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a b s t r a c t

In situ tensile tests were performed at room temperature on a ferrite–cementite steel specifically

designed for this study. The evolution of the average stress in ferrite during loading was analyzed by X-

ray diffraction. Lattice strain measurements were performed with synchrotron ring diffraction in both

ferrite and cementite. These in situ tests were complemented by macroscopic tensile and reversible

tensile-compression tests to study the Bauschinger effect. In order to reproduce stresses in ferrite and

cementite particles, a recently developed micromechanical Internal Length Mean Field (ILMF) model

based on a generalized self-consistent scheme is applied. In this designed ferrite–cementite steel, the

third ‘‘phase’’ of the model represents finite intermediate ‘‘layers’’ in ferrite due to large geometrically

necessary dislocation (GND) densities around cementite particles. The assumed constant thickness of

the layers is calibrated thanks to the obtained experimental data. The ILMF model is validated by

realistic estimates of the Bauschinger stress and the large difference between mean stresses in ferrite

and in cementite phases. This difference cannot be reproduced by classic two-phase homogenization

schemes without intermediate GND layers.

1. Introduction

Nowadays, a particular attention is paid in the nuclear indus-
try to the influence of the carbide particle size on material’s
behavior and local strains and stresses with the aim of better
understanding and deriving fracture toughness in the 16MND5
steels used in nuclear reactor vessels [1]. Mean field approaches
are often used in designing heterogeneous materials, as they can
lead to reasonable estimates of the stress–strain levels in the
matrix and in the inclusions, while being very effective in terms of
computation costs. The classical mean field homogenization
methods used to model the elastic–plastic behavior of hetero-
geneous materials such as the classic self-consistent models [2,3]
or the so-called ‘‘b’’ model [4], can only reproduce particle
morphology and volume fraction effects on strain hardening
curves. However, they are unable to predict constituent size
effects as they do not include any internal length scale in their
formulation as discussed in Ref. [5].

Ferrite–cementite steels are two-phase steels which contain
cementite hard particles embedded in a ferritic soft matrix. Thus,
a high density of collective dislocation arrangements occur near
the matrix–particle interfaces in the course of plastic deformation

in ferrite. These dislocations were partially considered in Ref. [6]
by the presence in the matrix of volume-averaged ‘‘geometrically
necessary dislocation’’ (GND) density arising from plastic strain
incompatibility between the matrix and particles [7]. More
recently, better estimates have been obtained if the saturation
of Orowan loop densities is captured at the particle–matrix
interfaces [8]. GND densities, a continuous description of lattice
incompatibility due to the presence of orderly dislocations, are
associated with the development of lattice curvature and long-
range internal stresses. In contrast, the stochastic arrangement of
‘‘statistically stored dislocations’’ (SSDs) produce no net Burgers
vector and no lattice incompatibility.

Experimentally, layers of dislocations surrounding impenetrable
particles have been observed in Refs. [9,10]. Transmission electronic
microscopy (TEM) was used to qualitatively understand local disloca-
tion accumulation in the vicinity of ferrite–martensite interfaces in
dual-phase steels (DP steels) [11]. However, TEM studies have the
shortcoming that only a small area can be observed. Intermediate
layers involving large GND densities can also be determined quanti-
tatively by high resolution 2D/3D EBSD measurements as recently
done in Ref. [12] in the case of DP steels. However, many statistical
data are needed to estimate a mean value of the GND layer thickness
due to variations of lattice curvatures as functions of local slip
orientations and interface morphologies [12,13].

The present Internal Length Mean Field (ILMF) approach, first
introduced in Ref. [14] for Al/SiC alloys, consists in introducing

www.elsevier.com/locate/msea
www.elsevier.com/locate/msea
dx.doi.org/10.1016/j.msea.2012.10.086
dx.doi.org/10.1016/j.msea.2012.10.086
dx.doi.org/10.1016/j.msea.2012.10.086
mailto:stephane.berbenni@univ-metz.fr
dx.doi.org/10.1016/j.msea.2012.10.086
dx.doi.org/10.1016/j.msea.2012.10.086


GND layers of the same finite thickness that surround the
impenetrable particles. In addition to particles and matrix, these
layers were considered as a third ‘‘phase’’ in the representative
volume element (RVE) to describe the collective GND arrange-
ment near the matrix–inclusion interfaces. The thickness of the
layer was assumed constant during plastic deformation and was
estimated by unit cell Field Dislocation Mechanics (FDM) simula-
tions for Al matrices reinforced by SiC particles [14]. As a result of
these full field FDM simulations, the layer thickness was found in
the sub-micron range (�0.3 mm) and was not really dependent on
the particle size [14]. Then, this value was introduced in the ILMF
approach to capture particle size effects on the overall strain
hardening curves [14]. The layer thickness could also be reached
by Discrete Dislocation Dynamics (DDD) simulations [15].

The objective of the present paper is first to carry out lattice
strain Synchrotron diffraction measurements [16] to deduce the
per phase average stresses in cementite and ferrite in addition to
the overall stress–strain tensile curves. Second, a ‘‘mean value’’ of
the layer thickness introduced in the ILMF approach will be
‘‘calibrated’’ with the experimental per phase average stresses.
Indeed, the ratio between the layer thickness and the particle size
is expected to have a considerable impact on internal stress self-
organization around particles. In addition to the particle size
dependent overall strain hardening, it is believed here that
reproducing phase stresses altogether with the macroscopic
Bauschinger effect for a different alloy composition represents a
second and complementary validation of the ILMF approach.

