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a b s t r a c t

A new semi-phenomenological model is developed based on a mean-field description of
the TRIP behavior for the simulation of multiaxial loads. This model intends to reduce
the number of internal variables of crystalline models that cannot be used for the moment
in metal forming simulations. Starting from local and crystallographic approaches, the
mean-field approach is obtained at the phase level with the concept of Mean Instantaneous
Transformation Strain (MITS) accompanying martensitic transformation. Within the
framework of the thermodynamics of irreversible processes, driving forces, martensitic
volume fraction evolution and an expression of the TRIP effect are determined for this
new model. A classical self-consistent scheme is used to model the behavior of multiph-
ased TRIP steels. The model is tested for cooling at constant loads and for multiaxial load-
ings at constant temperatures. The predictions reproduce the increase in ductility, the
dynamic softening effect and the multiaxial behavior of a multiphased TRIP steel.

1. Introduction

TRIP (Transformation Induced Plasticity) aided steels offer an excellent combination of strength and ductility at low cost.
Thanks to a specific metallurgy and to selective heat treatments, the obtained microstructures are composed of several
phases: thermodynamically stable ferrite, bainite, martensite and metastable austenite where the TRIP effect takes place
through martensitic phase transformation. The important constituent, the retained austenite, represents usually 10–20%
of the complete microstructure of a TRIP aided steel grade. TRIP effect is also observed in entirely austenitic steel grades such
as AISI301 (Berrahmoune et al., 2006). Metastable austenite exhibits a first order non-diffusive martensitic phase transfor-
mation when a thermomechanical load is applied. The resulting mechanical response is a transformation strain oriented by
the internal and applied stresses. Components made of TRIP aided or austenitic steel grades are generally manufactured by
metal forming. During forming processes, different loading paths are experienced from shear to biaxial expansion.

For cooling under no macroscopic stress, martensite transformation starts at MS temperature. Above the Mr
S temperature,

a competition between martensite transformation and plastic flow in austenite exists. Above a critical temperature Md, plas-
tic flow in austenite is the major deformation mechanism consolidating the austenitic phase, thus preventing any martensite
transformation. The diagram presented in Fig. 1 is a schematic representation of the critical stress for transformation vs. tem-
perature. Two domains exist:

– MS < T < Mr
S : the critical stress increases linearly with temperature. Transformation precedes plastic flow in austenite. It

is called the stress assisted transformation.
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– Mr
S < T < Md: since r > rA

y , rA
y being the yield stress of austenite, plastic flow precedes transformation. It is strain induced

transformation.

The local change in crystallographic structure from austenite (FCC) to martensite (BCT) is accompanied by a homogeneous
strain of the crystal lattice with a major deviatoric component. This strain is the Bain strain eB (4% of volume change and 20%
of shear strain in carbon steels). Since the Bain strain is incompatible, a lattice invariant strain exists in order to accommo-
date the internal stresses. Due to the high symmetry of the austenitic lattice, 24 crystallographically possible martensitic
variants may be formed with differently oriented transformation strains. From a macroscopic mechanical point of view, TRIP
aided steels exhibit an extra strain hardening when submitted to a mechanical load. The formation of martensite consoli-
dates the structure and delays the onset of ductility loss. As far as control variables are concerned, the formation of martens-
ite is influenced by the strain rate (Jimenez et al., 2009), temperature (Tourki et al., 2005) and loading path (Lebedev and
Kosarchuk, 2000; Furnemont, 2003). The strain rate dependency is not examined in this study and the mechanical and trans-
formation behaviors are assumed time independent.

Besides hardening, a significative increase in plastic flow known as transformation plasticity is exhibited. Transformation
plasticity encompasses two mechanisms:

The Magee effect is a stress oriented variant selection mechanism implying the orientation of the transformation strain
with respect to the local stress tensor. Under cooling without any (local and global) stress, no macroscopic transformation
strain occurs with the exception of its volumic component. For an applied deviatoric stress during cooling, only the variants
with the best orientation with respect to the stress can be potentially activated. It is the main deformation mechanism in
shape memory alloys.

The Greenwood Johnson effect (GJ) takes into account the inelastic accommodation of the Bain transformation strain in
both martensitic and austenitic phases. Leblond et al. (1989) explain the GJ effect by the generation of microscopic internal
stresses due to the volume change between martensite and austenite that trigger plastic flow in the weakest phase. Thus the
local stress has an orientation effect on the microscopic plastic strain.

Transformation Induced Plasticity (TRIP) is a phenomenon that has been widely studied and modeled at different length
scales in steels. Concerning martensitic transformation, similar interesting approaches have been developed in other mate-
rials such as shape memory alloys (Patoor and Berveiller, 1997). At the nanoscopic scale, martensitic transformation is de-
scribed by atomistic models (Wang, 1997). These models are useful to understand the physics of phase transformation in
order to calibrate more accurately some phenomenological models. At the microscopic level, the selective nucleation of mar-
tensite platelets can be described within a single crystal using crystallographic theories to calculate the transformation strain
(Wechsler et al., 1953; Bowles and Mackenzie, 1954). Similar to dislocation motion on specific glide systems, martensitic
transformation occurs along specific transformation directions and habit planes defining 24 martensitic variants. The crys-
tallographic representation is coupled to the problem of an inhomogeneous inclusion with moving boundary as developed
by Sabar and Berveiller (1991). Some authors are also interested in the inner constituents of platelets (twins, sub-variants)
(Niclaeys et al., 2002). Those models account for crystallographic textures of materials through a representative distribution
function of crystals using polycrystalline scale transition methods (Cherkaoui et al., 2000; Kubler et al., 2003; Turteltaub and
Suiker, 2006; Petit et al., 2007; Kouznetsova and Geers, 2008). At a larger scale (mesoscopic), the material can be seen as a
multiphased microstructure and TRIP aided steels are looked at as composites with an evolving microstructure. The thermo-
mechanical behavior is described per phase and scale transition methods are also used. At the macroscopic scale, a large
amount of work has been dedicated to the development of phenomenological/empirical models based mainly on the global

Fig. 1. Critical stress for martensitic transformation as a function of temperature.



response of the material. Among all the models, scale transitions techniques enable the use of more physical descriptions,
but with a certain computational cost. For a direct complete metal forming simulation, crystallographic or atomistic models
are, for the moment, unsuitable. The challenge is to develop semi-phenomenological models, not too reductive, considering a
mean instantaneous transformation strain over a transforming domain of volume fraction _f ¼ _V=V .

