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a b s t r a c t

In most industrial design processes, the approaches used to obtain a design solution that best fits the
specification requirements result in many iterations of the ‘‘trial-and-error’’ type, starting from an initial
solution. In this paper, a method is proposed to formalize the decision process in order to automate it, and
to provide optimal design solutions. Two types of knowledge are formalized. The first expresses the sat-
isfaction of design objectives, relating to physical behaviors of candidate design solutions. This formaliza-
tion uses three models, an observation one, an interpretation one and an aggregation one; every design
solution is qualified through a single performance variable (a single objective function). The second
model is related to modifications that may or may not be applicable to the pre-existing solution. The
Designer is often able to define preferences concerning design variables. Some modifications related to
this pre-existing solution, can be preferred to other ones. A hierarchy of design variables is proposed
to formalize these preferences. The concept of arc-elasticity is introduced as a post-processing indicator
to qualify candidate solutions through a trade-off between the performance improvement and their rel-
ative distances to the initial solution. The proposed method is used and applied to a riveted assembly, and
a genetic algorithm is used to identify optimal solutions.

1. Introduction

In industrial processes, a typical occurrence in sub-contracting
mechanical design, design activity is based on companies’ know-
how as well as on designer’s imprecise knowledge [1]. These pro-
cesses require several iterations between product design and
simulation, starting from a predefined solution. The aim of this
‘‘trial-and-error’’ approach [2,3] is to obtain a product that corre-
sponds to criteria defined in the design specification documents,
via an iterative process of decision-making and optimization. Opti-
mization is mostly based on knowledge rather than on numerical
optimization methods. This time-consuming process provides no
guarantee of approaching an optimal solution and no justification
of the decision process. During such processes, designer prefer-
ences linked to the initial solution and to the behavior of the prod-
uct are applied.

In the following paper, reasoning is based on a single solution,
called the reference solution or initial solution since it is involved
in an iterative process; this reference solution is related to designer
preference and supports the mathematical formulation of this
preference. Indeed, design activity is often underpinned by one

pre-existing solution whose structure is regarded as preferable
even if it is not precisely adapted to the ongoing design problem.
The design and development (prototyping, testing, and industrial-
ization) of this reference solution may require significant invest-
ment (costs and delays); and by the end of the process this
solution is regarded as well known and secure. The structure of
new design solutions is implicitly constrained to remain close to
this initial solution as any difference between a candidate solution
and the initial solution will imply additional costs [4]. Thus, it is
possible to formalize user preferences as a distance between opti-
mal and initial solutions.

The majority of product design optimization problems are
regarded as being ‘‘multi-objective’’ [1]: satisfying one of the
product’s performance criteria, which are related to physical obser-
vation variables, is linked to the performance of the other observa-
tion variables. Ullman proposes a list of the main elements that
must be taken into account in making decisions for this kind of
problem: design alternatives and human preferences [5]. Human
preference is therefore a major element in design and Augusto
et al. [6] distinguishes a priori and a posteriori decision assistance
to express these preferences. A priori decision support and de-
signer’s preferences concerning the product are formulated in the
mathematical optimization problem in the same ways as the phys-
ical behavior model of the product.
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Numerous methods can be used to tackle multi-objective prob-
lems taking designer’s preferences into account. Jones et al. [7]
describes three of these methods, namely the reference point
method, goal programming and compromise programming.
Romero underlines similarities in these approaches. All of these
methods are based on a precise modeling of the design objectives
[8]. The optimization process then consists in minimizing the gap
between the candidate design solutions and these objectives. Other
methods use designer’s preferences formalized through design
decision-making methods [9]. Utility theory [10], introduced in
economics, proposes to interpret an observation variable through
a utility curve formalizing the preference. Marston illustrates this
method [11]. Starting from the Utility theory, Antonsson has devel-
oped the Method of Imprecision (MoI) where multiple variables
are qualified using fuzzy logic and are aggregated through design
strategies [12,13]. These aggregation strategies are structured by
design axioms to ensure their design-ready property [14]. The
Observation-Interpretation-Aggregation method (OIA) is a similar
process, structuring the modeling of product behavior and prefer-
ences through three models [15,16]. The first is a predictive model
of the product’s behavior; the second qualifies the observation
variables using desirability curves [17], while the third aggregates
the resulting interpretation variables, formalizing and prioritizing
the design objectives via an aggregation step [18,19]. The OIA
method is employed to quantify the product’s performance
through a single variable.

Later on, we consider two types of variables: the product’s per-
formance and the distance between one candidate solution and a
reference solution. Then, the concept of arc-elasticity is introduced
as a decision support indicator of the relative improvements or
degradations in these two variables. Elasticity has been introduced
in the area of microeconomics [20]; Allen and Lerner [21] proposes
the principle of arc-elasticity based on the measurement of the
elasticity between two points. In this paper, this concept is applied
in engineering design to quantify trade-offs in the selection of dif-
ferent candidate solutions.

From this preference trade-off an original optimization method
is proposed. The paper begins by defining the OIA modeling meth-
od and the three resulting models. In the second part, the arc-elas-
ticity indicator is presented and adapted to the design field. Next,
from this model and this indicator, we propose a global optimiza-
tion method based on the sequential search for optimal solutions
using a hierarchy of design variables. This process is described in
the third part of the article. Finally, in the fourth part, the method
is illustrated by applying it to a fastened assembly (with rivets) and
by optimizing the mechanical system with a genetic algorithm.

2. Modeling methodology of performance

Multi-objective optimization problems consist in finding opti-
mal values for every observation variable. Designer’s expectations
relative to these variables are generally conflicting [19]. Solving
multi-objective optimization problems must be performed through
a trade-off between the different candidate solutions. This trade-off,
derived from an aggregation process, is used to pass from several
variables to a single one.

We argue that designer’s preferences deriving from his know-
how and experience are not formalized in the observation model.
However, designer’s preferences are used to interpret every obser-
vation variable. Designers have information that enables them to
decide whether a value is acceptable or not, information which
can be formalized. In the following, preferences are formalized
using mathematical functions. The Observation-Interpretation-
Aggregation approach (OIA) is used to translate the design problem
into a mono-objective function including both physical behavior

and decision models. The OIA approach, detailed in the present
section, is divided into three models (Fig. 1):

1. The observation model l is a model of the behavior of the prod-
uct (physics, economics, etc.).

2. The interpretation model d expresses the design criteria trans-
lating physical observation variables into desirability levels.

3. The aggregation model n formalizes and defines priorities
between the design objectives.

2.1. Design variables and observation model

Design variables (also called decision variables or design param-
eters according to some authors) are related to the main structural
characteristics of the system that must be quantified by the design-
ers and correspond to the degrees of freedom on which designers
act to define the system; system performances result from the
values of these variables. In the following, X is defined as the vector
containing every design variable xi. The design search space X
(Fig. 1) is defined as the space containing every candidate solution
of the optimization problem. Therefore, this space is formed from
every possible instantiation of the vector X.