The paper is organized as follows. In Section 2, the two-phase
steel constituted of ferrite and cementite is first presented along
with its main microstructural features (particle size, volume
fraction and morphology). The mechanical tests like simple
tension and reversible tension-compression are presented. The
macroscopic ‘‘Bauschinger stress’’ is also defined as a function of
forward macroscopic strain. After recalling the experimental
device for in situ strain analysis during tensile loading with both
X-Ray Diffraction (XRD) and ring diffraction techniques in
Appendix A, the resulting evolution of lattice strains and stresses
in both ferrite and cementite phases during loading are obtained
and discussed. In Section 3, the main steps of the ILMF approach
are recalled. A ‘‘3-phase’’ self-consistent approach with coated
particles is designed, which emphasizes the role of large GND
densities in the intermediate layers between the particles and the
matrix. In this generalized self-consistent scheme, the width of

this layer l is supposed to be constant and is calibrated using the
evaluations of mean stresses in both phases provided in Section 2.
In Section 4, model predictions in monotonous tension are
analyzed in comparison with experimental results. The impor-
tance of the layer thickness and the contribution of GNDs to
isotropic hardening by dislocation tangles are evidenced in terms
of the high experimental difference found between both stresses
in ferrite and cementite. The impact of the particle aspect ratio is
also discussed in Section 4. A part of the Bauschinger stress is
then estimated and discussed from the stresses in both phases
obtained at the end of the tensile stage.

2. Experimental

2.1. Material and mechanical tests

The studied material is a two-phase steel which contains
0.4 wt% C and 0.7 wt% Mn. It is constituted of ferritic grains with
average size of 15 mm and with small cementite (Fe3C) particles
as shown in Fig. 1. The processing of this steel was constituted of
a first heat treatment at 900 1C for 5 min followed by quenching.
Then, the obtained martensitic state was tempered at high
temperature (690 1C) for 60 h to obtain the designed ferrite–
cementite steel. The resulting microstructure was observed with a
JEOL 7001F SEM-FEG. The resulting Fe3C carbides are both located
in inter- and intra-granular regions (Fig. 1a). Most of particles are
located inside grains although larger particles were observed at
grain boundaries. No strong clustering of particles was observed
and their volume fraction is 5.7%. This value was determined by
neutron diffraction technique. The spatial size distribution of
particles in the ferrite matrix is displayed in Fig. 1b. This
distribution is approximately log-normal with an average particle
size of 0.73 mm. As shown in Fig. 2, the cumulated frequency of
the particle shape factor of particles obtained by image analysis
shows that the aspect ratio of carbides varies essentially between
1 and 2 with an average value of 1.5. It is noteworthy that no
specific orientation distribution was observed regarding the
particle morphology. The effect of particle aspect ratio will be
discussed in Section 4.

Constant low strain rate tension and reversible tension–
compression tests were performed at room temperature. Flat
specimens with 5 mm by 1 mm rectangular cross sections were

Fig. 1. (a) SEM image of the designed ferrite-Fe3C carbides steel with particle spatial distribution, (b) probability distribution of measured particle size D.



used. The gauge length was 24 mm and the applied strain rate
was 10�4 s�1. Fig. 3 gathers all results regarding monotonous and
reverse loadings. In addition to the monotonous tension up to 18%
of strain, three Bauschinger tests were performed after 2.3%, 4.9%
and 10% of forward tensile strain. A remarkable Bauschinger effect
was observed and reflects the presence of significant internal
stresses. A measure of the Bauschinger effect can be provided by
the so-called ‘‘Bauschinger stress’’ denoted X and defined as
X ¼ ðSð1Þ þSð2ÞÞ=2 where S(1) and S(2) are respectively the forward
macroscopic flow stress at the end of the tension stage and the
reverse macroscopic yield stress in the compression stage. Let us
note that this definition of X is half the quantity defined in Ref.
[17]. Fig. 4 reports the measured macroscopic Bauschinger stress
X as a function of macroscopic forward tensile strain. A saturation
of X with increasing tensile strain is observed. Furthermore, the
high values obtained for X suggest that the self-organization of
GNDs around cementite particles increase internal stresses. Thus,
a significant intra-phase kinematic hardening is expected in
addition to that due to the mechanical interactions between
ferritic grains only. This trend will be discussed in the light of
the stresses in both phases deduced from experiments and from
the micromechanical model in Section 4.

2.2. Results of diffraction analyses

2.2.1. XRD measurements for stress evolution in ferrite

The XRD experimental device and the stress analyses are
respectively presented in Sections A.1 and A.2 of Appendix A.
Stress analyses obtained from the XRD measurements show that

ferrite acts as the soft phase in the steel with a level of stress
lower than the macroscopic stress (Fig. 5). The observed differ-
ence between the macroscopic stress and the average stress in
ferrite increases with the applied strain without exceeding
100 MPa. It is maximum before failure for a stress in ferrite
around 520 MPa. This difference is quite the same as the one
obtained in ferrite of a pearlitic steel using neutron diffraction
[18]. Conversely, stresses in cementite should be very high during
tensile loading. It is useful to know the order of magnitude of the
maximum stress reached in this phase. Since the XRD method
does not provide directly the uniaxial stress in cementite along
the tensile direction (x1) denoted sFe3C

11 , this one can be estimated
using a simple mixture rule as follows:

S11 ¼ f FeasFea
11 þ f Fe3Cs

Fe3C
11 ð1Þ

where S11 is the macroscopic tensile stress, sFea
11 is the uniaxial

stress in ferrite during loading determined by XRD, fFea and f Fe3C

are respectively the volume fraction of ferrite and cementite in
the steel. The results are presented in Table 1 with an uncertainty
of 710 MPa for the stress in ferrite and 7170 MPa for the stress
in cementite. These results show that the stress in cementite can
reach values around 1500 MPa at 18% of macroscopic strain
before failure.