Among models to describe the transformation kinetics, there are phenomenological models function of temperature
(Koistinen and Marburger, 1959). Inoue et al. (1992) gave a transformation kinetic dependent on temperature and on J2

stress invariant. Some models of transformation kinetics give the volume fraction rate of martensite as a function of the plas-
tic strain rate. Olson and Cohen (1975) proposed a metallurgical strain induced transformation kinetic depending on shear
band intersections within the austenitic phase. This model was later improved in order to take into account stress effects via
triaxiality dependence (Stringfellow et al., 1992; Iwamoto et al., 1998), strain rate effects (Tomita and Iwamoto, 1995) and
grain size effects (Iwamoto and Tsuta, 2000). Thermodynamical models based on the determination of the dissipation due to
martensitic transformation enable to calculate the driving force for martensitic transformation (Fischer, 1997; Cherkaoui
et al., 1998; Levitas, 1998). The latter approach takes into account plastic dissipation and the thermomechanical dependance
of martensitic transformation.

Besides transformation kinetics, heuristic formulations of the transformation plasticity (Giusti, 1981) express the global
transformation strain rate _E

�

T
as a function of the stress deviator S

�
:

_E
�

T ¼ K �Uðf Þ S
�

_f ð1Þ

where K is a constant and U a function of the martensitic volume fraction f.
Leblond et al. (1989,) developed a more complex mathematical formulation of the transformation strain extended by Ta-

leb and Sidoroff (2003) and implemented in Castem finite element code. Fischer (1997) proposed a simple form of the trans-
formation plasticity that has been extended to anisotropic materials by Fischer and Schlögl (1995). From a more mechanical
point of view, Videau et al. (1994) and Azzouz et al. (2000) proposed a transformation function introducing a kinematical
hardening due to martensitic transformation. Mahnken et al. (2009) presented a viscoplastic model with TRIP effect as mod-
elled by Leblond (1989) implemented in Abaqus employing a homogenisation technique via a finite element unit cell.

Diani et al. (1995) considered a two-phase material (residual austenite and martensite) and proposed a uniaxial formu-
lation of the transformation strain rate based on a self-consistent multiscale approach where a given transformation strain �eB

is considered as an eigenstrain within the forming martensite leading to the simple expression:

_ET
xx ¼

5lm

3le þ 2lm

_f�eB
xx ð2Þ

le and lm being respectively the shear modulus of the homogenized material and of martensite.
With the expression of transformation plasticity and kinetics, Stringfellow et al. (1992) proposed an expression of the glo-

bal mechanical behavior. Iwamoto and Tsuta (2000) used a yield function depending on the second and third invariant J2, J3

as proposed by Miller and McDowell (1996). Diani et al. (1995) used the description based on Eq. (2) to predict the uniaxial
stress response of metastable austenite. This model reproduces the dynamic softening phenomenon where the global behav-
ior is softer than the austenitic behavior when martensitic is created, as described by Olson and Cohen (1982). Hansel et al.
(1998) proposed a hardening model based on a mixture law, that was implemented in a finite element code by Hilding and
Schedin (2003) and applied to metal forming. Meftah et al. (2007) extended the finite element model of Ganghoffer and
Simonsson (1998) at the scale of a martensitic plate to predict transformation plasticity and to study its interaction with
classical plasticity in 16MND5 steel. Lani et al. (2002) also used finite element techniques in order to simulate the local
nucleation of martensite platelets in an austenitic matrix according to the transformation criterion developed by Fischer
(1997). Serri et al. (2005) implemented the model of Stringfellow et al. (1992) with the triaxiality dependency given by
Iwamoto et al. (1998) in the finite element code Abaqus. A large strain formulation of transformation plasticity was proposed
by Hallberg and Håkansson (2007) and compared to a standard plasticity model in the case of the deep drawing of a cup.
More recently, Delannay et al. (2008) proposed an incremental mean-field homogenization approach to predict the behavior
of multiphased TRIP steels along different loading paths and applied to the finite element study of the necking of a bar under
uniaxial tension. Kouznetsova and Geers (2008) and Tjahjanto et al. (2007) implemented crystallographic transformation
models in a finite element code to predict the behavior of a multicrystal with TRIP effect.

The present work addresses the presentation of a framework for a mean-field model of TRIP steels with a reduced number
of internal variables compared to crystalline approach. The aim is the development of a semi-phenomenological thermome-
chanical model applied to metal forming of TRIP steels determining:

– the amount of mean transformation strain �eT over all the martensitic variants and the evolution of martensitic transfor-
mation as function of control variables R

�
the overall stress state, T the temperature expressed in a rate form:

_f ¼ ðÞ _R
�
þðÞ _T ð3Þ

– the overall behavior, stress rate _R
�

as a function of _E
�
; _T; _f in the form:



_R
�
¼ ðÞ _E

�
þðÞ _f þ ðÞ _T ð4Þ

Within a thermodynamic framework and using micromechanical tools, the constitutive equations of a new model be-
tween a crystalline approach and a phenomenological one are derived.

Kinematics of martensitic transformation are presented in Section 2 for the local, crystalline and mean-field modelling
representations. The concept of Mean Instantaneous Transformation Strain (MITS) is introduced for the mean-field approach.
In Section 3, the driving force for martensitic transformation is derived. Using respectively standard material behaviors and
the local stress dependance of the MITS, the representation of plastic flow and martensitic transformation is proposed in Sec-
tion 4. The local behavior of each phase and the transformation kinetic are derived. In Section 5, the constitutive equations
are presented and implemented in a multiscale modelling approach using a self-consistent scheme. The complete thermo-
mechanical model for TRIP steels is applied in Section 6 to the case of thermal cooling at constant stress level and to the
simulation of multiaxial monotonic loadings. Simulations are compared to experimental data from literature.

2. Kinematics of martensitic transformation and constitutive equations

In this section, three descriptions of the kinematics are presented: local, crystalline and mean-field (Fig. 2). The constitu-
tive equations and the kinematics of transformation are derived in order to describe the overall strain rate _E

�
of a represen-

tative volume element (RVE) of metastable austenite exhibiting martensitic phase transformation. The focus is made on the
new semi-phenomenological model that is defined with respect to the crystalline approach. The presented framework uses a
small strain framework.

