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1. Introduction   
The Laboratoire National de Métrologie et d’Essais (LNE) 

has developed an innovative ultra precision coordinate 

measuring machine [LAH07] traceable to the national length 

standard to measure three-dimensional objects with 

nanometric uncertainties (figure 1). The measuring range is 

300 mm x 300 mm x 50 µm. The objective in term of 

uncertainty is to reach 30 nm in X and Y directions for a 

displacement of 300 mm and about few nanometers for a 

vertical displacement of 50 µm. On this machine, we use 

four capacitive sensors to measure the position along z direction. These sensors target 

the flat surface of cylinders (300 mm diameter) used as flatness references. To 

measure the shape of these aluminum references with nanometric uncertainties, we 

propose a measurement method based on a propagation process in which we introduce 

an angular measurement to compensate the curvature error inherent in this method. 

The measurement process uses the same sensor technology (capacitive sensor) we use 

on the machine. This paper presents the measurement method, its validation and the 

first results. 
 
2. Propagation process with 4 capacitive sensors and an electronic level. 

The measurement principle is based on a propagation process. We displace a matrix of 

sensors along the profile to measure [GAO96]. To introduce measurement 

redundancy, we use a matrix with 4 capacitive sensors. The distance d between each 

sensor is 20 mm (see figure 2). For each position j on the profile, we measure the 

distance (m1j,…,m4j) which separates the capacitive sensor from the flatness reference. 

The angular motion of the sensor matrix is measured thanks to an electronic level. The 

unknown parameters are the position of the electronic level origin compared to the 

origin of the capacitive sensors, the relative positions of the capacitive sensors and the 

profile height called f. For each position j, we have to determine the motion errors of 

Figure 1: photograph 

of the machine 



the matrix that we call Tj for translation errors and Rj for pitching errors. 

 
Figure 2: straightness measurement using 4 capacitive sensors (left), convention used 

to locate the relative position of the sensor (a) the points of the profile (b) 

 
As we use 4 sensors, only two parameters are necessary to characterize their 

relative positions. We call em2 and em3 the gap between the central sensor and the 

peripheral ones (figure 2a). The same way, we fix the profile extremities equal to zero 

(figure 2b). The general equations that link all the parameters are given in the 

reference [ELS05] and will not be presented here. Based on those equations, the 

system to be solved is:  

 

 

 

 

 

 

 

 

 

For each position of the sensor matrix corresponds five lines in the system. The 

first four equations concern the distance measurement given by the capacitive sensor. 

The 5th equation concerns the angular measurement given by the electronic level. We 

use three methods to solve the system.  

 
In the first method, we solve subsystems in which we favor capacitive sensor 

measurements. In this method, we proceed in two steps. First, the capacitive sensor 

information is used to start the resolution of the system. The resulting profile contains 
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a curvature error coming from the not perfect relative position of the sensors inside the 

matrix [GAO02]. The second step consists in using the level information to eliminate 

the curvature error without local modification of the profile. 

 
In the second method, we use the information of the electronic level to calculate 

the rotation of the sensor matrix instead of the capacitive sensor measurement. In this 

method, we favor electronic level measurement 

 
In the third method, we solve the whole system using the weighted least squares 

method that consist in dividing the system of equations by an estimation of each 

measurement uncertainty. To solve the system, we minimise 
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weight of each measurement is inversely proportional to its uncertainty, the result is 

physically better. However, it is necessary to know the sensor measurement 

uncertainty and the level measurement uncertainty. 

 
3. Experimental results 

At the moment, to test the method, a dedicated bench was developed (figure 3). 

 

 

 

 

 

 

Figure 3: developed bench 

 
Two inclination sensors are integrated: one inside the capacitive sensor matrix and one 

above the flatness reference. The resolution of the inclination sensor is one micro-

radian that is not sufficient to be comparable with the resolution of the capacitive 

sensors. Nevertheless, the repeatability of the inclination sensor is better than its 

resolution so it is possible to increase the resolution making the sensor oscillate. For 

that purpose, two piezoelectric actuators are introduced in the developed bench: one to 

rotate the sensor matrix and another one to make the reference oscillate. We suppose 

that the capacitive sensors and electronic level are not yet calibrated and that we do not 

inclination sensor 

flatness reference 
4x4 capacitive sensor 
matrix and integrated   
inclination sensor 
surface plate 

300 mm XY stage 



have a reliable estimation of their uncertainty. To compare the three solving methods, 

we introduce a parameter “L” which characterizes the ratio of the capacitive sensor 

measurement uncertainty with the electronic level measurement uncertainty 

( levsenL σσ= ). The variation of this parameter corresponds to a change of the 

information weighting. We present on the figure 4, the deviation to the mean value of 

flatness reference straightness profiles obtained using the weighted least squares 

method with “L” equal to one millimeter ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

µradx
nmx

lev

sen

 
 

σ
σ

. Each position corresponds to 

an average over one oscillation of the inclination sensor. The oscillation amplitude is 10 

µrad. On this graph, we estimate the repeatability to +/- 4nm. This repeatability 

confirms the stability and the efficiency of the measurement. 
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Figure 4: deviation to the mean value of straightness profiles obtained using the 

weighted least squares 

On figure 5, we present the evolution of the straightness profile when the value of “L” 

changes. 
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Figure 5: Evolution of the profile for several choices of ”L” 

 
We notice in Fig. 5 that the shape of the profile evolves between two extreme profiles 

corresponding to the two extreme methods. For high value of L (L=100 mm), the 



profile converges to the one we obtain when we favor the level information (second 

method). When L is small (L=0.1 mm), the situation is reversed and the profile 

converges to the one we obtain when we favor the capacitive sensor information (first 

method). 

The 60 nm deviation between the different methods is significant in regard of our 

objectives. This is due to the inconsistency of the capacitive sensor and electronic 

level information. The calibration of the two sensors will significantly decrease this 

inconsistency. The experimental evaluation of the sensor measurement uncertainty 

will allow fixing L and consequently to find the optimal weighting for the weighted 

least squares method. 

 
4. Conclusion 

The few nanometer repeatability of the profile measurement shows the efficiency of 

the method in which we increase the level resolution by averaging the measurement 

during level oscillations. The several methods used to solve the system show a 

deviation of 60 nm that corresponds to the inconsistency of the information coming 

from the electronic level and the capacitive sensors. When these sensors will be 

calibrated, we will use the weighted least squares method to improve the presented 

straightness measurement method. 
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