C
f

Shape factor

Fig. 2. Cumulated frequency (Cf) as a function of particle shape factor in the

as-received designed steel.

Fig. 3. Tensile and tension–compression tests at room temperature with quasi-

static applied strain rate.

Fig. 4. Measured Bauschinger stress X (the definition is given in the text) as a

function of forward tensile strain at room temperature with quasi-static applied

strain rate.
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2.2.2. Synchrotron ring diffraction analyses for elastic strain

evolutions

In situ tensile tests were performed at the European Synchro-
tron Radiation Facility (ESRF), using the ID11 beamline with high
energy X-rays. The stress analyses in cementite are possible using
ring diffraction measurements detailed in Appendix A. During
loading, the CeO2 calibrant (see Section A.1 of Appendix A) is
crucial for the calculation of the elastic strains from the different
rings. The different peaks of CeO2 must remain at the same 2y
position whereas the peaks of ferrite and cementite are shifting. It
is thus possible to see the gradual shift of these peaks with
increasing applied macroscopic strain (Fig. 6). Considering the
two masks defined in Section A.1 of Appendix A, the rings
integration leads to the evolution of ee

11 and ee
22 elastic strains

vs. macroscopic applied strain for both ferrite and cementite
phases (see Section A.2 in Appendix A). These elastic strains are
reported in Fig. 7. The uncertainties on strains are 5�10�5 for

ferrite and 2�10�4 for cementite. As expected, since the (x1)
direction is the tensile direction, the values for ee

11 and ee
22 are

respectively positive and negative. Moreover, the level of elastic
strain in cementite is about five times higher than in the ferrite in
the plastic range. This can be explained by the difference in
mechanical properties between both phases and particularly their
yield stress. As soon as the macroscopic initial yield point is
reached for this steel, ferrite undergoes plastic deformation in
contrast with cementite particles which are supposed to remain
elastic. The obtained curve for elastic strain in cementite as a
function of the macroscopic strain shown in Fig. 7 is not linear,
especially in the plastic range. This is due to elastic–plastic strain
accommodation between ferrite and cementite during plastic
flow in ferrite. The stress values in the tensile direction are then
estimated in each phase using linear elastic formulation with the
hypothesis ee

22 ¼ ee
33 as follows:

s11 ¼
E

1þn e
e
11þ

En
1þnð Þ 1�2nð Þ

ee
11þ2ee

22

� �
ð2Þ

where E and n are respectively the Young’s modulus and Poisson
ratio of each phase considering the {110} planes for ferrite and the
{122} planes for cementite. The main difficulty is to determine E

and n in Eq. (2) for each considered planes family. Therefore, an
inverse method is proposed in the following way. First, E and n are
identified for the {110} planes in ferrite so that the s11 stress in
this phase is consistent with the stress values obtained using
XRD: EFea

110f g
¼ 20071 GPa and n¼0.29. These values are consistent

with those reported in Refs. [19,20]. EFea
110f g

is close to the
calculated Young’s modulus of 225 MPa in bcc iron single crystal
by considering the three elastic constants C11¼237 GPa,
C12¼134 GPa and C44¼116 GPa. Then, since the s11 stress in
cementite is unknown, E and n are identified for the {122} planes
in this phase by the values EFe3C

122f g
¼ 16073 GPa and n¼0.33. These

values are obtained from the macroscopic stress which is calcu-
lated with a mixture rule similarly to that used in Eq. (1) and
must fit the macroscopic stress given by the tensile microma-
chine. The obtained value for EFe3C

122f g
is similar to that determined

for the same cementite planes family in Ref. [20] using synchro-
tron radiation. In this case, the maximum stress that cementite
can bear is almost 2000 MPa as reported in Fig. 8. This value is a
little bit higher than that estimated from XRD analyses using a
mixture rule, but is certainly more accurate because this is
determined from direct elastic strain measurements in cementite.
Even if a linear elastic formulation was considered for the
calculation, the order of magnitude of the maximum stress in
cementite is found to be realistic.

Table 1
Stress values obtained in ferrite and cementite during tensile loading using a

simple mixture rule (Eq. (1)). Values are given with an uncertainty of 710 MPa in

ferrite and 7170 MPa in cementite.

Macroscopic

strain (%)

Stress in ferrite (MPa) XRD

measurements

Stress in cementite (MPa)

mixture rule

0 0 0

4.85 410 1375

6.7 435 1470

9.15 460 1410

11.7 490 1330

14.2 500 1430

15.6 510 1355

17.55 520 1430
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Fig. 6. Position of the diffraction peaks during loading: (a) CeO2 peaks always at
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strain).
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3. Internal length mean field (ILMF) model

3.1. Constitutive equations with GND layers around particles

In this section, a small strain incremental Internal Length
Mean Field (ILMF) model for elastic–plastic heterogeneous mate-
rials [14] is applied to the designed ferrite–cementite steel. Ferrite
is considered elastic–plastic with a statistically homogeneous
distribution of purely elastic cementite particles with average
diameter D as described in Fig. 9. Since the average particle size D

is much smaller than the average grain size, the polycrystalline
aspect will be disregarded. In the following, three ‘‘phases’’ are
considered. The first phase is the matrix phase representing
ferrite far away from the particles (denoted M). This phase
plastically deforms and hardens only through the evolution of a
SSD density rM

