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Abstract

A dynamic crash loading experiment is performed on polypropylene foam which is used in composite sandwich structures for safety
applications. Several interrupted shocks are conducted, in between which, microtomographic acquisitions are made showing the change
of the sample during its compression. These data can help construct and validate predictive models, although, because this material is
multi-scale (constitutive beads at the mesoscopic scale are made of microscopic closed cells), image processing is required to extract use-
ful quantitative measurements. Such processing is described here, so as to determine a representative volume for each bead of the sample,
to associate values such as bead density to each bead and to each stage of the compression. This can help build a predictive model at the
mesoscopic scale.
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1. Introduction

Composite multi-layers or sandwiches are becoming
widely used in many industrial sectors for producing struc-
tural parts. Compiling an exhaustive list of all types of
applications is difficult, but if we consider the transport sec-
tor, we find composite sandwiches for the aeronautic indus-
try in key parts (wing leading edge, rudders). In the
railroad industry, these structures are often used for wagon
decor panels. As for the automotive and motorcycle indus-
tries, they are used in passive safety gear (bumpers or hel-
mets). In all these applications, the intrinsic properties of
light weight and rigidity are used. These sandwiches, com-
posed of a core of cellular material and two composite
skins, are light (since their constituents are of low density),
rigid in traction and compression (the composite materials
have good mechanical properties) but also in bending since
the foam core thickens the structure (and thus increases its

quadratic moment while limiting its weight) and supports
high bending moments. These properties are particularly
interesting for producing functional structures that must
sustain high stresses under normal conditions. During
severe or extreme loadings (crashes or accidents), these
structures must deform plasticly and absorb the impact
energy to protect either the rest of the structure or the pas-
sengers. In the case of a plane wing that can collide with a
bird, the leading edge should be able to absorb the energy
of the impact and lessen damage to the other structural ele-
ments. In a train accident, the composite decor panels must
deform themselves if a passenger is thrown onto the struc-
ture. Finally, a car is the first passive safety element that
protects the vehicle passenger or pedestrian involved in
the accident. It is thus imperative to control the response
of composite sandwiches to high strain rates. Characteriza-
tion of the behavior of the composite material and core cel-
lular material under dynamic loadings is essential before
considering numerical modeling of the real structure. The
study we are particularly concerned with is the description
of the cellular material behavior during dynamic loading.
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Many studies have been carried out at the macroscopic
scale to characterize experimentally the behavior of this
type of material under dynamic stresses. Di landro et al.
[1] studied experimentally the behavior of polystyrene
foams. Static and dynamic compression tests (with classical
testing machine and drop tower) were done to identify the
parameters of a constitutive model as function of strain
rate and temperature. A complementary observation of
the microstructure has been done to reveal the deformation
of the beads and the buckling of their walls. The compres-
sive behavior of polystyrene foam was also experimentally
investigated by Song et al. [2] at strain rates from 0.001 to
950 s�1 by using testing machine and Hopkinson bars.
Avalle et al. [3] have done equivalent studies on polypro-
pylene, polystyrene and polyurethane foams in quasi static
and dynamic loading. From the results, he deduced
absorbed energy – stress diagrams allowing the definition
of the most efficient foam (nature and density) in function
of the applications. Zhang et al. [3,4] have completed the
database on these cellular materials by carrying out uniax-
ial and hydrostatic loadings and simple shear tests for dif-
ferent strain rates. All these experiments show that the
behavior of cellular material generally includes three steps
in compression: an elastic response, a plastic regime with
an important deformation of the material and quasi-con-
stant stress, and finally a densification. It is the stress pla-
teau of the plastic phase that is of interest for passive
security applications since the material can absorb a signif-
icant fraction of the impact kinetic energy. From these
experimental results, empirical laws were proposed to
describe more or less accurately the relation between stress
and strain according to different parameters such as density
and strain rate (eventually the temperature). For instance,
Gibson and Ashby [6] and Zhang et al. [5,7] studied the
macroscopic behavior of polymeric and metallic foams
under multi-axial loading and for different strain rate con-
ditions. From these studies, yield surfaces were proposed
for analysing the behavior of foams by different
approaches. On the one hand, Gibson and Ashby proposed
constitutive equations for polyurethane, polyethylene and
aluminium foams (closed or open cells) based on the anal-
ysis of the macroscopic mechanical response of a foam
ideal structure. On the other hand, from the macroscopic
behavior identified experimentally, Zhang developed also
a rate dependent constitutive equation without taking into
account any strain localization. Some of these models have
been already implemented in Finite Element codes such as
ABAQUS [8] or LS DYNA [9]. In any case, these models
consider the macroscopic response of a homogenized mate-
rial but do not take into account the localizations of the
observed strains and thus their heterogeneity.

These laws, used in industry and numerically adjusted
on the global stress curves, can be used to represent the
behavior of a large variety of cellular materials such as
polymeric or aluminium foams. It is well known that for
the former, the predominant phenomenon in its damage
is the wall buckling of the constitutive cells whereas wall

fractures can be observed in the latter. It is therefore essen-
tial to propose macroscopic behavior models which take
into account the physical phenomena observed at all scales
(macroscopic scale, bead scale in the case of expanded
polymeric foams and cell scale) of the cellular material
structure.

This study is part of a work which aims to propose a
behavior multi-scale model based on the physical phenom-
ena observed on expanded polymeric foam during dynamic
loading. The structure of the considered polypropylene
foam is multi-scale: at the mesoscopic scale, as seen in
Fig. 1a, the material consists of porous polypropylene
beads agglomerated during manufacturing, beads that are
composed of thousands of small closed cells, shown in
Fig. 1b (microscopic scale). Behavior of this type of mate-
rial under dynamic stress is thus foreseen by a multi-scale
description. It is obviously necessary to identify the global

Fig. 1a. Micrograph of polypropylene foam showing the bead structure.