2.1. Local representation of the RVE

At point r of the microstructure, martensite is created via nucleation of new domains accompanied by an instantaneous
transformation strain e

�
TðrÞ. Before transformation occurs and after transformation, plastic flow may occur in austenite and

martensite resulting from dislocation motion. In addition, the lattice is submitted to a reversible thermoelastic strain. The
deformation and transformation mechanisms can be described locally if the strain field is known at each point r of the micro-
structure. The total strain tensor is decomposed additively into an elastic, thermal, transformation and plastic strain compo-
nent as follows:

e
�
ðrÞ ¼ e

�
eðrÞ þ e

�
thðrÞ þ e

�
TpðrÞ ð5Þ

where the elastic strain is linked to the stress tensor via the local tensor of the elastic moduli c
�
:

r
�
ðrÞ ¼ c

�
ðrÞ : e

�
eðrÞ ð6Þ

the thermal strain is defined as a function of the change in temperature DT with the thermal dilatation tensor a
�

th:

e
�

thðrÞ ¼ a
�

thðrÞ � DT ð7Þ

the inelastic local strain is defined as the sum of the local plastic and transformation strain fields:

e
�

TpðrÞ ¼ e
�

pðrÞ þ e
�

TðrÞ ð8Þ

Thus the total strain Eq. (5) is defined from Eqs. (6)–(8) by:

e
�
ðrÞ ¼ c

�
�1ðrÞ : r

�
ðrÞ þ a

�
thðrÞ:DT þ e

�
TðrÞ þ e

�
pðrÞ ð9Þ

Fig. 2. Local, crystallographic and mean-field representations.



The global strain state is defined by the boundary conditions and satisfies the compatibility equation E
�
¼ grad

�
sðuÞ for a small

strain formulation, where u is the displacement vector. For path dependent processes, a rate formulation is necessary. The
global strain rate is additively decomposed in three parts respectively an elastic strain rate _E

�

e
, a thermal strain rate _E

�

th
and an

inelastic strain rate _E
�

Tp
such as:

_E
�
¼ C
�
�1 : _R

�
þa
�

th: _T þ _E
�

Tp ð10Þ

where C
�

is the global tensor of elastic moduli of the RVE and _R
�

the macroscopic stress rate.
The mean value of the inelastic strain rate is decomposed in a plastic strain rate _E

�

p
and a transformation strain rate _E

�

T
and

is defined as:

_E
�

Tp ¼ _E
�

p þ _E
�

T ¼ d
dt

1
V

� �Z
V
e
�

TpðrÞdV þ 1
V

d
dt

Z
V
e
�

TpðrÞdV
� �

ð11Þ

By neglecting the relative volume variation between austenite and martensite in Eq. (11), it reduces to:

_E
�

Tp ¼ 1
V

d
dt

Z
V
e
�

TpðrÞdV
� �

ð12Þ

Martensitic transformation is assumed to result from the nucleation and instantaneous growth of new martensitic domains
creating boundaries between austenite and martensite. For the derivation of Eq. (12), the moving boundaries concept devel-
oped by Sabar and Berveiller (1991) equivalent to Reynolds transport theorem in fluid mechanics (Reynolds, 1903) is used,
leading to the expression:

_E
�

Tp ¼ 1
V

Z
V

d
dt

e
�

TpðrÞdV � 1
V

Z
S

e
�

Tp
h i

x � ndS ¼ 1
V

Z
V

d
dt

e
�

TpðrÞ � e
�

Tp
h i

x � nd Sð Þ
� �

dV ð13Þ

where ½e
�

Tp� ¼ e
�

Tpþ � e
�

Tp� is the jump of the inelastic strain across the moving boundary S with velocity x and surface normal
n (Fig. 3). The superscripts + and � are respectively for austenite and martensite.

d(S) is the Dirac distribution over the surface S.
From the decomposition of e

�
Tp into plastic and transformation parts (Eq. (8)), the jump can be expressed such as:

e
�

Tp
h i

¼ e
�

pAðrþÞ � e
�

pMðr�Þ þ e
�

T
� �

ð14Þ

With the assumption that the created martensite inherits from the plastic strain state in austenite previous to transforma-
tion, it follows that:

e
�

pAðrþÞ ¼ e
�

pMðr�Þ ð15Þ

Thus, the jump of the inelastic strain across the boundary S is reduced to:

e
�

Tp
h i

¼ �e
�

T ð16Þ

Since the growth of martensitic domains is instantaneous d
dt e

T ¼ 0
� �

, the total inelastic strain rate expressed in Eq. (13) is
finally reduced to:

_E
�

Tp ¼ 1
V

Z
V

d
dt

e
�

pðrÞdV þ 1
V

Z
V
e
�

Tx � ndðSÞdV ð17Þ

the local transformation strain rate being defined from Eq. (17) as:

_e
�

T ¼ e
�

Tx � ndðSÞ ð18Þ

Fig. 3. Moving boundary between austenite (+) and martensite (�).



2.2. Crystalline representation

A polycrystal is characterized by the crystalline structure of each crystal (ferrite, austenite, bainite) and their crystallo-
graphic orientation distribution (texture) with respect to a global reference (rolling direction, testing direction). This ap-
proach is based on a description in each single crystal of volume V (Fig. 2). For TRIP steels, the presented model has been
developed by Cherkaoui et al. (2000) and extended to the determination of transformation texture by Kubler et al. (2003).

The essential microscale mechanisms are:

– martensitic transformation, where the inelastic transformation strain field is discretised over 24 variants I of volume VI

described by their habit plane and transformation direction. Thus, the transformation strain field is a non-continuous
field, equal to zero in austenite (A) and to a discrete value e

�
TI in each single martensite variant I. e

�
TI is assumed uniform

over VI. It is a material data calculated using the Wechsler–Liebermann–Read theory (see Wechsler et al., 1953). This lat-
ter theory needs the knowledge of the accommodating strain mechanisms and of the Bain’s strain. The transformation
strain at a point r inside a crystal is expressed as:

e
�

TðrÞ ¼ e
�

TI HIðrÞ ð19Þ

with the Heavyside function defined as:

HIðrÞ ¼
1 if r 2 VI;

0 if r R VI

8><
>: ð20Þ

In the crystallographic representation, the transformation strain rate over the variants is derived from Eq. (18) by:

_e
�

T ¼
X

I

e
�

TIxI � nIdðSIÞ ð21Þ

and the mean transformation strain rate in the single crystal is:

_�e
�

T ¼ 1
V

Z
V

X
I

e
�

TIxI:nId SI
� �

dV ¼
X

I

_f Ie
�

TI ð22Þ

where _f I is the volume fraction rate of variant I representing the volume _VI swept by the moving surfaces SI of the RVE during
the martensitic transformation and is defined from Eq. (22) as:

_f I ¼ 1
V

Z
V
xI � nIdðSIÞdV ¼ 1

V

Z
S
xI � nI dS ¼

_VI

V
ð23Þ

– the plastic flows of parent (A) and product phases (M) contributing to the total plastic strain rate in the single crystal such
as:

1
V

Z
V

_e
�

pðrÞdV ¼ ð1� f Þ _e
�

pA þ f _e
�

pM ð24Þ

Crystallographic representation of plastic flow are used where the plastic strain field results from the sum of discrete slips c
on slip systems g defined by their crystalline orientation with respect to the global reference. The plastic strain is defined as:

_e
�

p ¼ R
�

g _cg ð25Þ

where R
�

g is the orientation tensor (Schmid tensor) of the slip system g. Using Eq. (25), relation (24) is expressed as:

ð1� f Þ
X

h

R
�

hA _chA þ
X

I

f I
X

g

R
�

gI _cgI

" #
ð26Þ

The total inelastic strain rate of a single crystal of austenite transforming into martensite, is derived adding Eqs. (26) and
(22):

_E
�

Tp ¼ ð1� f Þ
X

h

R
�

hA _chA þ
X

I

f I
X

g

R
�

gI _cgI

" #
þ
X

I

_f Ie
�

TI ð27Þ

From relation (27), the internal variables for the crystallographic representation are defined by:

– the plastic slip on each crystallographic slip system in each phase,



– the volume fraction of each martensite variant.

This type of representation allows to take into account crystallographic textures and their evolution during metal forming
(Kubler et al., 2003; Petit et al., 2007) for each family of grains. Nevertheless, the number of internal variables is important
(48 for plastic flow, 24 for martensitic transformation). In order to further reduce the number of the internal variables, a
mean-field model more suitable for finite element simulation of macroscopic process, is proposed in next sections.

2.3. Mean field representation

In the mean-field representation, the crystallographic mechanisms are not individually described. Only the average
behavior of each phase is modeled using generalized standard material laws for the description of plastic flow. At a current
stage of the thermomechanical loading, the RVE which is initially the austenitic volume Vc is divided into two domains
(Fig. 4):

– an austenitic phase (A) of volume fraction (1 � f) = VA/Vc. It is assumed to be composed of the residual not transformed
austenite and of the martensitic domains in nucleation at time t. The transformation of those martensitic domains is
defined by an infinitesimal volume fraction df ¼ _f dt with respect to the volume Vc, and is accompanied by an ‘‘eigen-
strain” �n

�

T defined as a Mean Instantaneous Transformation Strain (MITS).
– an already created martensitic domain (M) including the already formed martensitic variants. Its volume fraction is

f = VM/Vc

Since the martensitic domain in formation includes all the variants transforming at the same time, the MITS is defined as
the global contribution of the transformation strain of each individual variant. The MITS encompasses, at the same time, the
Bain strain and the lattice invariant strain (plastic slip, twinning) necessary to accommodate the incompatible Bain strain.
Thus, a part of the Greenwood–Johnson effect is captured by the MITS. The mean transformation strain rate over the austen-
itic phase is defined by comparison to the crystallographic representation (Eq. (22)):

�_e
�

T ¼ �n
�

T _f ¼ 1
V

Z
S
e
�

Tx � ndS ¼
X

I

e
�

TI _f I ð28Þ

From Eq. (28), the MITS is expressed as:

�n
�

T ¼

P
Ie�

TI _f I

_f
ð29Þ

In this new relation (29), it is important to note that the Magee effect, i.e. the selection of each martensitic variant by the
local stress, has to be implicitly taken into account in the expression of the MITS. Unlike the crystallographic representation,
the mean-field representation does not take into account the morphology and the selection of individual martensitic variants
according to their crystallographic orientation.

Fig. 4. Transformation of martensitic domains of volume fraction _f accompanied by the mean instantaneous transformation strain (MITS).



However, the ‘‘orientation effect” of the transformation strain is kept by choosing the MITS to be dependent on stress level
in austenite. The representation of the MITS is addressed in Section 4.2.

Diani et al. (1995) noticed that the mean transformation strain rate �_e
�

T is, in general, not equal to the experimentally mea-
sured macroscopic transformation strain rate _E

�

T
. Although both quantities take into account the plastic accommodation in

the martensite domains (a part of Greenwood Johnson effect), another plastic accommodation in the ‘‘soft” phase (austenite)
resulting from the incompatibility of the transformation strain generating internal stress distribution must exist. This is the
second part of the Greenwood Johnson effect. The TRIP effect can be defined, according to Diani et al. (1995) as:

_E
�

T
– �_e
�

T ð30Þ

This effect is captured by the micromechanical equations presented in Section 5.
In addition to the transformation strain, the thermal e

�
th and mean elastoplastic strains e

�
ep of each phase are described in

Section 4.1. For a thermomechanical behavior with phase transformation represented by the MITS (Eq. (29)) and a global
transformation rate _f , the mean-field representation allows to decompose the global strain rate as:

_E
�
¼ 1� fð Þ _e

�
epA þ _e

�
thA

� �
þ f _e

�
epM þ _e

�
thM

� �
þ _f �n

�

T ð31Þ

or also as:

_E
�
¼ 1� fð Þ _e

�
epA þ _e

�
thA þ

_f
1� f

�n
�

T

!
þ f _e

�
epM þ _e

�
thM

� �
ð32Þ

The number of internal variables of the mean-field representation is reduced to:

– the average volume fraction of martensite f,
– the MITS tensor �n

�

T .
– the average elastoplastic strain in each phase e

�
ep.