SSD. The second phase represents cementite particles
(denoted C) which are supposed elastic and of same ellipsoidal
shape. Let us denote the respective matrix and particle volume
fractions by fM and fC. In order to improve the capability of mean
field approaches, the physical accumulation of excess dislocations
at the matrix–inclusion interfaces is here taken into account by
introducing a third ‘‘phase’’ (L) with volume fraction fL. This one
consists in intermediate layers of same finite thickness l contain-
ing a large GND density and surrounding the particles (Fig. 9).
l provides the internal length of the model and is assumed to be
constant during deformation. The layers and the particles form
composite inclusions (LþC) with same axis ratios (homothetic
topology). Thus, the ‘‘layer phase’’ volume fraction fL is given by
fL¼ fC((aþl)(bþl)(cþl)�R3)/R3 where a, b and c are respectively

the semi-axes of the ellipsoidal particles in the x1, x2 and x3

directions associated with the macroscopic principal stress direc-
tions. Hence, the average radius R¼D/2 of the volume equivalent
spherical particles is defined such as abc¼R3. The Representative
Volume Element (RVE) is shown in Fig. 9. The particles are supposed
to deform elastically such as _sC

ij ¼ cC
ijkl
_eC

kl where cC
ijkl are the linear

elastic moduli of cementite particles. A J2 plastic flow theory is
assumed for the hardening of the matrix and the layer. The
consistency condition for plastic flow writes for each phase K

(K¼M, L)

_sK
eq ¼ _sK

ref ð3Þ

where sK
eq ¼ ð3=2sK

ij s
K
ij Þ

1=2 is the equivalent Von Mises stress in phase
K, sK

ij are the deviatoric stresses and sK
ref describes the evolution of

isotropic hardening. In the layer phase L, the latter follows the
evolution of the sessile SSD density given by a Kocks–Mecking law
[21] modified to account for interactions with the GNDs

_sL
ref ¼

Mamb

2
ffiffiffiffiffiffiffiffiffiffi
rL

SSD

q _rL
SSD ¼

M2amb

2
ffiffiffiffiffiffiffiffiffiffi
rL

SSD

q k

b

ffiffiffiffiffiffiffiffiffiffi
rL

SSD

q
�frL

SSDþkGNDrL
GND

� �
_epL

eq ¼HL _epL
eq

ð4Þ

where M is the Taylor factor. For each K, _epK
eq is the von Mises

equivalent plastic strain rate _epK
eq ¼ 2=3_epK

ij
_epK

ij

� �1=2
and HK denotes

the incremental isotropic hardening modulus. The variables rL
SSD

and rL
GND are respectively the SSD and GND densities in the layer

phase. The additional term kGNDrL
GND accounts for the contribution

of the GNDs to forest dislocation hardening through dislocation
tangles [22]. The ‘‘classic’’ Kocks–Mecking law [21] without this
term is used for (M) as only SSD densities are present in the matrix

_sM
ref ¼

Mamb

2
ffiffiffiffiffiffiffiffiffiffi
rM

SSD

q _rM
SSD ¼

M2amb

2
ffiffiffiffiffiffiffiffiffiffi
rM

SSD

q k

b

ffiffiffiffiffiffiffiffiffiffi
rM

SSD

q
�frM

SSD

� �
_epM

eq ¼HM _epM
eq ð5Þ

The scalar GND density evolution in the layer phase _rL
GND is

derived from simplifications of the transport equation of GNDs for
a spherical elastic inclusion in spherical coordinates. Even though
the elastic distortion may gradually vary from the matrix–particle
interfaces (see e.g. Ref. [14]), the (average) scalar GND density
evolution in the layer phase L of the ILMF scheme can be
reasonably approximated by

_rL
GND �

_epM
eq

lb
ð6Þ

Eq. (6) clearly implies a strong influence of the layer thickness
l on the GND density inside the layer and therefore on the overall
strain hardening. The local consistent tangent elastic–plastic
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Fig. 8. Evolution of the s11 stress for both ferrite and cementite phases during

loading. EFea
110f g
¼ 20071 GPa and EFe3 C

122f g
¼ 16073 GPa. The error bars for stress

uncertainties in cementite are provided (see text for values).

Fig. 9. (a) Representative volume element of the ferrite/cementite system (polycrystalline aspects and grain boundaries are disregarded) with GND layers constrained as a

finite ‘‘interphase’’ of constant thickness l between the ferrite matrix (denoted M in the text) and the cementite particles (denoted C in the text). Note that the morphology

of the coated inclusions can be ellipsoidal but the topology remains homothetic. (b) The problem is solved using a Homogeneous Equivalent Medium (HEM) with effective

elastic-properties determined by the Self-Consistent scheme.



moduli lKijkl relating the stress rate and the total strain rate in each
phase K (with K¼M, L) can be computed as

_sK
ij ¼ lKijkl

_eK
kl ð7Þ

Here, an ‘‘isotropization’’ of these moduli is applied because usual
anisotropic moduli are known to overestimate the global and local
stresses [23–25]. It was checked in the case of a two-phase material
(matrix and inclusions) with high contrast between both phases [23]
that ‘‘isotropized’’ moduli lead to results fairly close to finite element
results. In their ‘‘isotropized’’ form, the tangent moduli write
lKijkl ¼ 3KK Jijklþ2jK Kijkl, where for each phase K, KK is the bulk elastic
modulus and jK ¼ mK HK

� �
= 3mKþHK

� �
contains both the shear

modulus mK and the hardening modulus HK (present in Eq. (4)
and Eq. (5)). The 4th order tensors Jijkl ¼ 1=3Þdijdkl

�
and Kijkl ¼

1=2 dikdjlþdildjk� 2=3
� �

dijdkl

� �
are respectively hydrostatic and

deviatoric orthogonal projection tensors.