Fig. 1b. Micrograph of polypropylene foam showing the cell structure.



response of materials at the macroscopic scale for various
strain rates, but also to investigate the response of the foam
structure at the mesoscopic (that of the bead) and micro-
scopic scales (that of the basic cell). Observation of the
deformation of the meso- and microscopic walls (bead
and cell) will be one of the elements that will help to estab-
lish phenomenological laws at these scales.

The method proposed to reach the final objective of this
work is to model the micro (cell scale) and mesostructure
(bead scale) of the foam sample. The first step, presented
in this paper, concerns the identification of a mesostructure
of a polypropylene foam sample. The representativeness of
the sample for the macroscopic material is less important
than for the homogenisation method since the next step
is the modeling of the real sample mesostructure (bead
scale). The study of the microstructure (cell scale) is simul-
taneously in progress.

Homogenisation methods will afterwards be used to
build a multi-scale model describing the foam response at
the macroscopic scale. In this article are presented the
observation, the comprehension and the characterization
of the physical phenomena occurring in the multi-scale
structure of the foam. This step is essential to reach the
final objective of foam structure modeling. The following
steps will be to represent the specific structure of the stud-
ied sample by a polyhedral mesh taking into account the
two meso- and microscopic scales of the material
(Fig. 1c) and to derive a macroscopic model fitting experi-
mental results with numerical simulation ones.

2. Material and methodology

2.1. Polypropylene foam

A polypropylene foam is investigated in this paper. The
plates of cellular material are obtained by moulding; the
expanded plastic foam beads are injected into a plate
mould (700 mm � 400 mm � 24 mm), where individual

beads are fused together under steam heat and pressure.
The average density of each plate intrinsically depends on
the quantity of expanded beads injected into the mould.
For this study, the density of the plate is 80 kg/m3. The
moulding process, particularly injector and vent positions,
induces density heterogeneities. Horizontally, measure-
ments on a large number of samples cut out from this plate
show values as large as 92 kg/m3. Vertically, i.e., through
the thickness of the plate, density increases significantly
near the surfaces (12%), whereas in the central region it is
relatively uniform. Consequently, the samples were
obtained by coring a cylinder perpendicularly to the plate
and upper and lower parts were cut to reach the final
dimensions (10 mm in diameter and height).

2.2. Methodology

The physical phenomena observed on polymeric foams
during dynamic compression has already been studied
under specific conditions [10]. After impact, the buckling
of both cell and bead walls have been observed by SEM.
A strong heterogeneity of the residual deformation can
be seen. However, the main difficulty of these observations
lies in the sample cutting.

Complementary measurements were taken during
impact with the use of optical acquisition apparatus and
image processing techniques (high-speed camera, optical
fibre spotlights and Digital Image Correlation software).
A strong heterogeneity of the strain field was shown, and
strain localizations appear in layers perpendicular to the
loading direction. The material damage progresses close
to these zones during the stress plateau [10,11]. However
these observations are only possible on the free faces of
the sample, implying that this method cannot estimate
the strain field inside the foam structure.

In light of these first results, microtomography was con-
sidered for observing the deformation inside the foam
structure. Tomography is a non-invasive process of gener-
ating images of cross-sections from a series of transmission
data acquired by illuminating the object from different
directions [12]. In the case of X-ray tomography, for each
direction of illumination, the process is similar to radiogra-
phy: the acquired transmission data gives a map of the rays
attenuation. Fig. 2 illustrates this: the centre object, con-
sisting of an ellipse and a circle, is illuminated from two
directions by a parallel beam, the acquired images are
called projections, which are used to reconstruct cross-sec-
tions of the object. In reality, many more projections are
needed for an accurate reconstruction using, for instance,
filtered back-projection [12].

Microtomography has been already used to characterize
foam microstructures for different applications. For
instance, to optimize Processing of Aluminium [13] or poly-
meric foams [14], cell structures (size distribution, wall
thickness, connectivity, etc.) were quantified after specific
3D image treatments. The reconstructed 3D images can
be also used to compute effective physical properties of

Fig. 1c. Multi-scale modeling scheme of foam.



the foam like permeability diffusivity and macroscopic
mechanical properties [15]. Taking advantage of the fact
that this technique is non-destructive, the change of the
microstructure of a given sample can be followed in 3D
during a mechanical test. McDonald et al. [16] studied
in situ the strain localization at the cell scale for an alumin-
ium foam during quasi static compression.

Those studies demonstrate the relevance of microtomog-
raphy to identify a foam structure without loading [13–15]
or during a compression test [16]. In our case, there are two
extra difficulties. First, the polymeric foam considered here
has a multi-scale structure constituted of large beads and
micro closed cells, making the segmentation more complex
and requiring development of specific image analysis proce-
dure. Second, the loading is dynamic (punch displacement
speed 5 m s�1) and the structure measurement cannot be
done in situ. In consequence, identification of the foam
deformation and damage propagation in 3D from microto-
mography measurements requires an original dynamic test
methodology [17]. The adopted experimental approach
consists in carrying out several interrupted impacts on a
given sample using a drop tower, and acquiring a micro
tomogram in between each impact. The sample (diameter
and height of 10 mm) is scanned a first time before the first
impact. During each compression, the deformation ampli-
tude is limited to fixed values: 1 mm for the first impact and
2 mm for the following ones. Fig. 3 shows on the stress–
strain curves the different states the sample was in when
acquisitions were made. The sample is maintained com-
pressed and replaced on the microtomography setup for
another acquisition (points A, B, C, etc.). A second micro
tomogram is recorded when the sample is completely
unloaded (points A0,B0, C0, etc.). These operations (impact
and 2 X-ray scans) are repeated until densification of the
foam. The cellular material strain can then be evaluated

from the 3D reconstructions at each stage of the dynamic
test.