Every design variable xi is associated with a value domain
bounding the admissible values of the variable. The value domain
of xi is denoted as [�x�i ; �xþi ]. Therefore the design search space and
the design variables vector satisfy:

X 2 X

with X ¼ x1 . . . xi . . . xn½ �T

and X ¼ �x�1 ; �xþ1
� �

� � � �x�i ; �xþi
� �

� � � �x�n ; �xþn
� �� �T

ð1Þ

Value domains can be continuous (dimensions, energy quantities,
etc.) or discrete (materials, numbers of parts, product architectures,
etc.). Their boundaries are defined by designers, from design
requirement documents and also from his expertise.

An instantiated vector X defines a candidate solution. From this
solution, the observation model computes the observation vari-
ables yi, which forms the vector Y. These variables are used to ob-
serve the product’s behavior from which the performances of the
product are derived. The observation model verifies:

lðXÞ ¼ Y with Y ¼ y1 . . . yi . . . ym½ �T ð2Þ

2.2. Interpretation model

Observation variables are then translated into an interpretation
variable (vector Z) through the interpretation model. We propose
to build formal interpretation functions using desirability func-
tions, but other ‘‘value functions’’ can be employed [22]. The desir-
ability notion was first suggested by Harrington [17] in the area of
quality, and is commonly used in multi-objective optimization

Fig. 1. Modeling methodology.



problems [23]. Every observation variable yi, is associated with a
desirability function di as an input variable and results in a variable
zi. Interpretation variables are dimensionless values ranging be-
tween 0 and 1 (Eq. (3)). The closer an interpretation variable value
is to 1, the more desirable is the value of the corresponding obser-
vation variable.

dðYÞ ¼ Z ¼ z1 . . . zi . . . zm½ �T with zi ¼ diðyiÞ and zi 2 ½0; 1�
ð3Þ

where di is a desirability function associated with the observation
variable yi.

Usually, design constraints are translated into strict constraints
using inequality equations. The desirability functions translate de-
sign constraints into soft-constraints, which allow a more realistic
definition of the design problem. Harrington’s desirability func-
tions are continuous functions computed from the coordinates of
two points called Accurate Constraint (AC) and Soft Limit (SL)
points. These particular points correspond to desirability values
of 1% and 99% and shade the transition domain of acceptability
of the constraint. Desirability functions used in this paper are de-
fined in the Appendix A.4.

2.3. Aggregation model

Interpretation variables are finally aggregated according to the
design objectives into Design Objective Indexes (DOI), formalizing
the satisfaction levels of the objectives. These objectives have been
identified through the investigation of the product lifecycle, the
product’s functions and customer requirements. The DOI are then
aggregated into a single mono-objective value called Global Desir-
ability Index (GDI), which qualifies the performance of the candi-
date solution. This approach aims at simulating common human
reasoning: observation of a phenomenon, interpretation of this
observation, and global appreciation of the design solution. Classi-
cally, design optimization problems are modeled as multi-objec-
tive optimization problems [24,25] by combining goals (values to
be maximized or minimized) and constraints (equality equations
or inequality relations). The OIA method results in a mono-objec-
tive optimization problem since goals and constraints are inte-
grated in the same model.

Several types of aggregation are compared by Kros and Mastr-
angelo [24] including additive aggregation and multiplicative
aggregation. Additive aggregation, which is a weighted arithmetic
mean, does not satisfy the principle of annihilation, as the aggre-
gated value of a solution can be positive whereas one of the inter-
pretation variable values is null. On the contrary, multiplicative
aggregation does satisfy this principle [19], which is one of the
main axioms of design-ready aggregation models [14,26]. Conse-
quently, in the following we propose to use a two-step multiplica-
tive aggregation.

Design objectives are related to several interpretation variables.
For this reason, we propose to aggregate them into Design Objec-
tive Indexes (DOI). These variables quantify the satisfaction level
of the solution in relation to every design objective (Fig. 1). For
example, a design objective related to product transportability is
linked to satisfaction levels (interpretation variables) derived from
physical observation variables such as the dimensions and mass of
the product. Consequently, in contrast to Derringer [18] and Der-
ringer and Suich [19] who aggregate interpretation variables into
a single value, we introduce intermediate steps between the inter-
pretation variables and their aggregation into a single performance
variable. Interpretation variables are aggregated as follows:

DOIi ¼
Ypi

j¼1

½ðzjÞxj � with xj P 0 and
Xpi

j¼1
xj ¼ 1 ð4Þ

where DOIi is the ith Design Objective Index, pi is the number of
aggregated interpretation variables in the DOIi and xj is a weighting
parameter. Weighting parameters are set to balance priorities be-
tween the interpretation variables. The higher is the value of the
weighting parameter xj, the higher is the relative priority of the
corresponding interpretation variable zj.

In the aggregation model, interpretation variables must be em-
ployed at least once and one interpretation variable can contribute
to the definition of several different DOI indexes. From a practical
point of view, weighting parameters xj result from a trade-off be-
tween experts linked to several design objectives.

Once the different DOI indexes have been calculated, they are
then aggregated into the global desirability index GDI (Eq. (5))

GDI ¼
Yq

j¼1

½DOImj

i � with mj P 0 and
Xq

j¼1

mj ¼ 1 ð5Þ

where q is the number of DOIs and mj is a weighting parameter asso-
ciated with DOIj.

The entire OAI approach can be represented mathematically by
the objective function u described in Eq. (6).

uðXÞ ¼ n � d � lðXÞ ¼ GDI ð6Þ

where ‘‘�’’ is a function composition.
The optimization problem can thus be expressed as follows (Eq.

(7)):

find X�=X 2 X;maxðuðXÞÞ ð7Þ

where solution X⁄ is the optimal solution.

3. Arc-elasticity

The previous paragraph details the OIA approach, which results
in a performance objective function. In this paragraph, we consider
another global objective related to an initial reference design solu-
tion. The notion of arc-elasticity is introduced, and is defined as a
ratio between gain of performance and detachment from the initial
solution. Since the initial solution is regarded as being preferable,
arc-elasticity is used as a trade-off indicator.

3.1. Notion of arc-elasticity

The concept of elasticity was first introduced in 1890 [21] in
microeconomics to quantify a product demand variation (Q)
according to a price variation (P) in a particular situation.

Although it has its origin in economics, the concept of elasticity
has been used in studies covering a wide variety of fields. Sankara-
subramanian used it in climatology to produce a map of the USA
showing elasticity in river currents in relation to rainfalls [27].
When modeling infection in a salmon population, Fenichel used
elasticity to point out the sensitivity of many parameters in the
model [28]. Lastly, Rassafi suggested an aggregation method with
several elasticities to produce an eco-criterion in the field of freight
and passenger transport [29].

Considering two distinct situations and when the relation be-
tween P and Q is not differentiable, another expression of elasticity
e can then be used, called ‘‘arc-elasticity’’ [21,30].

Let us consider two situations S1 and S2: P1 (resp. P2) is the price
and Q1 (resp. Q2) is the demand in the situation S1 (resp. S2).
Arc-elasticity e (see also Fig. 2) is defined by the following
equation:



e ¼ DQ%

DP%
¼

DQ
hQi

� �
DP
hPi

� � ¼
Q2�Q1

1
2ðQ

2þQ1Þ

� 	
P2�P1

1
2ðP

2þP1Þ

� 	

with DQ% ¼ DQ
hQi and

DQ ¼ Q 2 � Q 1

hQi ¼ 1
2 ðQ

2 þ Q 1Þ

(
ðresp: PÞ

ð8Þ

Allen introduced three properties related to the definition of arc-
elasticity [21]:

1. Independence of the units: Arc-elasticity has an intrinsic
meaning, as the percentage variation of DQ% for a 1% change
of DP%.