For multiphase steel grades containing ferrite (a), bainite (b) and metastable austenite (c) of respective volume fractions
Fa, Fb and Fc, the extension is straightforward and the total strain rate is divided in each phase such as:

_E
�
¼ Fa _e

�
a þ Fb _e

�
b þ Fc _e

�
c ð33Þ

with

Fa þ Fb þ Fc ¼ 1 ð34Þ

By taking into account the thermoelastoplastic behaviors of ferrite, bainite and the behavior of metastable austenite derived
in Eq. (32), the total strain rate of a multiphased TRIP steel (Eq. (33)) is:

_E
�
¼ Fað _e

�
epa þ _e

�
thaÞ þ Fbð _e

�
epb þ _e

�
thbÞ þ Fc 1� fð Þ _e

�
epA þ _e

�
thA þ

_f
1� f

�n
�

T

!
þ f _e

�
epM þ _e

�
thM

� �!
ð35Þ

The reduced number of internal variables compared to the crystallographic representation is beneficial for metal forming
simulations that require a limited computational time to be effective.

Expression (32) shows that the unstable austenitic phase in TRIP steels can be treated as a non-linear composite with an
evolving volume fraction of martensite accompanied by a transformation strain (i.e. the MITS) exhibited by the austenite to
martensite phase transformation.

In the mean-field representation, it is important to note that the MITS is not a material property, unlike in the crystallo-
graphic representation, but an ‘‘average” tensor regrouping the contributions of each variant that is nucleated at the same
time at different locations of the RVE, as seen in Fig. 4. Hence, the MITS depends strongly on the local stress state in austenite.
In order to determine the evolution of the martensite volume fraction _f , a thermodynamic framework is presented in Section
3 applied to the local, crystalline and mean-field representations. The behavior laws for the MITS and for plastic flow in each
phase are discussed in Section 4.

3. Thermodynamics and driving forces for martensitic transformation

The description of martensitic transformation in steels (Cherkaoui et al., 1998) or in shape memory alloys (Patoor and
Berveiller, 1997) may be considered as thermodynamical irreversible processes. It is based on the calculation of the intrinsic
dissipation D which is defined, in the quasi-static and isothermal assumption, by:

D ¼ Pext � _U ð36Þ

where Pext is the power of external forces and _U the variation of Helmholtz free energy U.



The Helmholtz free energy U is composed of:

– the elastic strain energy We of density we ¼ 1
2 r
�

: e
�

e,
– the crystallographic energy (chemical energy) Uchem of density /chem

– the interface energy of all phases, usually neglected in comparison with We and Uchem

In case of a quasi-static and isothermal process, Helmholtz free energy of the RVE with volume V is:

U ¼We þUchem ¼ 1
2V

Z
V

r
�

: e
�

e dV þ 1
V

Z
V

/chem dV ð37Þ

Considering the concept of moving boundaries of normal velocity x � n, the variation of Helmholtz free energy _U is obtained
as the time derivative of Eq. (37) such as:

_U ¼ 1
V

Z
V
ð _weðrÞ þ _/chemðrÞÞdV þ 1

V

Z
S
ð½weðrÞ� þ ½/chemðrÞ�Þx � ndS ð38Þ

where [X] is the jump of quantity X across the moving boundaries.
In the present case, the chemical energy does not change according to the load (i.e. _/chem ¼ 0), so the first term of Eq. (38)

is written as:

1
V

Z
V
ð _weðrÞ þ _/chemðrÞÞdV ¼ 1

V

Z
V

r
�

: _e
�
� _e
�

Tp
� �

dV ð39Þ

where _e
�

Tp is the inelastic strain rate.
Close to the equilibrium temperature T0, the difference of chemical energies between austenite and martensite may be

expressed by a linear relation with respect to the temperature T:

½/chemðrÞ� ¼ /chemM � /chemA ¼ BðT � T0Þ ð40Þ

where B and T0 are material parameters depending on the chemical composition. At cooling at T = MS, martensite is created
without any mechanical stress.

The jump of elastic strain energy across the moving boundary is:

½weðrÞ� ¼ 1
2

r
�

AðrþÞ : e
�

AðrþÞ � e
�

TpAðrþÞ
� �

� r
�

Mðr�Þ : e
�

Mðr�Þ � e
�

TpMðr�Þ
� �� �

ð41Þ

In the case of uniform elasticity, Cherkaoui et al. (1998) express the variation of Helmholtz free energy from Eqs. (39)–(41)
as:

_U ¼ 1
V

Z
V

r
�

: _e
�
� _e
�

Tp
� �

dV � 1
V

Z
S

1
2

r
�

AðrþÞ þ r
�

Mðr�Þ
� �

: e
�
ðrÞ � e

�
TpðrÞ

h i
� BðT � T0Þ

� �
x � ndS ð42Þ

where r
�

AðrþÞ and r
�

MðrþÞ are the stress tensors on each side of the moving boundary.
The power of external forces resulting from an applied load on the surface of a volume V, is defined by:

Pext ¼
1
V

Z
@V
ðr
�
�nÞ � v dS ð43Þ

where v is the particle velocity on the boundary @V with normal vector n.
Using the divergence theorem, Eq. (43) can be written as:

Pext ¼
1
V

Z
V

div r
�
:v

� �
dV þ 1

V

Z
S
ðr
�
:nÞ � v

h i
dS ð44Þ

The calculation of the power of external forces uses Hadamard relation (Hadamard, 1903) between the jump of the velocity,
the displacement gradient and the normal velocity x � n of the moving boundary S:

½v� ¼ � grad
�
ðuÞ

� 	
� nðx � nÞ ð45Þ

Since the traction vector and the displacement are continuous along the boundary S (½r
�
� � n ¼ 0, [u] = 0), the expression of Pext

is reduced to:

Pext ¼
1
V

Z
V

r
�

: _e
�

dV � 1
2V

Z
S

r
�

AðrþÞ þ r
�

Mðr�Þ
� �

: e
�
ðrÞ

h i
x:ndS ð46Þ

The global dissipation is obtained by calculating D ¼ Pext � _U

D ¼ 1
V

Z
V

r
�

: _e
�

Tp dV � 1
V

Z
S

1
2

r
�

AðrþÞ þ r
�

Mðr�Þ
� �

: e
�

TpðrÞ
h i

þ BðT � T0Þ
� �

x � ndS ð47Þ



The dissipation is decomposed in two contributions:

D ¼ DV þ DS ð48Þ

DV being the volumic dissipation accounting for the evolution of the plastic strain field (transformation is not included)