Micro tomographic images presented in this paper have
been obtained on the BM05 beam line at the European
Synchrotron Radiation Facility (ESRF) in Grenoble
(France), with beam energy of 16 keV. The acquired pro-
jections (1200 in our case) are 2028 � 2048 pixels radio-
graphs, with a pixel corresponding to 4.91 lm.

The 3D reconstruction uses pre- and post-processing to
reduce artefacts and noise, such as hot spots or ring
artefacts.

From these measurements, a first analysis was done in
2D. The deformation of beads located in a vertical section
of the foam was calculated for each step of the experiment
[17] and bead density was estimated. This first study shows
that there is not a strong correlation between the density of
beads and their volume deformation, meaning that bead
density is not the principal parameter influencing the defor-
mation heterogeneity. However, the arrangement of beads,
their shapes and the geometry of the mesostructure seem to
have an influence on the strain field. This can be checked by
3D analysis of a larger number of beads of different den-
sity. Contrary to 2D study for which planar displacements
are assumed, the volume strain is calculated directly from
the change of bead volume and the bead displacement is
determined from the location of its barycentre.

The main difficulty of a 3D analysis is to extract the
bead walls from the multi-scale structure: Fig. 4 shows that
it is difficult even interactively to accurately position the
walls. This problem is minimised for other types of foams
that have been more extensively studied, such as metallic
foams. Typical digital image filters are not sufficient to
extract these complex walls: noise reduction and threshold
produce structures with unrealistic porous zones and traces
of cells or bubbles with thick walls, as illustrated in Fig. 5,
which cannot be used, neither to quantify bead volume
changes, nor to generate a FE mesh of the foam morphol-
ogy. To overcome this, a new approach for identifying the
bead structure was developed. The method requires a per-
spicacious sequence of typical image processing operations

Fig. 2. Illustration of the principle of parallel beam X-ray tomography.

Fig. 3. Typical evolution of compression stress vs strain for a cellular
material.



to extract a more accurate representation of the bead struc-
ture that is useable for calculating bead strain.

This paper presents the image analysis that was imple-
mented to identify distinct regions in the microtomograms
for each bead that makes up the foam. The method was
applied at several steps of the loading and the evolution
of bead strain can be estimated and compared to bead
density.

3. Image analysis methodology

The purpose of this work is to understand the behavior
of polypropylene foam at the mesoscopic scale (scale of the
beads), for which extracting pertinent data from the micro-
tomographic images is required. To perform measurements
on the beads, a representative volume in each one is deter-

mined. The final objective of this work is to follow the
deformation of these Representative Bead Volumes
(RBV) and to estimate the influence of bead density. This
section describes the way these volumes are extracted.

The method consists of two steps: firstly, a series of fil-
ters applied on the reconstructed volumes gives approxi-
mate positions for the bead centres, and secondly each
centre serves as starting point for a deformable surface
algorithm, in which a triangulated surface placed inside a
bead expands until coming in contact with bead walls.
These surfaces are used to delimit representative bead vol-
umes in the microtomograms.

3.1. Extracting approximate bead centres

Estimating bead centre positions requires a sequence of
basic filtering operators to be applied on the reconstructed
image. Fig. 6 summarises the filtering sequence, and Fig. 7
shows various intermediary results. First, the image is sub-
sampled: each 4-pixel wide cube in the image is replaced by
one pixel, dividing the size of the numerical volume by 64
(step a). This was done because of hardware limitations,
but in no way affects the correctness of the method. The
next operation partially removes phase contrast (due to
X-ray diffraction at the interfaces between phases of the
sample, an enhanced contrast appears around portions of
bead and cell walls [18]) by removing darker areas: if a pixel
p has an intensity i lower than the intensity i0, equivalent to
the attenuation of the air, then it is set to i0 (step b). The
reason for this is that at some point small features such
as noise and microscopic cells need to be smoothed out,
and if a gaussian filter is applied on the image containing
phase constrast, i.e., light zones next to dark ones, a
smoothing operator will level these areas to that of the rest
of the image. A gaussian filter (step c) is then applied to
remove noise and microscale features inside the beads.
The next operator (step d), a gradient (the Sobel norm
was used), highlights the bead edges.

Fig. 4. An axial cross-section of a micro tomogram of the studied polypropylene foam. The left image is a view of the entire section, where the bead walls
seem well -defined. The image on the right is a zoomed portion of the image, an example of why localizing these walls with precision is not possible.

Fig. 5. 3D reconstruction of bead walls in using classical numerical filters.



The next part consists of extracting most pixels from the
bead walls, which is where the gradient is higher. Opera-
tions described here are based on notions of digital topol-
ogy [19]. First a hysteresis thresholding is applied (i.e.,
the image is thresholded with a high and low value, giving
two binarised images, respectively Ih and Il, then a geodesic
dilation is applied to Ih in Il [20]), which makes for a better
binarisation than a classical thresholding since the bead
walls are connected (step e). The thresholds are chosen so
as to extract enough of the bead walls to obtain a single
connected component for these pixels, and as little as pos-
sible of the inside of the beads. The result does not contain
all the pixels of the bead walls and contains a few notice-
able cells around and inside the beads. The cells around
the bead walls hardly affect the bead centre approximation,
but the ones inside the cells should be removed, which is
done by extracting the largest connected component (step
f). Afterwards, to avoid the unreconstructed area of the
image to influence the ensuing operations, a cylindrical
mask is applied (step g): the resulting image has foreground
pixels belonging either to the unreconstructed areas of the
image or the bead wall borders.