3.2. Homogenization strategy

Homogenization for this kind of topology is often performed
through a generalized self-consistent scheme introduced by
Christensen and Lo [26] and extended by Hervé and Zaoui
[27,28], Marcadon et al. [29] for elastic composites with spherical
multi-coated inclusions. Cherkaoui et al. [30] solved the case of
heterogeneous elastic composites with more general ellipsoidal
coated inclusions. The case of general ellipsoidal multi-coated
inclusions for elastic composites with eigenstrains was recently
solved by Berbenni and Cherkaoui [31]. Here, the procedure
follows the one investigated in Refs. [30,31] using the Hill’s
interfacial operators [32] and is adapted to elastic–plastic hetero-
geneous materials with ‘‘isotropized’’ tangent moduli as intro-
duced in Section 3.1. The material is supposed to be constituted of
‘‘3 phases’’. As described in Fig. 9, the RVE is subjected to
macroscopic strain rates _Eij. By denoting the effective tangent
moduli lef f

ijkl for the Homogeneous Equivalent Medium (HEM in
Fig. 9), the macroscopic stress rates _S ij is related to _Eij as follows:

_S ij ¼ lef f
ijkl
_Ekl ð8Þ

The imposed strain rates _Eij are the volume averages of the
strain rates in the three phases, and the macroscopic stress rates
_S ij are the volume averages of stress rates in the three phases as
follows:

_Eij ¼ f C _e
C
ijþ f L _e

L
ijþ f M _e

M
ij

_S ij ¼ f C _s
C
ijþ f L _s

L
ijþ f M _sM

ij ð9Þ

Let us now write the strain rate concentration equations as
follows:

_eC
ij ¼ AC

ijkl
_Ekl

_eL
ij ¼ AL

ijkl
_Ekl ð10Þ

where AC
ijkl,A

L
ijkl are respectively the strain rate concentration

tensors for phases C and L. They are determined by using the
interfacial operator technique (see the appendix in Ref. [14] for
details). The strain rates in the matrix phase _eM

ij can easily be
obtained from Eqs. (9) and (10), and the corresponding stress
rates _sM

ij follow from Eq. (7). Furthermore, Eqs. (8–10) give

lef f
ijkl ¼ lMijklþ f C cC

ijmn�lMijmn

� �
AC

mnklþ f L lLijmn�lMijmn

� �
AL

mnkl ð11Þ

The effective tangent moduli lef f
ijkl require the calculation of the

strain rate concentration tensors in Eq. (10). This is performed by
the self-consistent method where homothetic ellipsoidal particles
and layers are embedded in the HEM (Fig. 9). In this description,
the HEM contains C, L and M. The strain rate concentration

tensors simplify into [14]

AC
ijkl ¼

IijklþTef f
ijmn cC

mnkl�lef f
mnkl

� �
�

f L

f C þ f L
Tef f

ijmn lLmnpq�lef f
mnpq

� �
TL

pqrs� Tef f
ijrs�TL

ijrs

� �h i
lLrskl�cC

rskl

� �
2
64

3
75
�1

ð12Þ

and

AL
ijkl ¼ ½Iijpq�TL

ijmn lLmnpq�cC
mnpq

� �
�AC

pqkl ð13Þ

where the 4th order symmetric tensors Tef f
ijkl (resp. TL

ijkl) are
derived from the classic symmetric Eshelby tensors associated
with lef f

ijkl (resp. lLijkl) and, Iijkl is the 4th order unit tensor.

4. Model calibration and validation

4.1. Key physical parameters

The parameter identification was performed using simple
macroscopic tensile response as well as the ferrite and cementite
stresses reported in Fig. 8 directly estimated from lattice strain
measurements in Section 2.2. The average inclusion diameter
(assuming equivalent spherical shape) is taken as D¼0.73 mm and
the volume fraction of cementite particles (Fe3C) is fC¼5.7%. The
elasticity constants are supposed linear isotropic and the Young’s
modulus for ferrite (matrix phase and layer) is classically
EFea
¼210 GPa. Young’s modulus for cementite (C) is taken equal

to EFe3C
¼230 GPa following recent estimated isotropic elastic

constants for cementite [33]. The Poisson ratio is supposed uni-
form (see Table 2). Isotropic strain hardening parameters k and f

for ferrite were adjusted around typical values recently identified
for purely ferritic steels (no cementite particles) with different
grain sizes [34]. These parameters were adjusted to reproduce the
saturation of experimental macroscopic strain hardening with
strain. The initial SSD densities in the matrix and the layers are
1010 m�2. The initial GND density in the layer is 1010 m�2. The
initial critical stresses in the matrix and the layer are 100 MPa. All
other parameters are listed in Table 2.

As anticipated in Section 1, the key parameter is the layer
thickness l. Here, its value is calibrated in order to reproduce the
elastic strain measurements and corresponding stresses in both
metallurgical phases (Fig. 8). In order to compare the model
predictions to the experimental values obtained for the tensile
stress in ferrite, the latter is computed as a function of the average
stress in the matrix (M) and the layer (L) phases

sFea
11 ¼ f MsM

11þ f LsL
11

� �
= f Mþ f L

� �
ð14Þ

Fig. 10 shows the reference model predictions for the macro-
scopic and phase stress curves during simple tension in the (x1)
direction with elongated ellipsoidal particles aligned in the tensile
direction with a constant aspect ratio of 1.5. The latter corre-
sponds to the averaged value for aspect ratio of particles given in
Fig. 2. While fitting the experimental macroscopic strain