2. Symmetry with respect to the two situations: Both are of equal
importance when calculating e.

3. Equality to the unity, if the two situations are equivalent: e = 1
indicates that the variations of Q and P are totally equivalent
in the two situations.

In this paper, arc-elasticity is applied in design by considering
an initial solution and a candidate solution. Arc-elasticity is
regarded as a numerical value suitable for quantifying a trade-off
between performance and ‘‘overall cost’’ of the modification of an
initial reference solution. It is noticeable that in this paper two
distinct concepts of cost are taken into account:

� The overall cost of the transition between an initial solution
and an optimal solution [4]. This refers to monetary costs
but also to cost in terms of time, psychological stress or risk.

� The unit cost of a candidate solution, independent of the ini-
tial solution and only depending on costs of materials, parts,
machining, etc. This unit cost is employed in the Section 5.

In the present case, arc-elasticity is used to qualify the rele-
vance of design decisions made during the design of the initial
solution and, if need be, to propose optimal solutions.

‘‘Cost is in fact what is removed as a result of action on available
resources (...) the individual acts when the benefit (...) he
derives from the action is noticeably greater than the internal
resources that have to be devoted to it.’’

This extract from Alexandre and Gasparski [4] illustrates the no-
tion of arc-elasticity proposed in this paper, where the ‘‘benefit’’
corresponds to an improvement in performance compared to the
initial solution and the ‘‘cost’’ is a distance between initial and can-
didate solutions. The initial solution is written X0, and its compo-
nents x0

i .
Let us consider two solutions: the initial one with performance

GDI0 and a candidate solution Xk with performance GDIk. As a
trade-off indicator, the arc-elasticity between these two solutions
takes into account the variation of the performance of Xk in relation
to X0: DGDI = GDIk � GDI0. This variation corresponds to the vari-
able Q in Eq. (8).

The variation of P corresponds to the overall cost, which is
assimilated to the distance between the two solutions in the design
space. The arc-elasticity of the performance is thus defined as the
quotient of the dimensionless variation in performance DGDI and
the dimensionless distance between X and X0.

3.2. Distance between solutions

Many definitions of distance can be found, which are adapted to
different cases of application. The most frequently used of these
definitions is the Euclidean distance:

distEðX1;X2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðx2
i � x1

i Þ
2

vuut ð9Þ

where X1 (with component x1
i ) and X2 (with component x2

i ) are two
solutions in the design space X.

Unlike Augusto, who calculates a distance between two candi-
date solutions by taking into account design variables and observa-
tion variables in the same equation [6], we propose to apply the
Euclidean distance since the observation variables are already inte-
grated into the arc-elasticity expression through DGDI.

Design variable xi may correspond to different physical units.
Therefore, it is necessary to transform xi into a non-dimensional
value ranging between 0 and 1 from the values of X�i and Xþi .
Eq. (10) expresses this dimensionless Euclidean distance:

Fig. 2. Schema for the arc-elasticity notion.



distDEðX1;X2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x2
i � �x�i

�xþi � �x�i

� �
� x1

i � �x�i
�xþi � �x�i

� �� 	2
vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x2
i � �x1

i
�xþi � �x�i

� 	2
s

ð10Þ

3.3. Taking into account performance and distance

To qualify a candidate design solution X, two variables have to
be computed: the performance (GDI) which has to be as high as
possible, and the dimensionless Euclidean distance between X
and X0 (distDE) which has to be as low as possible. Fig. 3 illustrates
a set of candidate solutions from the application case proposed in
the last part of this paper. Each point (black cross) corresponds to a
particular design solution and shows the GDI and distDE values of
the solutions.

The Pareto frontier (through grey squares) is illustrated in Fig. 3,
which constitutes the set of non-dominated solutions regarding
GDI and distDE. The two ultimate solutions of the Pareto frontier
are:

� The initial solution X0 (black circle) which has a zero dis-
tance to itself.

� The solution of highest performance, or ‘‘GDI-optimal solu-
tion’’ (black square) which has the best GDI value.

As a trade-off indicator, arc-elasticity is used to select solutions
from the Pareto frontier [31]. By aggregating GDI and distDE

(Eq. (11)), the arc-elasticity returns a unique value e used to rank
the candidate solutions. Fig. 3 proposes the same graph than the
Fig. 3, adding a third dimension corresponding to the arc-elasticity
value. The arc-elasticity allows selecting a candidate solution
(double grey circle) near the convex Pareto frontier, and close to
the initial solution [32]. Arc-elasticity optimization results in opti-
mizing the ratio between the improvement of the performance and
the closeness to the initial solution and confirms the interest of this
notion in design field. This point has been discussed by Sebastian
et al. [32].

3.4. Arc-elasticity in design

The definition of the Euclidean distance (Eq. (10)) enables to ex-
press arc-elasticity in design:

e ¼
GDIk�GDI0

1
2ðGDIkþGDI0Þ

� 	
distDEðXk ;X0Þ
distDEðO;Xk=2Þ

� � ð11Þ

where X0 is the initial reference solution, Xk is the candidate solu-
tion, O is the origin of the design space and Xk/2 is the middle of
the segment [XkX0]. It is noticeable that the coordinates of point
O are null.

Fig. 2 illustrates the arc-elasticity concept in the design field. In
this figure, axis P (Fig. 2) is replaced by the entire design space X
(Fig. 2) to illustrate the notion of distance.

The dimensionless Euclidean distance can be projected onto a
single axis, e.g. according to a given design variable. In this case,
the distance is equivalent to a dimensionless Manhattan distance
[33]. This distance relates directly the definition proposed in this
paper to the definition of arc-elasticity suggested by Allen; it is
the ratio of dimensionless variation of performance and dimen-
sionless variation of the design variable values.

As illustrated on Fig. 4, equivalence is supposed between perfor-
mance (GDI) and dimensionless Euclidean distance (distDE). An
ideal solution (GDI = 1) is considered as preferable as the initial
solution X0 (distDE(X0,X0) = 0). An unacceptable solution (GDI = 0)
is as unwanted as a distant candidate solution (distDE(X,X0) P 1).
A candidate solution is considered ‘‘distant’’ if its distance to X0

is higher or equal to the unit. This unit corresponds to the dimen-
sionless length of a value domain.

Fig. 5 maps arc-elasticity e as a function of GDI (performance)
and distDE (overall cost). The arc-elasticity of the initial solution
X0 is theoretically infinite or indeterminate. However, this singular
configuration of arc-elasticity has no practical interest and, conse-
quently, we propose to fix the arc-elasticity of X0 at zero. The figure

Fig. 3. Pareto frontier and arc-elasticity. Fig. 4. Equivalence performance/distance.



shows that the arc-elasticity value tends towards infinity if the
overall cost is low regarding the high performance of the solution;
if the performance of a candidate solution is lower than the initial
one, then arc-elasticity tends towards minus infinity.