The resulting image at step g is used to compute an
euclidian distance map (i.e., the intensity of each pixel of
the background is set to its distance from the foreground),
in which pixels close to the bead centre are darker, and
those in and around the bead walls are lighter (step h).
The distance map is then binarised by a thresholding oper-
ator (with a threshold value high enough to disconnect all
the beads, since portions of the bead walls were missing
from the image used for the distance map). In the binarised
image, smaller connected components that appear at junc-
tions between beads due to artifacts from the previous
operations are removed. Finally an image with as many
connected components as there are beads in the sample is
obtained. What is finally defined as bead centres is the
barycentres of these connected components. Fig. 8 depicts
this result: an isosurface of the distance map is drawn, with
the isosurface value corresponding to the threshold used.

3.2. Deformable surfaces

Each bead centre serves as initial position for a deform-
able surface: a closed triangulated surface, initially having

Sub-sampling
4x4x4

Phase contrast 
removal

Gaussian
filter

Gradient
Sobel norm

Hysteresis
thresholding

Biggest connected 
components

Circular
mask

Distance
map

Thresholding Biggest connected components' barycentres

Intensity
rescaling

(a) (b) (c) (d)

(e)(f)(g)(h)

Fig. 6. Method applied to the reconstructed microtomograms to extract approximate grain centres. Some parameters (such as the threshold levels) need to
be manually set. Illustrations at steps (a)–(h) are presented in Fig. 7.

Fig. 7. Illustration of the method used to extract approximate positions of the grain centres. It consists of a series of simple arithmetic and morphological
operators on the microtomograms (for visibility, figures (e)–(g) are inverted).



a spherical shape, is placed inside the bead and expands
under given conditions such that it converges towards pix-
els of higher intensity, i.e., bead walls.

It might be suggested that the volumes delimited by the
isosurfaces used to define the centres can be directly used to
estimate bead strain. However, the volumes of the isosur-
faces identified are not large enough to be considered rep-
resentative of the bead (the set of isosurfaces only
encompass about 35% of the sample volume). By using a
deformable surface algorithm, larger portions of the bead
interiors are determined (around 75%) which account for
a better bead representativity.

To obtain an RBV, the implemented algorithm is based
on the works of Delingette et al. [21,22]. The evolution of
the surface, which is a 3-simple mesh (a mesh in which each
vertex is contained in exactly 3 facets), is an explicit model,
i.e. the evolution is calculated at each step t, and is made by
subjecting each vertex p of the mesh to a second-order
Newtonian law of motion

P
m¼d;i;v;r

~F m ¼ m~a, where ~F m rep-
resents several forces, classified as internal and external to
the mesh, m a mass assigned to the vertex p and~a its accel-
eration. The forces are defined as: a dilation force
~F d ¼ kd

~N expands the surface, an opposite intensity force
~F i ¼ �ki

~N , which increases when the vertex is inside a
high-intensity region of the image, contracts the surface,
and a viscosity force ~F v ¼ kv

~V adds friction to the move-
ment to avoid divergence. The constants kx are manually
set to optimize the convergence of the surface, the vectors
~V and ~N are respectively the speed of p and the normal
of the plane defined by the three neighbours n1, n2 and n3

of p (the neighbours are oriented so that the normal always
points outwards). The internal force is a regularisation
force ~F r ¼ krð~g þ ~d~N �~pÞ that smoothes the curvature of
the surface. The curvature is based on the elevation d of
the vertex, which is controlled by its simplex angle /, as
shown in Fig. 9. The value ~d represents the elevation, above

the centre of gravity of the triangle n1n2n3, of a point that

has a simplex angle ~u ¼ sin�1 r
P

j2½1;3�
sin uj

rj

� �
, where r is the

radius of the circle circumscribing the triangle, and /j and
rj are respectively the simplex angle of nj and radius of the
circle circumscribing the neighbours of nj. Convergence is
achieved when, for each vertex, all forces are balanced
and speed drops to zero.

An essential factor for this approach is the choice of the
image that defines the force field ~F i. This image should con-
tain higher intensity values near the areas where the
deformable mesh is to converge. Although the initial
image, the reconstructed microtomogram, appears to have
suitable features for this process, the amount of noise, sig-
nificant cell wall intensity and higher intensity near the
sample periphery make it an inappropriate choice. The best
results were obtained with a smoothed gradient, as in step d
of Fig. 7. To avoid surfaces expanding outside of the sam-
ple bounding volume, a cylindrical mask was applied to
this image, as in step g. Results of this algorithm (obtained,
in less 60 s per bead, from the image of the sample before
impact) are shown in Figs. 10a and 10b: each bead is rep-
resented by a surface, and compared to Fig. 8, these sur-
faces are more tightly packed. There is still however a
notable interstitial volume in between the beads, which
has no physical significance: in the material, foam beads
are in contact with each other and no space exists between
them (except in some regions neighbour to three or more
beads). This is due both to areas where bead delimitations
are not marked by strong intensity variations, and to cell
walls which are as pronounced as bead walls (even to the
naked eye it is sometimes unclear where bead walls are
located, see Fig. 4). Nevertheless, the present task is not
to completely encompass the bead volumes, but to obtain
an RBV.