DV ¼
1
V

Z
V

r
�

: _e
�

Tp dV ð49Þ

and DS corresponding to the dissipation due to moving boundaries S

DS ¼ �
1
V

Z
S

1
2

r
�

AðrþÞ þ r
�

Mðr�Þ
� �

: e
�

TpðrÞ
h i

þ BðT � T0Þ
� �

x � ndS ð50Þ

Assuming the inheritage of plastic strain when martensite is formed (i.e. identical plastic strain on both side of the boundary,
see Eq. (16)), the jump of the inelastic strain is:

e
�

Tp
h i

¼ �e
�

T ð51Þ

From the dissipation expressions, the driving forces (Fp,Ff) of the flux _X can be calculated for both mechanisms (i.e. plastic
flow and martensitic transformation):

D ¼ F � _X ð52Þ

For the crystallographic representation where e
�

T ¼ e
�

TI , the Kroner and Mori–Tanaka methods (Kröner, 1961; Mori and Tana-
ka, 1973) are used to determine the stress in martensite variant I as:

r
�

Mðr�Þ ¼ r
�

AðrþÞ þ C
�

: I
�
�S
�

I
� �

: e
�

TpA � e
�

TpI

� �
ð53Þ

According to the kinematical study, the inelastic strain in austenite is reduced to its plastic part and the inelastic strain in
martensite is reduced to the sum of transformation and plastic strains. Assuming that the plastic strain in martensite is
inherited from the parent austenitic phase, the relation (53) becomes:

r
�

Mðr�Þ ¼ r
�

AðrþÞ � C
�

: I
�
�S
�

I
� �

: e
�

TI ð54Þ

Thus, in the assumption of an homothetic and instantaneous growth of martensitic platelets, the authors express the dissi-
pation (50) associated to the nucleation of a martensitic variant as:

DI
S ¼ r

�
A : e
�

TI � BðT � T0Þ �
1
2
e
�

TI : C
�

: I
�
�S
�

I
� �

: e
�

TI

� �
_f I ð55Þ

where r
�

A is the mean stress in austenite over a crystal, C
�

the elasticity compliance tensor and S
�

I the Eshelby tensor of variant
I. So the term � 1

2 e
�

TI : C
�

: ðI
�
�S
�

IÞ : e
�

TI represents the self-induced contribution of the variant on its associated driving force. In
this representation, it represents a constant for each variant.

With a similar approach, the dissipation due to the formation of the average domains of martensite, where e
�

T ¼ �n
�

T , can be
written as:

DS ¼ r
�

A : �n
�

T � BðT � T0Þ � K0

� �
_f ð56Þ

where r
�

A is the mean stress over the austenitic phase and K0 represents the accommodation of the MITS and, by comparison
to the crystalline representation, it is expressed as 1

2
�n
�

T
: C
�

: ðI
�
� S
�
Þ : �n
�

T . In this case, the Eshelby tensor is assumed for spher-
ical domains of nucleated martensite.

The term K0 should depend on the MITS tensor, and consequently on the volume fraction of martensite f and on the plastic
strain state in austenite epA. Its value will affect the transformation criterion through the critical driving force and its deriv-
ative contributes in the determination of the rate of martensite volume fraction. For the sake of simplicity, it is assumed to be
constant and that the hardening effect of the already formed volume fraction of martensite and the effect of plastic strain in
austenite is captured through critical driving forces Kf and Kp. The phenomenological expressions of Kf and Kp are discussed in
Section 4.3.

Using Eq. (52), the driving force acting on martensite transformation can be identified for each representation from Eqs.
(55) and (56):

– crystallographic representation with instantaneous formation of martensitic variants I:

FI
f ¼ r

�
A : e
�

TI � BðT � T0Þ �
1
2
e
�

TI : C
�

: ð I
�
�S
�

IÞ : e
�

TI ð57Þ

– mean-field representation with formation of martensitic domains accompanied by the MITS:



Ff ¼ r
�

A : �n
�

T � BðT � T0Þ � K0 ð58Þ

In the three representations, the driving forces depend on the stress and temperature state in austenite. In case of an uniform
stress state, i.e. R

�
¼ 1

2 ðr�
AðrþÞ þ r

�
Mðr�ÞÞ, Eq. (55) is simplified to the expression:

DS ¼
X

I

R
�

: e
�

TI � BðT � T0Þ
� �

_f I ð59Þ

This is the expression of Patel and Cohen criterion (Patel and Cohen, 1953) for a multiaxial stress state. As modelled in crys-
talline plasticity, R

�
: e
�

TI represents the resolved stress on variant I, i.e. the projection of the macroscopic stress tensor R on
the normal of the habit plane and on the transformation direction.

By inserting in Eq. (59) the definition of MITS (Eq. (29)) and considering that
P

I
_f I ¼ _f , the dissipation for the mean-field

representation is simplified to:

DS ¼ R
�

: �n
�

T � BðT � T0Þ
� �

_f ð60Þ

4. Behavior laws for elementary processes

A volume of material is submitted to global control variables such as the strain increment d E
�
¼ _E
�

dt, an increment of mar-
tensite volume fraction within the austenitic volume df ¼ _f dt and a temperature change dT ¼ _T dt. An uniform temperature
T is assumed. The representative volume element (RVE) is composed of metastable austenite that transforms to martensite
under thermomechanical loading. The total strain rate _E

�
has been derived in Eq. (32). With respect to the volume fraction

defined in the mean-field approach (Section 2.3), the total strain rates in the transforming austenitic phase (A) and in the
already transformed martensite (M) in Eq. (32) are given by

_e
�

A ¼ _e
�

epA þ
_f �n
�

T

1� f
þ _e
�

thA ð61Þ

_e
�

M ¼ _e
�

epM þ _e
�

thM ð62Þ

In order to derive the stress rate in each phase, needed for example in the expression of the driving force of the mean-field
model (Eq. (58)), the behavior law of each phase is defined with the elastoplastic tangent modulus l

�
ep by

_r
�
¼ l
�

ep : _e
�

ep ð63Þ

Inserting Eqs. (61) and (62) in Eq. (63), a generic form of the behavior law is given by:

_r
�
¼ l
�

ep : _e
�
� n
�
� _f �m

�
� _T ð64Þ

with m
�

, the thermal modulus, such as:

m
�
¼ l
�

ep : a
�

th ð65Þ

and n
�

a second order tensor associated to martensitic transformation defined in austenite and martensite as:

n
�

A ¼
l
�

epA :�n
�

T

1�f

n
�

M ¼ 0

8><
>: ð66Þ

The driving parameters are the total strain in each phase, the temperature and the martensite volume fraction. The material
properties are included in the expressions of l

�
ep, n
�

and m
�

. In order to determine those expressions, modelling of plastic flow,
the MITS behavior and of martensitic transformation is proposed. In the following subsections, the modelling of the evolu-
tion of the internal variables of the new mean-field model (i.e. plastic flow, MITS and martensitic volume fraction) is
presented.