In this paper, we propose to study arc-elasticity as an indicator.
The GDI has to be maximized through an iterative optimization
process and the variations of e are observed. Fig. 5 illustrates an
optimization process showing the path from the initial solution
to the optimal one. It can be seen that GDI is maximized but e
can increase or decrease (Fig. 5), depending on the position of
the candidate solutions on the arc-elasticity map (Fig. 5).

4. Exploration of the design space

The initial reference solution contains a great deal of non-
formalized information, e.g. prior knowledge of the problem or
non-formal design constraints such as, for instance, preference
for certain materials due to supplier or stock constraints. The
designer must however transform this reference solution to adapt
it to new design problems or improve its performances. In the fol-
lowing, this is done by proposing new values for the design
variables, regarded as a modification of the initial solution. Design
variable modifications are related to preferences since they may be
difficult to perform.

Design modifications are organized into a hierarchy according
to these preferences, and from this hierarchy, the optimization
process is sequenced by first proposing modifications related to
the most preferable transformations defined by the designer. This
sequential optimization process is an exploration process since it
consists in a sequential exploration of every design variable
domain.

Fig. 6 illustrates this exploration process starting from the ini-
tial solution:

� The algorithm sequentially considers every design variable,
and searches for an optimal solution by modifying the vari-
ables according to the hierarchy specified by the designer
(cf. § 4.1).

� By combining an exploration function and a membership
function, every value domain is progressively explored. A
design variable is processed when its value domain is mod-
ified. At the beginning of the design variable processing, the

domain is reduced to a single value. By the end of this pro-
cess, the algorithm covers the entire corresponding value
domain (cf. § 4.2 and 4.3).

� Global optimization algorithms explore the entire design
space X to find optimal solutions. In the present case, the
proposed method is based on the progressive extension of
X around the initial reference solution X0 and according to
the hierarchy of design variables. We use a genetic algo-
rithm as a global optimization algorithm (cf. § 4.4).

4.1. Hierarchy and sequencing exploration

The sequencing exploration variable is denoted as t, with values
ranging from [0; +1] (Fig. 6). During the optimization process, the
value of t increases and thus the processing of every design vari-
able can be quantified; every value of t is linked to a corresponding
design variable value in the hierarchy. Every value of t authorizes
or prohibits the complete or partial exploration of the value do-
mains of every design variable. In an iterative optimization

Fig. 5. Moving along the arc-elasticity mapping.

Fig. 6. Progressive exploration of the design space (for a variable xi).



algorithm, t can be the current number of iteration during the algo-
rithm’s run.

To carry out this process, the notion of relative design space
X(t) is proposed and defined as follows:

XðtÞ � X

with XðtÞ ¼ ½½x�1 ðtÞ; xþ1 ðtÞ� . . . ½x�i ðtÞ; xþi ðtÞ� . . . ½x�n ðtÞ; xþn ðtÞ��
T

() i 2 ½1; n�; ½x�i ðtÞ; xþi ðtÞ� � ½�x�i ; �xþi �
ð12Þ

X(t) is the design space relative to t, included in X and containing
X0.

Thus, depending on the value of t, the temporary domain of val-
ues of every design variable xi is denoted as [�x�i ðtÞ; �xþi ðtÞ]. According
to the value of t, this temporary domain satisfies the following:

� If the design variable has already been processed:
½�x�i ðtÞ; �xþi ðtÞ� ¼ ½�x�i ; �xþi �.

� If the design variable has not yet been processed:
½�x�i ðtÞ; �xþi ðtÞ� ¼ fx0

i g.
� If the design variable is being processed the temporary

domain depends on the values of t and the parameters of
the exploration function.

4.2. Exploration functions

In order to link the sequencing exploration variable t to the de-
sign variables, we propose to introduce the notion of exploration
functions. For every design variable xi this function is denoted as
ai(t) and is defined as follows:

� If ai(t) = 1, the value domain of the design variable has not
been processed,

� If ai(t) = 0 the entire value domain is explored,
� If 1 > ai(t) > 0 some compact part of the value domain

[�x�i ; �xþi ] is explored.

For the design variable xi, the exploration function ai (t) is a
decreasing linear piecewise function (Fig. 6) satisfying to:

aiðtÞ ¼

1; for t < t�i
tþ
i
�t

tþ
i
�t�

i
; for t�i 6 t 6 tþi

0; for tþi < t

8>><
>>: ð13Þ

where t�i and tþi are two parameters of the function ai defining its
decrease rate between 1 and 0.

The pairs of parameters (t�i ; tþi ) define the ranks of the design
variables in the hierarchy. For example, let us consider two design
variables xi and xj with tþi < t�j . This inequality relation means that
xi is prior to xj in the hierarchy, i.e. the designer wants to process xi

completely before starting to process xj (Fig. 7).
Within the framework of the application presented in the fol-

lowing paragraphs and as shown in Fig. 7, it is proposed to use
exploration functions, distributed uniformly along axis t. A fixed
parameter p is introduced which defines the slope of every func-
tion ai as the difference between its parameters t�i and tþi . The
parameter p is also defined as the value separating the exploration
of the value domains of two consecutive design variables (Fig. 7).
Thus, for two design variables xi and xj, in successive positions in
the hierarchy: p ¼ t�j � tþi . The expression of the parameters of
every exploration function is generalized as shown in Eq. (14):

8xi;
t�i ¼ ð2:orderi � 1Þp

tþi ¼ 2:orderi:p



ð14Þ

where orderi corresponds to the place of xi in the design variable
hierarchy.

For example, for the riveted junction presented in § 5.1 the hier-
archy is defined in Table 2 according to the difficulty inherent in
modifying the different design variables.

4.3. Boundaries of the value domains

In this paragraph, the method used to modify the boundaries of
the relative value domains is detailed. Design variables are associ-
ated to triangular membership functions. For every design variable
xi, the corresponding membership function wi(xi) has a value of:

� 1 if the value of the variable is identical to that of the initial
solution (xi ¼ x0

i ).
� 0 if the value of the variable is one of the boundaries of its

value domain (xi ¼ �x�i or xi ¼ �xþi ).

The triangular membership function wi is defined as follows:

wiðxiÞ ¼

0; if xi 6; �x�i
xiðx0

i � �x�i Þ þ �x�i ; if ; �x�i < xi < x0
i

1; if xi ¼ x0
i

xiðx0
i � �xþi Þ þ �xþi ; if x0

i < xi <; �xþi
0; if xi P; �xþi

8>>>>>><
>>>>>>:

ð15Þ

For a given value of t, a cut is made on every membership func-
tion (Fig. 6) to determine the boundaries of the temporary value
domains. These boundaries satisfy the following equation:

Findðx�i ðtÞ; xþi ðtÞÞ 2 ½�x�i ; �xþi �
2

with aiðtÞ ¼ wiðx�i ðtÞÞ ¼ wiðxþi ðtÞÞ
and x�i ðtÞ 6 xþi ðtÞ

ð16Þ

Thus, if the value of the exploration function ai(t) equals 1, the
value domain of xi is limited to the value of x0

i . If ai(t) equals zero,
then the temporary value domain of xi matches the domain [�x�i ; �xþi ].