4. Results

This methodology is applied on the polypropylene foam
sample and for each stage of dynamic loading. The first
numerical process makes it possible to detect 87 bead

Fig. 8. Representation of the distance map threshold which allows
locating bead centres. An isosurface of the distance map (Fig. 7h), with the
threshold value used for finding the barycentres, is displayed. The dots
inside the isosurfaces are the bead centres.
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Fig. 9. Simplex angle and elevation of a vertex of the deformable mesh,
used to regularise the mesh to obtain a smooth surface. p is the considered
vertex, n1, n2 and n3 are its neighbours, h is projection of p on the plane
defined by the triangle n1n2n3, c is the centre of the circle circumscribing
n1n2n3, a and b are the points of the circle aligned with (hc), and g is the
triangle’s centre of gravity. Finally, d is called the elevation and u the
simplex angle of p.



centres. From these points, the deformable surface algo-
rithm was used to create 87 meshes corresponding to the
representative volume of foam beads (Figs. 11 and 16a, b
and c). This method was applied for all the acquired tomo-
grams (points A, A0, B, B0. . ., Fig. 3). It is then possible to
represent the sample as a set of surfaces and better visualise
its deformation during the experiment: Fig. 11 shows this
representation before impact and after the second impact
(respectively left and right view). Each mesh can then be
extracted and its deformation, which approximated that
of the corresponding bead, studied separately; in many
cases, the bead strain is more complex than the strain
obtained under a simple homogeneous uniaxial compres-
sion. For instance, if we consider the bead marked as num-
ber 61 and shown in Fig. 12, visual analysis for the two first
impacts reveals a inhomogeneous deformation; the lower

portion of the mesh seems to become more compressed
than the rest [23].

This qualitative observation can be completed by quan-
titative measurement in using the features of numerical
algorithm. Firstly, for each bead, voxels contained in the
RBV are counted: this gives a lower bound of the bead vol-
umes. The objective of this procedure is to extract the inter-
nal part of the beads constituted only of porous material.
The efficiency of this method can be estimated by the ratio
Kv between the total volume of reconstructed beads and the
one of the sample. For the CT-scans before loading and
after the first and second impacts, this ratio Kv is close to
0.74. For the third and fourth impacts (where the macro-
scopic strain reaches 50% and 70%), this ratio is, respec-
tively 0.64 and 0.51. It means that this algorithm is
sufficiently precise to extract for further treatments more
than half of the volume even for deformations as large as
70%.

Secondly, an average grey level can be calculated for
each bead, by using the intensities of the pixels of the tomo-
grams that are contained in its corresponding mesh. With
common image processing software, the average grey level
of each RBV was calculated. Theoretically, in particular
neglecting the phase contrast effects, there is a linear rela-
tion between the grey level of a pixel and the density of
the corresponding volume element. Indeed, the tomo-
graphic reconstruction produces a 3D mapping of l, the
linear attenuation coefficient of the material. The grey level
image is obtained by applying the following affine transfor-
mation to this 3D mapping: the grey level assigned to the
pixels having a value lower than lmin is 0. for the pixels
having a value larger than lmax it is 255, and in between
a linear interpolation is applied. The values of lmin and
lmax are selected to optimize the dynamic of the grey level
image. This is done by thresholding the cumulated histo-
gram of the l values.

Noting that

lair � lpp

qair � qpp

ð1Þ

the following relations can be obtained:

l ffi ð1� /Þlpp

q ffi ð1� /Þqpp

ð2Þ

where q is the density, / the porosity, and subscripts ‘air’
and ‘pp’ refer, respectively to air and polypropylene.

Rewriting Eq. (2)

/i;j;a ¼ 1�
li;j;a

lpp

qi;0:a ¼
li;0:a

lpp

qpp

ð3Þ

where i is the bead number, j the compression stage (0 be-
fore loading, 1 after the first impact, point A in Fig. 3, and
so forth) and a characterizes the loading state: a = c (com-
pressed) or a = u (unloaded). The l values are calculated

Fig. 10b. Section in the middle of the sample showing the interstitial
volume between reconstructed beads (sections in white).

Fig. 10a. A view of the calculated surfaces that delimit the grains, with a
colour map corresponding to the relative density of the beads. Beads at the
periphery are noticeably denser.



from the grey level using the linear relation applicable be-
tween lmin and lmax.

A volume variable can be chosen to estimate the defor-
mation of each bead. If we consider the strain tensor �e, the
trace of this tensor corresponds to the volume strain of the
material evol ¼ trð�eÞ. The volume strain of a porous media
can be calculated from its porosity. In our case, the volume
strain of a bead i, due to the dynamic loading (step j), is
obtained from the relation:

evol
i;j;a ¼ 1�

/i;j;a � /i;0:a

1� /i;j;a

ð4Þ

It is then possible to retrieve the volume strain of each bead
from the variation of its mean grey level in combining Eqs.
(3) and (4):

evol
i;j;a ¼

li;0:a � li;j;a

li;j;a
ð5Þ

4.1. Foam morphology

4.1.1. Bead size
For each bead, the number of voxels contained in the

mesh multiplied by the corresponding volume ((4.91 lm)3

in this case) approximately measures the RBV. This first
calculation gives an indication on the bead size variability
before the loading. Initially, the mean volume of the RVBs
is 6.7 mm3, ranging from 0.8 mm3 to 12.9 mm3. The small-
est RBVs correspond to the outer beads that have been cut
during sample preparation. If we omit these incomplete
beads, the mean volume rises to 9.7 mm3, ranging from
6.2 mm3 to 12.9 mm3. Assuming that there is a good corre-
lation between the computed RBV and the corresponding
bead in terms of volume, we observe a strong heterogeneity
in bead size for the sample before impact. Paragraph 4.2
analyses the effect of this heterogeneity on bead
deformation.