Table 2
List of material parameters used in the model to fit both experimental macro-

scopic and local stress curves given in Fig. 10. For the simulation, the particles are

ellipsoidal inclusions aligned in the tensile direction and with a constant aspect

ratio of 1.5. The GND layers around particles have constant thickness l (0.3 mm).

a M l (mm) EFea (GPa) EFe3C (GPa)

0.4 3 0.3 210 230

nFea nFe3C k f b (Fea) (m)

0.29 0.29 0.03 14 2.5�10�10



hardening curve, l is adjusted to capture the significant experi-
mental difference between the tensile stresses in ferrite and
cementite. Concurrently, the value of kgnd was also calibrated
and taken to be 250 k, a value 2.5 higher than that used in Ref.
[14]. After the yield stress, the discrepancy between model stress
response and experimental data up to 5% of overall strain is
clearly due to a Lüders plateau which originates from a macro-
scopic plastic instability seen for this steel in tension. The
micromechanical ILMF model is based on a homogenization
scheme which does not aim to account for strain localization
phenomena like macroscopic Lüders bands. In the present con-
stitutive framework, the first perfect plastic behavior after the
initial yield point is not described and the study is only focused on
the influence of GND layers on the homogeneous strain hardening
behavior after a few percents of overall strains (see Fig. 10).

Thus, a sub-micron value of 0.3 mm was found to give a
reasonable fit to experimental results in Fig. 10 at overall strains
larger than 5%. It is noteworthy that a layer thickness on the order
of 0.3 mm was also estimated by Field Dislocation Mechanics
(FDM) simulations in the framework of Al matrices reinforced by
SiC particles [14] even though particle sizes were different from
the present study. In Ref. [14], that allowed capturing particle size
effects on overall strain hardening for two Al matrix compositions
with the ILMF model. Here, the present calibration of the ILMF
model using combined XRD and Synchrotron diffraction measure-
ments gives same order of magnitude for l. Let us note that the
particle sizes were larger in Ref. [14] than in the present designed
ferrite–cementite steel. From these results and with a simple
reasoning using Eq. (6) which is a simplification of the GND
transport equation, it seems that the layer thickness l is espe-
cially influenced in our approach by the ratio between accumu-
lated plastic strain in the matrix phase and the uniform GND
density in layers around particles. Thus, the formulation does not
give a direct influence of particle size. In this sense the model is
different from classic models [6,7] which considered an average
scalar GND density in the overall matrix but did not consider
spatial GND distributions in finite layers around particles and
characterized by an internal length l. Accordingly, it is not
unrealistic to find same order of magnitude for GND layer
thickness even though the microstructural systems may have
different particle size.

In the present study, a significant difference of about
1300 MPa at the end of forward straining is obtained between
the tensile stresses in ferrite and in cementite in good agreement
with experimental estimations. The layer thickness l, which is
about half the particle size, and the GND contribution to isotropic
hardening (through kgnd) are responsible for such a difference.
This difference results from a higher stress in the layer than in the
matrix because of the physical GND contribution to isotropic
hardening (Eq. (4)). We also checked that such difference was not
reachable with classic two-phase homogenization schemes for
which l-0 (fL-0) using elastic–plastic ‘‘isotropized’’ tangent
moduli even if these formulations were calibrated by classic finite
element cell calculations [23,24]. As evidenced in Fig. 11, when
the layer thickness is divided by a factor of ten while keeping
unchanged the value of kgnd, the difference between both phase
stresses is much smaller (about 400 MPa). This difference is also
reduced when kgnd¼0 while keeping the layer thickness (about
300 MPa) unchanged. It was checked that the huge experimental
difference between the stresses in ferrite and in cementite cannot
be captured by the model with a too small layer and/or a too
small value of kgnd, even by using new identified physical strain
hardening parameters. These results show the impact on the
induced length scale parameter l on local stress estimates using
‘‘isotropized’’ tangent moduli.

Concurrently with the effect of the GND layer thickness l, the
aspect ratio of particles is also a parameter which can affect
significantly the difference between phase stresses. As shown in
Fig. 11, when the aspect ratio is increased up to 2 with ellipsoidal
particles aligned in the tensile direction, the difference increases.
Conversely, when an aspect ratio of 1.5 is taken into account with
ellipsoidal particles aligned in the normal direction to tensile
loading (i.e. the transverse direction), the difference is signifi-
cantly reduced. A stress difference reduction was also found when
particles are assumed spherical. Thus, the model predictions
suggest that ellipsoidal particles with same average aspect ratio
of 1.5 aligned in the tensile direction carry more loads and
contribute to increase the difference between the stresses in
ferrite and cementite, as compared to spherical particles for the
same calibrated GND layer thickness l. However, it should be

Fig. 10. Macroscopic and phase stresses predicted by the model with an aspect

ratio of 1.5 for ellipsoidal particles aligned in the tensile direction. Experimental

estimations of Fig. 8 are superimposed for comparison.

Fig. 11. Evolution of the model predictions when: the layer thickness l is divided

by a factor of 10 with respect to its value in Table 2, i.e. l¼0.03 mm (dashed lines),

kgnd¼0 (dotted lines), an aspect ratio of 2 is accounted for in the tensile direction

(mixed lines), an aspect ratio of 1.5 is considered normal to the tensile direction

(full lines), and, particles are assumed spherical (no lines). The circles and

diamonds denote the macroscopic stress and the stress in cementite particles,

respectively.



noted that no preferential orientation of particles with respect to
tensile direction was observed (Fig. 1). The ILMF model might be
extended to account for particle orientation distribution but this
is left for future study.