Fig. 6 summarizes the exploration process for the design vari-
able xi. Using the sequencing exploration of variable t (Fig. 6) the
cut on xi is defined via its exploration function ai (Fig. 6). For any
value of t and every design variable xi, the cut defines the relative
value domain that bounds the exploration and guides the optimi-
zation process (Fig. 6). Therefore, for every design variable xi, this
method requires a definition for the following:

� A value domain [�x�i ; �xþi ].
� An initial value x0

i .
� A membership function wi.
� An exploration function ai.

4.4. Genetic algorithm

The optimization algorithm must perform a global search for
design solutions inside the set X(t), and consequently, must be a
global optimization algorithm. Many optimization algorithms
[34] can be used to make such a global optimization and avoid
the traditional ‘‘trial-and-error’’ approach.

In the context of the illustration used in this paper, we use a
Genetic Algorithm introduced by Goldberg [35] and developed
for instance by Javadi et al. [36]. This particular algorithm (Fig. 8)
proves to be robust, polyvalent, and able to process a large number
of design variables. It is noticeable that, in an industrial context,
this algorithm is already used for numerous applications. The main
difficulty in developing the method concerns the modeling process
of the OIA method. Such a development may require significant
investment in terms of time and financial resources. However, this
cost can be offset since the decision models are reusable and
may lead to significant performance improvements. Models of



preference formalized through the OIA method are capitalized and
reused. The proposed method is applied to problems that:

� Are recurrent.
� Hold up the production process.
� Are time-consuming.

The principle of Genetic Algorithms is based on an analogy be-
tween design solution optimization, Darwin’s competitive evolu-
tion and basic principles of genetics. A population of individuals
evolves in a simulated competitive environment. Every individual
is regarded as a candidate solution to the design optimization
problem. The genes of the individuals correspond to design vari-
ables. The genetic algorithm evaluates the performance of every
individual through the objective function u (Eq. (6)), selects the
best individuals, and applies several genetic operators to simulate
natural cross-over and mutation of genes. From these basic opera-
tions, new candidate solutions are generated through an iterative
process and the algorithm converges towards a global solution sat-
isfying the objectives and constraints of the design problem. In the
context of Genetic Algorithms, iterations are called generations.

The gene coding proposed in this paper does not differentiate
the phenotype and the genotype of the individuals. In practice,
genes correspond directly to design variables and are real values
in the genotype representation.

Four genetic operators are used:

� The ‘‘selection’’ operator generates a new population of indi-
viduals, selecting solutions with a probability depending on
their ranks (the rank is established through the GDI value).

� The ‘‘cross-over’’ operator browses the new population, con-
sidering couple of individuals. For each couple, a random
number between 0 and 1 is generated; if it reaches the
cross-over probability (which is a parameter of the algo-
rithm, see Table 1) the cross-over process is activated: two
new individuals are randomly created using the genotype
of the two previous selected solutions. Two cuts are realized
in the genes to generate the new individuals, which replace
the two previous one in the new population of individuals.

� The ‘‘mutation’’ operator browses all the individuals of the
new population. For every individual, if a random number
reaches the mutation probability (see Table 1) a gene is ran-
domly selected and randomly modified in its corresponding
relative values domain.

� The ‘‘hill-climbing’’ operator is similar to the mutation one
with a different activation probability (see Table 1), but
the selected gene is not randomly modified: its new value

is selected in the neighborhood of the previous one. This
operator is used to realize a local search in the relative
design space.

The stopping criterion for the algorithm is activated as soon as:

� An individual reaches or exceeds a performance limit:
GDI > GDIstop;

� The number of generations already carried out (Ngen) reaches
a maximum: Ngen > NgenMax.

In the next section, the following parameters are applied (Table 1):
These parameters have been determined from preliminary tests

aiming at maximizing the convergence speed of the problem (cf. § 5).
The value of p must be large enough to ensure optimization algo-
rithm convergence. Since the size of X(t) is growing throughout
the optimization process and the convergence of the optimization
algorithm requires several iterations, low values of p may limit
algorithm performance. Numerical tests also prove that, in the
present application case, convergence speed is relatively high
and requires mainly high values of the hill-climbing and mutation
probabilities compared with most of the values observed in the
literature.

5. Application to a riveted assembly

The methodology proposed in this paper has been implemented
in a design decision-support tool developed in the MATLAB� envi-
ronment. This system is currently transposed in the post-process-
ing industrial software STREAME used to optimize mechanical
assemblies; this software interacts with finite element calculations
from other software such as PATRAN�-NASTRAN�.

Using this software requires two types of expertise: designing
expertise and some basic knowledge in optimization. Designing
expertise is first used to formalize the observation model of the
product behavior, to parameterize the desirability functions and
the aggregation functions from design criteria and relative levels
of importance. Next, designing expertise is used to define the
design objectives and the design variable hierarchy. Finally, opti-
mization expertise is also required to parameterize the genetic
algorithm and the exploration sequencing process.

Design expertise and modeling are carried out using the follow-
ing workflow:

1. The design expert formalizes the observation model with
several experts (calculation, aerodynamics, materials, etc.)
and through several computational tools.

Fig. 7. Exploration functions.



2. From customers’ requirements, desirability functions are
parameterized to define the satisfaction’s levels related to
every observation variables.

3. The interpretation variables are then aggregated through
the aggregation model. The design expert has to specify
the aggregation functions, the weight parameters and the
design objectives. Several tools are used like Functional
Analysis to identify the design objectives or Analytic Hierar-
chy Process to determine the weighting parameters.

4. Then, the design expert defines the hierarchy between these
variables according to his preferences.

5. From experimental observations of the performances of the
optimization algorithm (in particular, its convergence
speed), the optimization expert can parameterize the
sequencing process using the hierarchy specified by the
design expert. In particular, the membership functions, the
exploration functions and the parameter p (see Section
4.2) are determined.

6. Finally, the optimization expert can parameter the optimi-
zation algorithm, according to its knowledge of the algo-
rithm’s behavior and the objective function specified by
the design expert.

7. At the end of the automatic optimization process, several
design solutions are proposed to the designer.

This method can only be employed if:

� The designer is able to specify its preferences related to the
physical behavior of the product (desirability curves, aggre-
gation function, weighting parameters).

� The design process is based on a preliminary design solution
whose structure (design variable values) is regarded as
preferable.

� The design problem isn’t too complex (low number of design
variables, low CPU time to compute models).

Moreover, to justify such an optimization methodology, the
product to design must be relatively recurrent to make necessary
model capitalization and justify the model development costs.

In this section, we apply the methodology to the design of a
mechanical junction using rivets. The structure of the product is al-
ready defined and numerical optimization aims to optimize the
number and selection of the type of rivets, rivet line positioning,
materials and dimensions of the plates inside the junction. This
type of application case proves to be a classic design problem in
the aeronautics field and is a major issue since large aircraft con-
tain several million rivets, which is highly penalizing aircraft mass
and requires a great deal of manufacturing investment.

5.1. Observation model

The fastening junction is made of two identical sheets of alumi-
num alloy, with parallelepiped shape and linked by a single line of
centered and evenly spaced rivets (Fig. 9).