4.1.2. Bead density

Theoretically, using Eq. (3) the average density of a bead
can be obtained from the grey levels of all pixels contained
in that bead. It can be approximated by using the pixels
contained in the corresponding RBV. In practice, the aver-
age grey levels obtained for each bead varies only weakly,
from 77 to 84. The measurement dynamics, calculated as
the ratio of grey level variation (84–77) to the measurement
range (256), does not exceed 3%. Those grey levels corre-
spond to bead porosities ranging from 98% to 78% (with
an 89% average), and reveal a strong heterogeneity at the
bead scale. Density heterogeneity also seems significant;
the lower estimated densities are 10 kg/m3 whereas the
maximum values reach 200 kg/m3. However, even if this
high variation of porosity (i.e., density) is coherent with
the visual observations, it is difficult to consider those
results as realistic since the noise associated with grey level
measurements generates a significant error on local
porosity.

Therefore, the grey levels were not used to determine
bead densities with accuracy, but only to estimate relative

Fig. 11. Reconstruction of bead morphology: before compression (left picture) and after the second impact (right picture). Each bead is identified by its
colour.

Fig. 12. Reconstruction of the morphology of bead 61: before compres-
sion (a), after the first impact (b) and after the second one (c).



bead density variations. In the rest of this paper, the densi-
ties are provided only to give an indication of foam density
heterogeneity and should not be considered exact or abso-
lute. It is then possible to plot the density distribution in
the intact sample (before any dynamic loading) as a func-
tion of bead position. Recalling that the sample is cut in
the middle of the polypropylene foam plate to avoid any
density gradient, we should not observe any relation
between the two. If we consider bead position in the
unloaded sample only in the vertical direction, the plot
shown in Fig. 13a reveals a random distribution. On the
contrary, if we consider bead position as distance from
the centre axis of the cylindrical sample, depicted in
Fig. 13b, then a strong density gradient is seen: the densest
beads are located around the edges. The mean radius Rm of
a bead is about 1.2 mm whereas the sample radius Rs is
only 5 mm, this applies that numerous beads are cut during

sample preparation. Two regions can be distinguished on
the Fig. 13b: a central zone (radius equal to Rs–Rm) where
the density is almost constant and a peripheral zone where
beads are denser and cut. This can be explained by the
induced radial shear caused by the crown saw during sam-
ple cutting.

This difficulty met during the sample preparation is well
known by researchers and industrials working on poly-
meric foams. Microtomographic study on larger structure
of metallic foams is not affected by similar density hetero-
geneity since the metallic foam sample machining causes
less structure modification (dense material is obviously
more rigid) [16].

Further investigation of the volume strain of the beads
will allow evaluation of the effects of this wide density dis-
tribution, a structural characteristic of the sample, on local
deformation.

Fig. 13a. Bead density as a function of vertical position in the unloaded sample.

Fig. 13b. Bead density as a function of its radial position in the unloaded sample. The mean bead radius is calculated from the average RBV value.



4.2. Volume strain

The volume strain has been calculated Eq. (5) for each
RBV at different loading stages: before the impact, after
the first impact when the sample is maintained compressed
(point A Fig. 3), after the unloading of the first impact
(point A0 Fig. 3), etc. In compressed state, the volume
strain corresponds to elastic and plastic volume strain (eel

i;j

and epl
i;j, respectively), in the unloaded state, the volume

strain is equal to the plastic volume strain epl
i;j. Conse-

quently, eel
i;j and epl

i;j can be determined from the following
equations:

epl
i;j ¼ evol

i;j;u

eel
i;j ¼ evol

i;j;c � evol
i;j;u

ð6Þ

These results show what influences localization of foam
strain.

4.2.1. Volume strain vs bead size
The volume strain of the beads has been evaluated at

each step of the dynamic loading as a function of their size.
Fig. 14 shows the distribution of the volume strain vs the
RBV values after the four first impacts when the sample
is maintained compressed (points A, B, C and D in
Fig. 3). For each step, evol

i;j;c distribution is strongly dis-
persed. However, there is a slight trend that the bigger
beads seem to be more deformed than the smaller ones.
This trend is more visible after the second impact. In fact,
the influence of the bead size is difficult to highlight. The
existence of a correlation between bead size and density
can be presumed from the moulding process: beads of
nearly constant mass are injected in the mould and during
expansion, those that are able to occupy a larger volume
have a lower density. Therefore, the influence of bead size
can be confirmed by analysing the effect of bead density on
volume strain.

4.2.2. Volume strain vs bead density

The variation of the volume strain has been established
as a function of bead density for the four impacts when the
sample is still compressed (Fig. 15a) and after unloading
(Fig. 15b). The two configurations lead to the same
remarks. For the first impact, a trend in the relation
between the density and evol

i;j;a can be detected despite a
strong scattering. On these figures, fitting curves were plot-
ted to point out these trends, but as indicated by the low
value of correlation factor (R2), they did not allow to quan-
tify an average relation volume strain vs density for each
step of the impact. Ignoring this low correlation factor
could induce wrong conclusions; volume strain quantifica-
tion must be restricted to individual bead analysis. The
large range of bead volume strain reveals the strong heter-
ogeneity of the deformation field, in particular when the
sample is maintained compressed. Stress can be redistrib-
uted in the complete sample during the unloading stage
inducing a more homogenous strain field and a lower vol-
ume strain scattering.