4.1. Modelling plastic flow inside each phase

Assuming isotropic behavior in each phase, plastic flow in the different phases is described with a standard approach
using the phenomenological Von-Mises yield criterion. The elastic behavior is described through the shear modulus
l = 80 GPa and the Poisson ratio m = 0.3. The yield surface is defined by the yield function Y such as:

Y ¼ req � ry � R ð67Þ



where ry is the yield stress and the Von-Mises stress is given by

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðs
�
�X
�
Þ : ðs

�
�X
�
Þ

r
ð68Þ

R and X
�

representing the isotropic and the kinematical hardenings are functions of the plastic strain e
�

p and its equivalent
value ep

eq such as:

R ¼ Q 0 1� e�b:ep
eq

� �
ð69Þ

X
�
¼ G � e

�
p ð70Þ

where Q0, b and G are material parameters.
Using the standard approach for associated plasticity (Lemaitre and Chaboche, 1985), the elastoplastic modulus of each

phase is derived as a function of the hardening parameters:

l
�

ep ¼ C
�
�b

9l2

ðH þ 3lÞr2
eq

s
�
�X
�

� �
� s

�
�X
�

� �
ð71Þ

where b depends on the yield function:

b ¼ 1 if Y ¼ 0
b ¼ 0 if Y < 0

ð72Þ

with C
�

the tensor of elastic moduli, l being the shear modulus, s
�

the stress deviator and H defined as:

H ¼ @R
@ep

eq
ð73Þ

4.2. Modelling the MITS

The MITS �n
�

T represents the mean contribution of transformation strain rate over all the activated variants of martensite. It
is additively decomposed in a volumic part 1

3 h d
�

and a deviatoric strain contribution e
�

T :

�n
�

T ¼ 1
3

h d
�
þe
�

T ð74Þ

with

h ¼ DV
V
¼ �nT

kk ð75Þ

being the isotropic volume variation, resulting from the crystallographic transformation from the austenitic to the martens-
itic lattice. h is independent of the stress level and considered as a material data.

Due to its deviatoric nature, the transformation strain is a function of the local deviatoric stress in austenite
s
�

A ¼ r
�

A � 1
3 Trðr

�
AÞ d
�
. In a stress free austenitic single crystal under cooling, all the martensitic variants are active leading

to an instantaneous global transformation strain over the crystal equal to h. In the stress assisted transformation process,
with the applied stress, only well oriented variants are active leading to an increased transformation strain in the direction
of the applied stress. This instantaneous transformation strain reaches a maximum when only a single variant is selected
according to its orientation with respect to the stress state.

In this work, in order to capture the saturation of the MITS with the local deviatoric stress, it is assumed that the devi-
atoric part of the MITS ðe

�
TÞ is a quadratic non-linear function of the deviatoric stress in austenite e

�
Tðs
�

AÞ. Considering no pref-
erential orientation when no stress is applied, the function has to verify e

�
Tð0Þ ¼ 0. e

�
T can be written as:

eT
ij ¼ D1

ijkl þ
1
2

D2
ijklmnsA

mn

� �
sA

kl ð76Þ

D
�

1 and D
�
�

2 are respectively fourth and sixth order constant tensors. For an isotropic representation, those tensors are defined

with 5 parameters (2 for D1, 3 for D2) (Lubarda, 1999; Duda and Paszkiewicz, 1999). Using the deviatoric status of e
�

T and s
�

A,

there are two independent parameters. As calculated in Appendix B, the following expression is obtained:
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ij þ d02
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A
kj

� �
ð77Þ

Including volume variation, the MITS is derived from Eq. (77) by:
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dij þ d01sA
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16
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ð78Þ

where d01 (MPa�1) and d02 (MPa�2) are two parameters.
For d02 ¼ 0, the expression of the MITS is similar to the one proposed by Leblond (1989). Fig. 5 shows the evolution of the

MITS with respect to an applied tensile load. The sign of d01 represents the variation of the MITS with the deviatoric part of the

stress. If d01 > 0, the MITS �n
�

T increases with s
�

A. According to the values taken by d02, the non-linear evolution of the MITS with

s
�

A is emphasized.

4.3. Martensite transformation modelling

The classical methodology in irreversible processes consists in comparing the thermodynamic driving forces acting on the
martensite volume fraction f with the corresponding critical force. With the help of the consistency rule, the evolution of the
volume fraction f is obtained.

4.3.1. Transformation criterion
By combining the expression of the MITS (78) with the average stress tensor in austenite, the driving force Ff for trans-

formation is expressed with the three invariants (I1, J2, J3) of the average stress in austenite (see Appendix B) as:

Ff ¼ r
�

A : �n
�

T � BðT � T0Þ � K0 ¼ I1
h
3
þ 2d01J2 �

81
16

d02J3 � BðT � T0Þ � K0 ð79Þ

It is the invariant representation of the driving force for transformation in the sense of invariance with respect to the anisot-
ropy of the internal microstructure of austenite. In the framework of time independent mechanisms, the evolution of mar-
tensitic volume fraction is derived by comparing the driving force Ff to a critical force Fc

f . Thus the transformation criterion is
written such as:

Ff < Fc
f ; 8 _Ff

_f ¼ 0

Ff ¼ Fc
f and _Ff < _Fc

f
_f ¼ 0

Ff ¼ Fc
f and _Ff ¼ _Fc

f
_f > 0

8>><
>>: ð80Þ

Fig. 5. Evolution of the Mean Instantaneous Transformation Strain (MITS) �nT
11 component as a function of the stress component rA

11 during a tensile load in
the austenitic phase. h = 4%, d01 ¼ 3 � 10�4 MPa�1. Effect of the value of d02, d02 ¼ �4 � 10�7 MPa�2.