Most approaches used in aeronautics design departments are
based on the computation of criteria ensuring the mechanical
resistance of the assembly. These criteria are numerical ratios
called margins of security (MS) made from the division of an allow-
able stress and a simulated stress augmented by a security coeffi-
cient. Four different MS are taken into account in the model:

MSk ¼
allk

1:5:strk
� 1 with k ¼

1 : upset in the sheet
2 : tension stress in the sheet
3 : shears tress in the sheet
4 : shear stress in the fastener

8>>><
>>>:
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where allk is the allowable stress and strk is the simulated stress.

To validate the behavior of the assembly, design departments
check that the four different values of MS are greater than 0.

Two other observation variables are added to these structural
data, these are the total mass (M) and the unit cost (P) of the
assembly.

These six variables constitute the observation variables (vector Y)
of the model l. Through the model, their values derive from eight
design variables (vector X) listed in Table 2 (relations are available
in Appendix A.1). In Table 2, the ‘‘step’’ column shows the discret-
ization step for every value domains. The reference numbers for
materials and rivets in the table are detailed in Appendix A.2.

Aircraft nacelles are important components which link the jet
engine to the mast and the wing. The junction being considered
here for design is a sub-assembly of a nacelle. A tensile load of
9000 N is considered in the following. Fasteners are steel rivets
commonly used in aeronautics. The parts consist of thin aluminum
sheets and five types of aluminum are commonly used for aero-
nautical applications. The dimensions of the sheets and the num-
ber of rivets of X0 are chosen to respect a traditional know-how
rule: the distance between rivets has to be equal to three times the
rivet’s diameter. Related value domains are centered on the corre-
sponding instantiated variables of X0.

Fig. 8. Genetic algorithm.

Table 1
Parameters used for the method.

Genetic algorithm parameters
Number of individuals per generation 100
Cross-over probability 85%
Mutation probability 10%
Hill-climbing probability 20%
GDIstop 0.9 or 0.95
NgenMax 1000
Exploration sequencing parameters
t Ngen

p 20, 40 or 60



The proposed methodology is based on a preliminary solution
(initial solution), which has not yet been optimized since the sim-
ulation software STREAME was not able to carry out such an opti-
mization with structural calculations.

5.2. Interpretation model

The parameters of the desirability curves corresponding to the
criteria of the riveted junction are given in Table 3. While verifying
that the safety margins are positive, the aim is to minimize the mass
and unit costs. The corresponding accurate limits of the desirability
functions are based on the values of the cost related observation
variables of Y0. Desirability functions of the safety margins are
parameterized to make positive values of the margins preferable;
the soft limits are fixed to 5, given that, for instance, a value of 10
is not really more desirable than a value of 7.

5.3. Aggregation model

In the aggregation model, three design objectives are identified:

� The mechanical strength of the assembly (DOI1): this DOI
aggregates the interpretation variables linked to the four
security margins (MS).

� The mass of the assembly (DOI2): this DOI depends only on
the desirability of the mass; consequently, its value is the
value of the desirability of M.

� The unit cost of the assembly (DOI3): like DOI2, this DOI cor-
responds to the desirability of P; consequently, its value is
the value of the desirability of P.

The four interpretation variables that represent the designer’s
wishes for the four MS are considered to be of equal importance
since no margin is more important than any other. Thus, the
weighting parameters of the aggregation function related to DOI1

(Eq. (4)) are equal and whatever i, x1 = x2 = x3 = x4 = 0.25.
On the other hand, the aggregation of the three DOI into a single

performance value GDI (Eq. (5)) has been weighted according to
relative importance levels defined by the designer. The main opti-
mization objective is to minimize the mass of the junction, DOI2 is
the most important indicator and its weighting parameter is
m2 = 0.7. Next, mechanical strength has to be guaranteed: m1 = 0.2.
Finally, the unit cost is the least important design objective:
m3 = 0.1.

5.4. Results and discussion

To illustrate the proposed approach, several optimizations have
been computed and the corresponding results are summed up in
Table 4. Two stopping criterion values have been tested corre-
sponding to GDIstop = 0.90 and GDIstop = 0.95. The values of 20, 40
or 60 have been used for the three values of the parameter p defin-
ing the slopes of the exploration functions. Four hierarchies have
also been tested. These hierarchies correspond to four different
classifications of the design variables. These computations are
completed by two optimization runs performed without hierarchy.

These results show that, using the sequencing exploration
method, optimal solutions are found close to the initial reference
solution (X0). For example, two design variables for solution X16

are equal to the initial variables (l and L) and solution X21 is

Fig. 9. Simplified riveted assembly (initial solution).

Table 2
Design variables, observation variables, initial solution.

orderi Design variables (X) Design space (X) Step Init. Sol. (X0)

1 bl Longitudinal distance between the line
of rivets and the sheet edge (m)

[10 	 10�3;50 	 10�3] 2 	 10�3 30 	 10�3

2 bt Transverse distance between the last rivet
in the line of rivets and the sheet edge (m)

[10 	 10�3;70 	 10�3] 2 	 10�3 60 	 10�3

3 refRiv Rivet reference (-) {1;2} - 1
4 Nriv Number of rivets (-) [2;30] 1 15
5 e Sheet thickness (m) [1 	 10�3;10 	 10�3] 1 	 10�3 8 	 10�3

6 refMat Sheet material reference (-) {1; 2; 3; 4; 5} - 5
7 l Sheet width (m) [300 	 10�3;500 	 10�3] 2 	 10�3 400 	 10�3

8 L Sheet length (m) [500 	 10�3;700 	 10�3] 2 	 10�3 600 	 10�3

Observation variables (Y) (Y0)
MS1 Sheet upset MS (-) 16.85
MS2 Sheet tension MS (-) 1.06
MS3 Sheet shear MS (-) 9.35
MS4 Rivet shear MS (-) 12.06
M Assembly mass (kg) 10.46
P Assembly unit cost ($) 422.93

Table 3
Parameters of desirability functions.

d(yi) for ACi<SLi for ACi>SLi

ACi SLi SLi ACi

MS1 d(MS1) 0 5 – –
MS2 d(MS2) 0 5 – –
MS3 d(MS3) 0 5 – –
MS4 d(MS4) 0 5 – –
Mass d(M) – – 0 12
Unit cost d(P) – – 10 400



Table 4
Optimal solutions for several sets of parameters.