For the most part, the lower the density, the greater the
bead volume change. The effect of density is confirmed by
the following loading stages, when the macroscopic strain
imposed on the sample reaches high values. Lower density
beads are significantly compressed whereas the denser ones
more rigid and resistant are less deformed.

To conclude on the influence of the foam morphology
on its mesoscopic volume strain, we have underlined a sig-
nificant correlation between bead volume change and den-
sity (and size by duality). The previous remarks appear to
be evident, as many studies have already shown the influ-
ence of the foam density on its macroscopic behavior: typ-
ically, denser foam has a higher mechanical response.
However, to our knowledge, it is the first time that under
dynamic loading and on a multi-scale polymeric foam,
the influence of local density on bead deformation is shown
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Fig. 14. RBV values as a function of volume strains, plotted for each bead and at each impact stage.



at the mesoscopic scale. To complete this study and qualify
the strain-density correlation, localization of foam strain
has been analysed.

4.2.3. Volume strain vs bead position
For each impact, bead volume strains were plotted vs

barycentre positions; the objective being to detect any
localization of the strain at the scale of the sample. The
coordinates of the bead barycentres are defined in a cylin-
drical system (r, h, Z) since the sample is axi-symetric.
Given that h has no influence (this hypothesis has been
checked), the beads (identified by a number, Fig. 16) are
classified according to the vertical and radial positions, Z
and r respectively, of their barycentres. For the sake of
clarity, the results are separated, firstly for Z, in five

2 mm high horizontal slices of the sample, and secondly
for r, in two cylindrical regions of identical volume: a cen-
tral cylinder (3.53 mm in diameter) and its outlying tube.
Each bead is then assigned a horizontal slice and a cylindri-
cal region. For each defined portion of the sample, the
average bead volume strain is calculated, and this process
is repeated for each impact.

4.2.3.1. Volume strain vs vertical position. The dependence
of the strain evol

i;j;a on the slice number is illustrated in
Fig. 17. Each diagram presents the average volume strain
of the RBVs belonging to the five vertical slices for each
impact with the sample still compressed or unloaded. Slice
one corresponds to the bottom of the sample and slice five

Fig. 15a. Bead density as a function of RBV variation after each impact when the sample is maintained compressed.

Fig. 15b. Bead density as a function of RBV variation after each unloading stage.



to the top of the sample, in contact with the compression
punch.

For the first impact, the distribution of volume strain
according to the slice number is clearly established: the
slices closer to the compression surfaces of punch and die
are more deformed than average (the global strain is
10%) whereas the centre slice is only lightly deformed
(5%). This is verified in both the compressed and unloaded
states. Moreover, the most deformed slice (number 5) is the
one against the punch that inflicts the loading. Visual
inspection of bead and cell wall deformation corroborates
this analysis [17]. Several factors could explain this behav-

ior, and they can be associated with the type of compres-
sion and with the morphology of the structure. Firstly,
concerning the compression procedure, the contact of the
sample with the rigid surfaces of the punch and die can
generate a greater deformation for border beads, especially
during a dynamic loading. There is not necessarily homo-
geneous stress field in the sample at the beginning of the
test. The punch generates a shock wave at the upper sur-
face of the sample that induces a stress localization in its
upper part (slice 5) and then higher strain values (this phe-
nomenon has been already experimentally shown, in the
case of dynamic loading of cellular materials, measuring

Fig. 16. Slices in different directions (a: XY or axial, b: XZ or coronal, c: YZ or sagittal) of the RBVs for two stages: before impact (left), and after the
second impact (right). Beads are all identified by a number.



difference of forces on both sides of the sample during a test
with Hopkinson Bar [24]). Consequently, at the beginning
of the test, the compression force is concentrated on slice 5
generating higher deformation. Secondly, and this concerns
the preparation of the sample, the outer beads in contact
with the punch and die have been cut and are thus weak-
ened by the loss of part of their walls. The morphology
of the foam structure is different in these two zones and
can contribute to the modification of the local behavior.

For the second impact, the observed phenomena are
similar. The global deformation imposed on the sample is
30%. In the compressed state, the higher slices are the most
deformed: the volume strain of slice 5 reaches 38% whereas
slice 2 is just deformed by 20%. Again, the beads in contact
with the rigid surfaces of the die and punch are particularly
deformed. It is also interesting to compare the volume
strains eel and epl. The volume strain epl is nearly constant
(20%) for slices 2, 3 and 4 after the second impact, but in
its compressed state, a strong difference on evol can be
noted, meaning that the elastic strain eel is still significant
for slices 3 and 4. On the contrary, eel is particularly weak
for slices 1 and 5.

For the last impacts (deformations of 50% and 70%), evol

is more homogeneous and a slope is observed in the varia-
tion of the volume strain according to the slice number. At
these levels of compression, the cellular material deforma-
tion becomes mainly plastic (the sample is in the densifica-
tion phase after the 4th impact) and the elastic response is
very low.

The response of the polypropylene foam measured
during the impact corresponds to a typical behavior for a
cellular material; an elastic response followed by a plastic
plateau and finally a densification [6,25]. The heterogeneity
of evol put into evidence in this work and its variation
depends on the combination of the effect of the dynamic
loading (certainly due to a propagation of a shock wave
during the impact) and the effect of the foam microstruc-
ture (some bead walls have been removed during the sam-
ple preparation).

