the wavelet spec-
trum directly to that of the desired signal we must propagate
the conditions for an orthonormal MRA [2] from the 2-scale
sequence and scaling function to the wavelet. Then calculate
the scaling function and 2-scale sequence always guarantee-
ing that the conditions for an orthonormal MRA are satisfied.
For a given function f(t) with compact support and finite en-
ergy we may consider the construction of a wavelet for MRA,
approximating this function by minimizing the least squares
error. Four methods of matching mother wavelet to a pattern
will be considered.

4.1. First Method

We want to construct the approximation in the least squares
sense of the function f using a finite linear combination of
the form ψ =

∑N
i=1 αiρi. Given the hypotheses on f and

F = {ρi}Ni=1, a set of continuous or piecewise continuous
functions on [a, b], the approximation ψ clearly satisfies the
two conditions ψ ∈ L1 ∩ L2 and tψ ∈ L1. This condition
reduces to the following linear constraint:

∑N
i=1 αiRi = 0

where Ri =
∫ b
a
ρi(t)dt. ψ is obtained by solving a linear

system.

4.2. Second Method

Since the family F consists in continuous functions on [a, b]
we may seek a function ψ continuous on R. ψ(a) = 0 and
ψ(b) = 0 are two additional linear constraints leading to∑N
i=1 αiρi(a) = 0 and

∑N
i=1 αiρi(b) = 0. ψ will be ob-

tained in the same way as in 4.1.

4.3. Third Method

We can use a more direct construction method. We seek the
best approximation of f in the least squares sense, within the
space of functions orthogonal to constants. If f is continu-
ous over the interval [a, b], satisfying the two additional con-
straints ψ(a) = 0 and ψ(b) = 0 leads to seeking a wavelet ψ
of the form:

ψ = f −
(
αt2 + βt+ γ

)
(25)

4.4. Fourth Method

In practice and for numerical calculations we generally know
only one sampling of the function f over the [a, b] interval.
We have a finite set of values {(tk, yk)}k=1,··· ,k such that:
a ≤ tk ≤ b and yk ≈ f (tk). As above, we consider a family
F = {ρi}Ni = 1 linearly independent in L2 (a, b), and we
denote by V the span vector space of F . Formulated for this
finite set of pairs, the problem is seeking α = {αi}Ni=1 in RN

and thus ψ =
∑N
i=1 αiρi such that:

K∑
k=1

[ψ (tk)− yk]
2

= (26)

min
β∈RN

{
K∑
k=1

[vβ (tk)− yk]
2

such that

∫ b

a

vβ(t)dt = 0

}
Where for β in RN , vβ =

∑N
i=1 βiρi. The last method is

applied to our problem to match a mother wavelet to the pat-
tern. We apply the method to the pattern shown in Fig. 5 will
calculate mother wavelet (Fig. 6). This mother wavelet very
well fulfills the condition in (22) and (26). It means a com-
pact support in the time and frequency spaces which satisfies
the maximum correlation between the signal and the mother
wavelet.



Fig. 5: Gait (walking) pattern

Fig. 6: Adapted mother wavelet

5. RESULTS AND DISCUSSION

Different tests were carried out to evaluate the performance of
the adapted wavelet under various conditions, with the pres-
ence of noise and scale variation, and to compare with other
mother wavelets. A set of mother wavelets (Daubechies: db3,
db6, db10, Biorthogonal: bio2.4, Coiflet: coif1, coif5, sym-
let: sym2, sym8, Marlet and Mexican Hat) with the similar
shape and form was selected for this purpose. Horizontal axis
in Fig. 8 and 9 refers to the member of this set in accordance
with the order mentioned above, staring with db3(2) and end
to Mexican Hat (11). Number 1 refers to the proposed mother
wavelet, “Wave1”.

Moreover, a ground truth signal (Fig. 7.b) was generated
to measure the error under different conditions. The pattern is
located in a part of the signal where correlation between the
scaled mother wavelet (shown in Fig. 6) and the signal holds
the highest value comparing to the neighboring values within
an interval.

These points in Fig. 7.b are highlighted with vertical
gray rods. MRA uses the selected mother wavelet to detect
the pattern location. Accumulative difference between re-
sults and ground truth forms the error (%). Pattern scaled
by 4 and 8, were selected to detect in the original signal (Fig.
7.a). The error of the pattern detection by different mother
wavelets were calculated and depicted in Fig. 8. As seen,
adapted mother wavelet has the minimum error (5%) while
other mother wavelets generated errors from 20% to 85%.
The same thing is true when the signal is processed with the

Fig. 7: Original signal (a) and generated ground truth (b)

Fig. 8: Detection error (%) for the scale variation

presence of noise (Fig. 9). With the presence of Gaussian
noise (50% of signal amplitude), the proposed mother wavelet
still can detect the position of the pattern with minimum error
(8%) while the error for other mother wavelets reaches to up
60%. This shows other unmatched mother wavelets are quite
unreliable for this application and adapted wavelet (“Wave1”)
works with high precision. Besides, the error of the process
with the presence of Gaussian noise will yield almost 3 times
more error comparing to that of noise-free signal. MRA of
walking signal with the presence of noise generate more error
than scale variation. It means when the signal has less noise
the proposed method can cope with scale variation very suc-
cessfully. In practice 95% of gaits were analyzed and detected
successfully. However, practical implementation shows this
method is very bulky for real-time process and need to be
processed in parallel stream by GPU or FPGA. The alterna-
tive solution is puting physical restrictions which increases
the precision up to 100%.

6. CONCLUSION

A practical electro-optic TOF setup for capturing IR image
and extracting gait (walking) signal were explained. Then
a wavelet adapted from gait pattern and used by multi-
resolution analysis was presented to overcome scale variation
problems. The result shows 95% of precision is granted for
detecting the accurate position of the gait pattern while pro-
cessing with the proposed mother wavelet creates only 2%
error under the scale variation (going from scale 4 to 8). The



Fig. 9: Error for the noisy and noiseless signals

proposed wavelet also works perfectly with the presence of
intensive noise (up 50% of signal amplitude). Processing
of noisy signal yield 93% of precision which is significant
progress considering the complexity of the real environment.
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