For the material parameters given in Table 2, the influence of
particle volume fraction fC and diameter D is investigated. Fig. 12
shows the maps of macroscopic tensile stress S11 and particle
tensile stress sC

11 as functions of fC and D. These maps are given at
5% (resp. Fig. 12a and b) and at 20% (resp. Fig. 12c and d)
macroscopic strains. The stress levels and the aforementioned
difference between both phase stresses increase with increasing
fC. A ‘‘smaller is harder’’ size effect of the particle diameter D is
obtained due to a GND layer thickness of 0.3 mm. Remarkable size
effects can be obtained when D is in the order of l. Conversely,
size effects become gradually negligible when D reaches values,
which are much larger than l. In Fig. 12, we limit the values of D

and fC such that the GND layer volume fraction fL does not exceed
50%. This limit guaranties that the assumption of uniform stress/
strain fields in the GND layers remains reasonable and also that
neighboring GND layers do not overlap, which would make the
model incorrect. The largest value of fL is about 50% for a particle
diameter of 0.6 mm and a particle volume fraction of 7%. In this
case, it was checked that the average particle spacing L, given by
L¼(pD2/(4fC))1/2 [6], is about 2 mm. As the GND layer thickness is
0.3 mm, there is no overlap of GND layers in a statistical average
sense. For the smallest particle diameter (D¼0.6 mm) and largest
particle volume fractions (fC¼7%), the difference between
phase stresses is important and the tensile stresses in the
particles become very high (�2500 MPa at 20% of macroscopic
strain). In each subfigure of Fig. 12, the triangles indicate the
predicted values for the particular case of the designed ferrite–
cementite steel studied in the present paper for which l/
DE0.4. It was then checked that for a GND layer thickness
divided by a factor ten (l¼0.03 mm ), almost no size effect
occurs in the present range of particle volume fractions and
sizes. Same size independent results are obtained if the

contribution of GNDs to isotropic hardening is cut off (kgnd¼0)
with l¼0.3 mm.

4.2. Bauschinger stress

In order to validate the order of magnitude found for the layer
thickness l (0.3 mm) in Section 4.1, an estimate of the Bauschinger
stress from the results of the ILMF model is now developed.
During complex loadings like Bauschinger tests performed in
Section 2.1, the GND density content may evolve in complex
ways due to the annihilation of dipolar structures in the transient
regime between the direct and reverse loading paths as recently
observed by FDM simulations [35,36]. Thus, the evolution of GND
density in the layer phase is probably more complex than Eq. (6)
which is only valid for monotonic loading. It would require new
understanding using either DDD or FDM simulations to extend
the present GND backstress formulation to strain path changes.
For this reason, the ILMF approach is limited to the prediction of
monotonic responses for this steel. Usually, in order to highlight
the resulting macroscopic backstress originating here from ‘‘inter-
phase’’ stresses (i.e. the so-called Bauschinger stress) the predic-
tions of reversible responses are needed.

However, a simple efficient way to estimate at least one part
of the overall experimental Bauschinger stress X reported in
Fig. 4 is to assume the steel as a two-phase composite material.
Accordingly, we can derive an estimate of the Bauschinger
stress now denoted X0 from the phase stresses in both ferrite
and cementite after monotonic tensile loadings, as previously
reported with both experimental and ILMF model results
(Fig. 10). The analysis consists in considering the uniaxial stresses
at the end of the tensile stage and applying the following formula
to estimate X0.

X0 ¼ f C sFe3C
11 �S11

� �
¼� 1�f C

� �
sFea

11 �S11

� �
¼ f C 1�f C

� �
sFe3C

11 �s
Fea
11

� �

ð15Þ

Fig. 12. ILMF model predictions with materials parameters given in Table 2 of macroscopic tensile stresses S11 at 5% of strain (a), 20% of strain (c) and particle tensile

stresses sC
11 at 5% of strain (b), 20% of strain (d). The values are reported as functions of fC (particle volume fraction) and D (equivalent average particle size diameter). The

triangles indicate the predicted values for the ferrite-cementite steel studied in the present paper.



where fC¼5.7%. Eq. (15) arises naturally from internal stress self-
equilibrium in the considered two-phase composite [37]. In
Fig. 13, we compared the values given by Eq. (15) for X0 and the
ones given by Fig. 4 for X. To compute X0, we used the phase
stresses predicted by the ILMF model. The results are consistent
with the values for X0 calculated from experimental phase stress
estimations of Fig. 8. Remarkably, the saturation of the Bauschinger
effect with increasing strain is captured by the model, and is here
explained by the saturation of isotropic strain hardening in ferrite.
However, it is noteworthy that the macroscopic Bauschinger stress X

is about twice higher than the model predictions for X0.
The overall Bauschinger effect (X) is indeed reinforced by the

polycrystalline feature of the steel and the presence of GNDs at
ferrite–ferrite grain boundaries [13], which also produce intra-
phase backstress. Experimental values for the Bauschinger stress
are reported in Ref. [34] in the case of reversible shear tests in
pure ferritic steels (without cementite particles) for similar grain
size. Hence, the additive effects of large GND densities near
ferrite–ferrite interfaces close the difference between X and X0

for the present steel.

5. Conclusions

A ferrite–cementite steel was first specifically designed to
calibrate and validate an Internal Length Mean Field (ILMF) model
first introduced in Ref. [14].

To achieve this objective, in situ tensile experiments combined
with XRD and Synchrotron diffraction lattice strain measure-
ments were performed to derive the average stress evolutions
in both ferrite and cementite during tensile loading.

In addition to the macroscopic tensile stresses, these stresses
were used to calibrate the thickness l of an intermediate layer
‘‘phase’’ with large GND density between ferrite and cementite
particles through the ILMF model.