4.2.3.2. Volume strain vs radial position. Finally, bead vol-
ume strain is compared to radial position in Table 1. Val-
ues of evol in the periphery are lower than those in the
central region after each impact and for compressed or
unloaded states. This variation in strain according to radial
position can be explained by density and structure effects.
There is a dependency of the density on the radial position;
the denser peripheral beads constitute a rigid shell for the
core of the sample. During the compression, the volume
variation of this external shell skin is low, and its thickness
increases while its height decreases. The increase in thick-
ness implies a radial stress imposed on the central beads;
The loading is in fact a combination of a uniaxial compres-
sion and a radial pressure. Therefore, this particular
heterogeneous microstructure in terms of bead density gen-
erates a stress field between beads that is more complex
than the uniaxial compression imposed by the punch. This

Fig. 17. Average volume strain for the five horizontal slices as a function of impact steps.



hypothesis is confirmed when observing the shape of the
deformed beads [17].

4.2.4. Volume strain of individual beads
To confirm that density is not the only parameter that

acts on sample deformation, volume strain was examined
for all the individual beads. As the objective is not to
deduce an average behavior but to highlight the complexity
of the local response, we only present the results for four
representative beads. They have been selected in the centre
of the sample since deformation in this area seems more
homogeneous. Fig. 16 allows visualising the positions and
shapes of these beads. Table 2 indicates the bead number
and density, and gives the volume strains calculated for
the three last impacts (the results for the first impact are
not significant). When comparing the volume strains calcu-
lated for beads 31 and 41 (of equal density) after the second
impact, one observes obvious differences. Similarly, volume
strain of bead 45 is higher than the one of bead 61 whereas
their densities are equivalent. On the other hand, between
beads 61 and 31, deformation is similar but bead 31 has
a higher density.

Consequently, it is clear that if bead density has an influ-
ence on local deformation, the real morphology of the mes-
ostructure (size and shape of the beads, their spatial
localization, thickness of the bead walls [17], etc.) must also
be taken into account to improve constitutive model of this
multi-scale material.

5. General conclusion and perspectives

This article presents the last results of a work on the
analysis of the localization of foam strain at mesoscopic
scale (bead scale). To reach these results and describe the
mesoscopic strain distribution of a polypropylene foam
sample under dynamic loading, a new approach has been
developed in combining original impact device, micro
tomography techniques and specific image algorithms in

more demanding conditions (multi-scale material and
dynamic loading) than in already published works. Firstly,
dynamic compression interrupted tests were carried out on
polypropylene foam samples and microtomographic acqui-
sitions made after each impact. A customized image pro-
cessing method has been developed and applied to extract
a representative volume of each bead from the complex
microstructure of the multi-scale foam. The change of the
meshed deformable surfaces obtained at the different steps
of the dynamic compression allows determination of the
porosity variation of beads and their volume strain.

The distribution of the bead density has been examined
as a function of its radial and axial location. No axial cor-
relation appeared whether a strong radial one can be
detected. That has been interpreted as a consequence of
the sample preparation. The existence of this heteroge-
neous density distribution might be problematic for macro-
scopic behavior identification but is less important in our
objective since next step is the modeling of the real sample
mesostructure (bead scale).

The volume strain distribution was analysed as a func-
tion of bead size, density and location for all the steps of
the impact at the compressed and unloaded states. A slight
influence of bead size has been shown; the larger beads are
generally more deformed. However, the main correlation
appeared with density; the lower the density, the greater
the bead volume change. This correlation is valid for all
the loading stages. Finally, the axial and radial location
of the beads affects their volume strain in a complex way
that is globally explained by a combination of dynamic
loading and foam microstructure effects.

Those results demonstrate that bead density has an
influence on local deformation but the real morphology
of the mesostructure (size and shape of the beads, their spa-
tial localization, thickness of the bead walls [17], etc) has to
be taken into account to explain the detailed mesoscopic
behavior. The analysis of data concerning specific beads
reinforced the conclusion: bead density and volume change

Table 1
Volume strain mean as a function of the radial position (internal or external) of beads for each impact

1st impact 2nd impact 3rd impact 4th impact

Compressed Unloaded Compressed Unloaded Compressed Unloaded Compressed Unloaded

Internal zone �0.24 �0.17 �0.43 �0.38 �0.64 �0.63 �0.82 �0.76
External zone �0.07 �0.06 �0.18 �0.14 �0.35 �0.32 �0.57 �0.47

Table 2
Volume strain for four beads calculated for the second, third and fourth impact (in the compressed and unloaded states)

Bead number Density 2nd impact 3rd impact 4th impact

Unloaded
vol. strain

Compressed
vol. strain

Unloaded
vol. strain

Compressed
vol. strain

Unloaded
vol. strain

Compressed
vol. strain

45 84.2 �0.22 �0.26 �0.49 �0.56 �0.61 �0.69
61 93.8 �0.13 �0.17 �0.43 �0.44 �0.56 �0.64
31 178.7 �0.16 �0.18 �0.29 �0.37 �0.48 �0.53
41 178.8 �0.06 �0.15 �0.28 �0.29 �0.40 �0.53



are not completely correlated. A companion study using
our micro tomograms and 3D Digital Image Correlation
techniques [23] confirms our measurements of the mean
volume change on a bead (labelled 61) and, furthermore,
highlights, almost at the cell scale, the heterogeneity of
strain inside this bead.

From the results presented and their analysis, the behav-
ior of this polypropylene foam structure is better under-
stood at mesoscopic scale. The next step of this work is
the modeling of the foam morphology (bead and cell struc-
tures) taking into account the observed phenomena. A
multi-scale model will be developed representing the dense
bead walls (mesoscopic scale) by a surface mesh (with
properties of dense polypropylene) and the porous interior
of the beads by a volume model based on Discrete
Elements.
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