Hierarchy p GDIstop Design variables X Observation variables Y GDI Sol.

bl bt refRiv Nriv e refMat l L MS1 MS2 MS3 MS4 M P

20 0.90 0.05 0.01 2 5 0.003 2 0.4 0.6 3.77 6.39 11.99 16.3 4.12 166.59 0.93 X1

1. bl 5. e 0.95 0.05 0.01 2 5 0.003 2 0.3 0.59 3.77 4.16 11.98 16.3 2.7 124.87 0.95 X2

2. bt 6. refMat 40 0.90 0.05 0.01 2 5 0.003 2 0.4 0.6 3.77 6.39 11.98 16.3 4.12 166.59 0.92 X3

3. refRiv 7. l 0.95 0.05 0.01 2 5 0.003 2 0.3 0.6 3.77 4.16 11.98 16.3 3.11 137.0 0.95 X4

4. Nriv 8. L 60 0.90 0.05 0.01 2 5 0.003 2 0.4 0.6 3.77 6.39 11.98 16.3 4.12 166.59 0.92 X5

0.95 0.05 0.012 2 5 0.003 2 0.3 0.52 3.77 4.07 11.98 16.3 2.73 125.76 0.95 X6

20 0.90 0.05 0.06 2 5 0.003 2 0.4 0.6 3.77 4.16 11.98 16.3 4.12 166.59 0.92 X7

1. refMat 5. e 0.95 0.05 0.01 2 5 0.003 2 0.3 0.55 3.77 4.16 11.98 16.3 2.84 129.02 0.95 X8

2. Nriv 6. bt 40 0.90 0.048 0.06 2 5 0.003 2 0.4 0.6 3.77 4.16 11.48 16.3 4.12 166.59 0.92 X9

3. refRiv 7. l 0.95 0.048 0.01 2 5 0.003 2 0.3 0.54 3.77 4.16 11.48 16.3 2.89 128.72 0.95 X10

4. bl 8. L 60 0.90 0.05 0.06 2 4 0.003 2 0.4 0.6 2.8 5.72 11.98 12.84 4.11 160.94 0.91 X11

0.95 0.05 0.01 2 5 0.003 2 0.3 0.55 3.77 4.16 11.98 16.3 2.84 129.02 0.95 X12

20 0.90 0.048 0.012 2 4 0.003 2 0.4 0.6 2.81 8.39 11.48 12.84 4.11 160.94 0.91 X13

1. e 5. bl 0.95 0.05 0.01 2 5 0.003 2 0.3 0.53 3.77 4.16 11.98 16.3 2.78 127.24 0.95 X14

2. Nriv 6. refMat 40 0.90 0.05 0.01 2 5 0.003 2 0.4 0.6 3.77 6.39 11.98 16.3 4.12 166.59 0.92 X15

3. refRiv 7. l 0.95 0.05 0.01 2 5 0.003 2 0.302 0.542 3.77 4.21 11.98 16.3 2.84 128.96 0.95 X16

4. bt 8. L 60 0.90 0.05 0.01 2 5 0.003 2 0.4 0.6 3.77 6.39 11.98 16.3 4.12 166.59 0.92 X17

0.95 0.05 0.01 2 5 0.003 2 0.3 0.538 3.77 4.16 11.98 16.3 2.8 127.83 0.95 X18

20 0.90 0.05 0.01 1 11 0.003 2 0.5 0.5 4.26 3.32 11.83 8.58 4.23 188.92 0.91 X19

1. bl 5. L 0.95 0.05 0.01 2 6 0.003 2 0.324 0.5 4.72 3.57 11.98 19.77 2.82 133.78 0.95 X20

2. l 6. refRiv 40 0.90 0.05 0.01 1 11 0.003 2 0.496 0.5 4.26 3.28 11.83 8.58 4.2 187.93 0.91 X21

3. e 7. refMat 0.95 0.05 0.01 2 6 0.003 2 0.362 0.5 4.72 4.27 11.98 19.77 3.14 143.15 0.95 X22

4. bt 8. Nriv 60 0.90 0.05 0.01 1 11 0.003 2 0.492 0.5 4.26 3.24 11.83 8.58 4.17 186.95 0.91 X23

0.95 0.05 0.01 2 5 0.003 2 0.304 0.5 3.77 4.25 11.98 16.3 2.64 123.2 0.95 X24

Without hierarchy 0.90 0.05 0.018 2 4 0.005 2 0.304 0.51 5.35 9.64 20.64 12.84 4.41 170.01 0.92 X25

0.95 0.044 0.012 2 5 0.003 2 0.342 0.512 3.77 5.01 10.46 16.3 3.03 134.59 0.95 X26

Initial solution 0.03 0.06 1 15 0.008 5 0.4 0.6 16.85 1.06 9.35 12.06 10.46 422.93 0.09 X0

613



constituted by 11 fasteners, whereas the initial solution is consti-
tuted of 15 fasteners. These design variables are slightly modified
because of their ranks in the hierarchy; they are ranked at the
end of the hierarchy, and are modified if the stopping criterion is
not yet reached.

In other words, this criterion acts on the distance between the
optimal solution and the initial one. For example, in the first hier-
archy, with the same stopping criterion GDIstop = 0.90, optimal
solutions are obtained without modifying the two last design vari-
ables in the hierarchy (X5), whereas in a traditional optimization

Fig. 10. Best performances and the corresponding arc-elasticity, through two design variables hierarchies.

Table 5
Best design solution according to the arc-elasticity notion.

bl bt refRiv Nriv e refMat l L MS1 MS2 MS3 MS4 M P GDI e

X5
e

0.05 0.058 1 7 0.005 5 0.4 0.6 4.2 2.31 9.69 5.09 6.54 261.97 0.73 4.02

X5 0.05 0.01 2 5 0.003 2 0.4 0.6 3.77 6.39 11.98 16.3 4.12 166.59 0.92 1.42
X0 0.03 0.06 1 15 0.008 5 0.4 0.6 16.85 1.06 9.35 12.06 10.46 422.93 0.09 0

Table 6
Nomenclature of the analytical model.

Variable Description Unit

refMat Rp0.2 Elastic limit under tension Pa
Rm Max stress under shear Pa
Cupset Max stress under upset Pa
qmat Volume mass of material kg/m3

Pvolmat Volume cost of material $/m3

bt Transverse distance between last rivet and edge of sheet m
bl Longitudinal distance between line of rivets and edge of sheet m
refRiv d Diameter of rivet m

Cmaxshear Max stress under shear Pa
Mrivet Mass of rivet kg
Privet Cost of rivet $

e Thickness of sheet m
Nriv Number of rivets –
Fx Stress according to x N
L Length of sheetws m
l Width of sheet m
Pdrilling Unit cost of drilling sheet $
Pasm sheet Unit cost of handling sheet for assembly $
Pasm rivet Unit cost of riveting $



process, an optimal solution modifies all the design variables (X25).
With the solution X6 and a higher stopping criterion, all the design
variables are also modified. For a lower stopping criterion, the
number of modified variables would obviously be lower.

On the other hand, the value of the parameter p has a low
importance since it has no impact on the optimal solution consid-
ering the three values tested. For example, solutions X1, X3 and X5

are identical and X14, X16, X18 are very similar (only the last vari-
able ‘‘L’’ is a little different, due to the behavior of the stochastic
algorithm). However, the value of p must be high enough to mini-
mize its influence on the algorithm performance, which requires
numerical tests and expertise on the subject.

To conclude, the optimal solution depends on the stopping cri-
terion and the hierarchy specified by the designer. If the stopping
criterion is low, only the first design variables in the hierarchy
are modified.

In the following paragraphs, the parameters’ values employed
are:

� First hierarchy in the Table 4.
� p = 60.
� GDIstop = 0.90.

Fig. 10 shows the evolution of the performance of the best can-
didate solution GDIbest for every iteration of the genetic algorithm,
and the evolution of the arc-elasticity ebest for this solution. The
processing zone of a design variable is the area with a value t cor-
responding to the decreasing portion of its exploration function ai

(cf. § 4.2). These processing zones are indicated by arrows in
Fig. 10. It details the convergence for solutions X3 and X12 (Table 4).