A layer thickness of 0.3 mm was found to give reasonable
estimate of the important difference between the stresses in
ferrite and cementite found by lattice strain measurements.
Without this GND layer and its contribution to isotropic hard-
ening by dislocation tangles, the large difference between phase
stresses cannot be reproduced by the model. The aspect ratio of
particles was also shown to have an impact on this difference.

In addition to previous unit cell FDM simulations performed
on another particulate-reinforced alloy in Ref. [14], experimental
tension–compression tests were also performed to validate the
value of l regarding the overall Baushinger stress.

The measured Bauschinger stress as a function of forward
prestraining is reasonably predicted from the phase stresses
predicted by the ILMF model during first stage tensile loadings.

In particular, the saturation of the Bauschinger stress with
forward tensile strain is captured.

For future study, the polycrystalline aspect with physical
mechanisms taken into account at the scale of slip systems should
be developed for a better quantitative description of the overall
experimental Bauschinger effect [38].
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Appendix A

A.1 XRD and ring diffraction experimental device

Both X-Ray Diffraction (XRD) and synchrotron radiation were
used to obtain the per phase stress distribution in the designed
steel during in situ uniaxial tensile tests at room temperature
when applying increasing stress until failure. These non-
destructive techniques were used to determine the average stress
in both metallurgical phases: bcc ferrite and orthorhombic
cementite. First, a small micromachine was directly placed under
a PROTO iXRD goniometer equipped with a chromium antic-
athode. The average macroscopic stress and strain were recorded
with load and displacement cells, respectively. In accordance with
the European standard, the sin2 c method was used to follow only
the stress evolution in ferrite (surface analysis), considering the
{211} planes (2y¼156.11). Because of the low volume fraction of
cementite, the level of stress in this phase could not be assessed
during these tests. The same in situ tensile tests were then carried
out at the European Synchrotron Radiation Facility (ESRF, ID11
beamline) with high-energy X-rays. Ring diffraction measure-
ments were performed with a 60 keV (l¼0.207 Å) monochro-
matic X-ray beam in transmission mode to follow the evolution of
the bulk stress in both ferrite and cementite simultaneously.

Fig. 13. Bauschinger stress X0 model predictions (bold line) by using ILMF

reference stress curves of Fig. 10, and experimental estimations (circles) by using

both phase stresses of Fig. 8. The experimental Bauschinger stress X reported in

Fig. 4 and derived from the macroscopic data in Fig. 3 is also reported (diamonds).

Screen of the
CCD camera

Specimen

Incident
beam 

Rings

Tensile
direction

Fig. A1. Ring diffraction device in the ESRF-ID11 beamline [39].



The stress analyses in cementite were possible because both the
X-ray flux and the diffracting volume are higher than those of lab
XRD. A schematic representation of the experimental device is
shown in Fig. A1 [16]. The micromachine was placed in such a
way that the tensile axis was always vertical. The different
specimens were previously covered with a thin layer of vacuum
grease and a nanocrystalline CeO2 cerium dioxide powder as a
calibrant. The 1 mm2 incident beam entered normally to the
specimens forming complete Debye–Scherrer rings from ferrite,
cementite and the CeO2 calibrant. These resulting 2D diffraction
rings were recorded by a Frelon 2D CCD camera with a resolution
of 2048�2048 pixels and a 48.1�46.8 mm pixel size. The
sample-to-camera distance was 340 mm in order to focus mainly
on the {110} planes of ferrite and the {122} planes of cementite.
These ones were chosen because their corresponding ring was
relatively ‘‘isolated’’ from the others at this distance.

A.2. Diffraction analysis

The XRD sin2 c method was used in a classical way to follow
the evolution of the stress in the ferritic phase [39]. Thirteen c
angles were tested for each analysis to determine the sj stress
values only in the tensile direction. The elastic strain was first
calculated for each c angle as follows:

e¼ d�d0

d0
ðA1Þ

where d0 and d are the interreticular spacings of the considered
planes respectively for the unstressed material and during load-
ing. The final stress sj is then deduced from the sin2 c method

ejc ¼
1þn

E
sin2csj�

n
E

Tr sð Þ ðA2Þ

where E and n are respectively the macroscopic Young’s modulus
and the Poisson ratio of the material.

A typical pattern of ring diffraction is shown in Fig. A2. In this
figure, the most intense rings correspond to ferrite. The others are due
to cementite and CeO2 while the darker beam stop is visible in the
center of the pattern. Many peaks are observed especially for
cementite due to its orthorhombic structure. However, most of them
are double peaks, corresponding to two different plane families
diffracting at the same 2y position, or are peaks very close to each
other. Hence, that makes them very difficult to analyze precisely in
particular when peaks are becoming wider during loading. Therefore,
in order to limit the resulting uncertainties in stress determination,
this work was mainly focused on {111} planes of CeO2 (for the
calibration of the rings) and on {110} planes of ferrite as well as {122}
planes of cementite. The FIT2D software [19] was used to determine

all the geometrical parameters of the experiments for each pattern.
The first four CeO2 rings were considered for the position of the beam
center, the tilt angle and the sample-to-detector distance. The (elastic)
lattice strain component ee

11 (resp. ee
22) obtained in the tensile (resp.

transverse) direction was calculated by integrating only the corre-
sponding part of the rings. Since the tensile direction was vertical,
two different masks (vertical and horizontal) were created for this
purpose. The resulting peaks of all phases were intense enough to
determine precisely the corresponding 2y diffraction angle (profile
fitting). The different elastic strain components were finally given by
Eq. (A1).
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