This figure shows the sequencing of the design space explora-
tion and the impact of processing every design variable on the evo-
lution of the GDI of the solutions, starting from the initial solution
X0 (for t < 40). This impact may vary, depending on the variables.
The impact of the design variable ‘‘Nriv’’ on the evolution of perfor-
mance is different for solutions X3 and X12. Consequently, every
performance improvement is not due solely to a given variable,
but to a combination of this variable and the design variables pro-
cessed previously. Fig. 10 shows that, at the beginning of the opti-
mization, the arc-elasticity of performance ebest increases with
performance, which proves that the increase in performance
remains interesting compared to the increase in the distance be-
tween the candidate solution and the initial one. The arc-elasticity
then decreases, which indicates that this distance becomes too
great to be compensated by performance improvements. This
evolution in the arc-elasticity values is shown in the three-
dimensional diagrams in Fig. 10. These diagrams illustrate the path
of the performance maximization on the arc-elasticity mapping
(Fig. 5).

This evolution in the arc-elasticity value is explained by the
maximization of the performance, and not by the maximization
of the arc-elasticity itself. Finally, we use the arc-elasticity value
to rank all the candidate solutions evaluated during an optimiza-
tion run, as a post-processing ranking. The run achieving solution
X5 is thus post-processed (parameters are given in Table 4).
Table 5 shows the characteristics of the candidate solution maxi-
mizing the arc-elasticity value – denoted as X5

e .
The arc-elasticity-oriented optimal solution X5

e has an arc-elas-
ticity value of 4.02. It is observed that this solution is very similar
to the initial solution. Four design variable values are equal to the
design variables of solution X0 (‘‘refRiv’’, ‘‘refMat’’, ‘‘l’’ and ‘‘L’’) and
the values of the ‘‘bt’’ variable are very close (0.058
0.06) to the
corresponding value of solution X0. Most of the observation vari-
ables of X5

e have a better value than X0. The values of MS2 and
MS3 are higher, and the values of M and P are lower, which signif-
icantly improves the global performance of the design solution.

The arc-elasticity notion performs an efficient trade-off between
the performance gain and the cost associated with transforming
the initial reference solution. Obviously, the resulting arc-elastic-
ity-oriented optimal solution X5

e has a lower performance than
the performance-oriented optimal solution X5.

6. Conclusion

In this paper, an optimization methodology is proposed to deal
with the redesign problems encountered by design departments,
starting from an existing design solution. It is based on the Obser-
vation-Interpretation-Aggregation modeling approach, which
combines models of product physical behavior and designer’s pref-
erences. These models qualify the candidate solutions through a
single performance variable. This performance value is used to
compute arc-elasticity, which takes into account the initial refer-
ence solution and the candidate solution. Arc-elasticity is used as
a trade-off indicator between performance improvement (maximi-
zation) and increase in distance (minimization). Using a sequenc-
ing exploration of the design space, the designers are able to
prioritize design variables, and thus direct optimization.

The proposed method has been illustrated through the design of
a riveted junction used in aeronautics. The contribution of the opti-
mization method greatly depends on the performance of the initial
reference solution X0.

This method therefore concerns industrial redesign applications
where the designer want to make an existing design configuration
evolve towards new design applications or specifications. For new
applications, pre-existing solutions are often relatively inefficient
and must be improved. It also concerns industrial redesign applica-
tions where the designers want to optimize or prove the optimal
characteristics of an existing configuration. Our methodology is
currently applied to complex aeronautic examples, to evaluate its
contribution to a real design process.

The specific feature of the method presented in this paper is the
combination of exploration sequencing and arc-elasticity optimi-
zation. With this natural and intuitive combination, the hierarchy
of the design variables is easily performed. However, such a
sequencing methodology is highly time-consuming and depends
on the optimization of algorithm convergence and design problem
complexity (shape of the objective function). This requires a high
knowledge level of the algorithm’s behavior taking into account
the objective function.

Consequently, it would be interesting to propose a model of the
closeness between the candidate solution and the initial solution,
replacing the dimensionless Euclidean distance and integrating
the design variables hierarchy. This formalization would be a
new model of the generalized cost integrating other designer’s
preferences. Finally, in future work, the authors plan to optimize
the arc-elasticity value directly, instead of using it through post-
processing.
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Appendix A. Appendices

A.1. Nomenclature

(see Table 6).



A.2. Rivets references and materials references

The values detailed below are used in the application case: they
are not real but quite realistic.

(see Tables 7 and 8).

A.3. Details of the observation model

MS1 ¼ Cbearing
1:5:str1

� 1 with str1 ¼
Fx=Nriv

d:e
ð18Þ

Using Eq. (18) the bearing margin of security can be calculated in
relation to the behavior of the sheet.

MS2 ¼ RP0:2

1:5:str2
� 1; with str2 ¼

Fx
ðpt � dÞe and pt

¼ 1� 2:bt
Nriv � 1

ð19Þ

The physical behavior under tension is computed by calculating
stress in the section of the sheet which has the same width as the
inter-rivet interval (pt) as indicated in Eq. (19).

MS3 ¼ Rm
1:5:str3

� 1; with str3 ¼
Fx

2:lc:e
and lc

¼ bl� d=2: sinð50Þ ð20Þ

Eq. (20) verifies the behavior of the sheet under shear.

MS4 ¼ Cmaxshear

1:5:str4
� 1 with str4 ¼

Fx=Nriv
pd2

=4
ð21Þ

The fourth MS (Eq. (21)) verifies the behavior of the rivet under
shear.

M ¼ 2ðV sheet � Nriv :V rivetÞqmat þ Nriv:Mrivet

with V sheet ¼ L:l:e and V rivet ¼ pd2
=4:e

ð22Þ

The total mass of the assembly is expressed in Eq. (22).

P ¼ ½Nriv :Privet þ 2ðV sheet:PvolmatÞ� þ ½Nriv :Pdrilling�
þ ½2:Pasm sheet þ Nriv :Pasm rivet� ð23Þ

Cost is calculated using three terms (Eq. (23)). The first considers
only the purchase price of the parts via the unit cost of the rivet
and the volume cost of the materials used for the sheets. The second
term proposes a cost for each drilling, multiplied by the number of
rivets. The third term proposes a cost for assembling the parts,
which varies according to the number of rivets.

A.4. Details of the interpretation model

Two types of functions are used in the interpretation model.
These curves are defined by Eq. (24):

dðyiÞ ¼ expð�expðdi þ ki:yiÞÞ ð24Þ

With, for an increasing function (Eq. (25)):

if ACi > SLi;
ki ¼

ln lnðdACi
i
Þ= lnðdSLi

i
Þ

� �
ACi�SLi

di ¼ lnð� lnðdSLi
i ÞÞ � ki:SLi

8<
: ð25Þ

And for a decreasing function (Eq. (26)):

if ACi < SLi;
ki ¼

ln lnðdSLi
i
Þ= lnðdACi

i
Þ

� �
SLi�ACi

di ¼ lnð� lnðdSLi
i ÞÞ � ki:SLi

8<
: ð26Þ
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