A graphical representation of the transformation surface in the local principal stress reference system in austenite is pre-
sented in Fig. 6 (3D) and Fig. 7 (plane stress with rIII = 0). Inside the surface, there is no transformation evolution, _f ¼ 0.
The surface is represented for the values, h = 4%, d01 ¼ 6 � 10�4 MPa�1; d02 ¼ �15 � 10�7 MPa�2; Fc

f þ K0 þ BðT � T0Þ ¼
10 MPa. The effect of the volume change h via I1 stress invariant is represented by the closing of the transformation surface
along positive hydrostatic stress state (see Fig. 6a and d). For a pure negative hydrostatic stress state in austenite, no trans-
formation is possible. In Fig. 7.a, the 2D representation of transformation surfaces is shown to exhibit a tension–compression
asymmetry due partly to the volume change and to the non-linear expression of the MITS. When no volume change is as-
sumed (h = 0), the asymmetric behavior between tension and compression is still predicted by the present model
(Fig. 7b). The physical explanation is the selection of martensitic variants that are not the same in tension and in compres-
sion. In the mean-field model, the level of asymmetry is controlled by the value of parameter d02.

4.3.2. Critical forces and transformation kinetic
The expression of the critical forces for irreversible martensitic transformation is based on physical concepts taking into

account:

– the fact that the plastic flow of the austenitic phase assists the martensitic phase transformation (strain induced martens-
itic transformation),

– the martensitic topological hardening related with geometrical restrictions corresponding to the fact that the growth of
martensitic domains is limited by already existing martensitic domains.

For the crystalline model, Cherkaoui et al. (1998) defined the critical resolved stress for the transformation of a martens-
itic variant I as:

sc
fI
¼ scfo � kHhIchA þ HIJ

f f J ð81Þ

Fig. 6. Effect of the different parameters on the 3D transformation surface in the local principal stress reference system. (a) h – 0, d02 – 0, (b) h ¼ 0; d02 – 0,
(c) h = 0, d02 ¼ 0 and (d) h – 0, d02 ¼ 0.



where HhI describes the strain assisted transformation and HIJ corresponds to topological hardening due to the already
formed martensite.

For the mean-field model, in order to model the transforming martensite that depends on already formed martensite of
volume fraction f and on the plastic strain in austenite e

�
pA , the critical force is defined as:

Fc
f ¼ Fco þ Kp e

�
pA

� �
þ Kf ðf Þ ð82Þ

where Kp and Kf are hardening functions with properties such as:

Kp e
�

pA ¼ 0
� �

¼ 0

Kf ðf ¼ 0Þ ¼ 0
ð83Þ

For the hardening due to plasticity, it is assumed that local plastic strain state promote martensitic transformation (i.e. low-
ers the critical force for transformation, with k > 0):

Kp ¼ �k epA
eq

� �n
ð84Þ

where k and n are two parameters and epA
eq the equivalent plastic strain in austenite. The Kp function takes into account the

strain induced transformation domain ðT > Mr
S Þ, where a plastic pre-strain helps the onset of martensitic transformation.

The physical origin is the creation of martensite at the intersection of slip bands or due to stress fluctuations at the level
of dislocations. The Kf function represents the effect of the already formed martensite on the currently forming one. Similar
to a Johnson–Mehl–Avrami equation, the following expression is proposed:

Kf ¼ �j � lnð1� f Þ ð85Þ

Fig. 7. Effect of the different parameters on the transformation surface for a 2D plane stress state in the local principal stress reference system. (a) h – 0,
d02 – 0, (b) h = 0, d02 – 0, (c) h = 0, d02 ¼ 0 and (d) h – 0, d02 ¼ 0.



where j is a hardening parameter controlling the effect of the amount of martensite already formed.
FC0 is the initial critical force to be reached for martensitic transformation for a cooling at no stress. Without any local

stress (i.e. r
�

A ¼ 0), martensitic transformation starts at T = MS so that Ff ¼ Fc
f . Thus using the expression of the driving force

(79), the initial critical force is determined:

FC0 ¼ �BðMS � T0Þ � K0 ð86Þ

When the driving force reaches the critical force (i.e. Ff ¼ Fc
f ), the consistency rule (i.e. _Ff ¼ _Fc

f ) of the transformation criterion
(80) leads to the determination of the martensitic kinetic with:

_Ff ¼ _r
�

A : �n
�

T þ r
�

A : _�n
�

T � B � _T

_Fc
f ¼ j

1�f � _f þ _Kp e
�

pA

� �
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>: ð87Þ

Assuming that the MITS is constant during the transformation of an infinitesimal volume fraction _f of martensite (i.e. _�n
�

T ¼ 0),
the transformation kinetic is derived from Eq. (87) as:

_f ¼ 1� f
j

_r
�

A : �n
�

T � B � _T � _Kp e
�

pA

� �� �
ð88Þ

The evolution of the martensitic volume fraction is controlled by the stress, thermal and plastic strain increments in austen-
ite. The relation (88) captures both the stress assisted and the strain induced martensitic nucleation mechanisms. If only the
thermal part is taken into account, Eq. (88) renders the classical Koistinen–Marburger equation.

5. Multiscale modelling of the behavior of TRIP steels

In heterogeneous materials, linking the overall strain rate _E
�

to the control variables ð _R
�
; _TÞ requires a multiscale model. A

two-level self-consistent scheme is developed for the thermomechanical modelling of a multiphased TRIP aided steel. A first
level of the self-consistent scheme allows to concentrate the strain in each phase (ferrite, bainite and unstable austenite with
the transforming martensite). The second level of transition is the concentration from the strain rate in unstable austenite c
with the transforming martensite to the residual austenitic phase and the transformed martensitic domains. In this section,
we focus on the description of the second level of the self-consistent scheme from the c phase to austenite (A) and martensite
(M). This transition is the only one in case of an entirely austenitic steel (Fc = 1). The local interactions between the thermo-
mechanical behaviors of phases (thermoelastoplasticity with MITS) are described. Through strain rate concentration and
homogenisation steps, an expression of the global transformation strain rate _E

�

T
is derived.

5.1. Strain rate concentration

In order to link the local strain rate in phase A and M to the global one in phase c when submitted to the control variables
ð _E
�
; _f ; _TÞ, strain rate concentration tensors are derived as presented in detail in Appendix C. The local strain rate is expressed as

follows:

_e
�
¼ A
�

: _E
�
þ a
�
: _f þ a

�
� _T ð89Þ

where A
�
; a
�

and a
�

are respectively the concentration tensors for the macroscopic strain, transformation and temperature

rates. The classical self-consistent scheme (Berveiller, 1981) is adapted to the determination of the effective macroscopic
properties L

�
eff ; M

�
eff ; N

�
eff of an heterogeneous elastoplastic material exhibiting martensitic transformation. Those quantities

are used in the expression of the macroscopic homogenized behavior law such as:

_R
�
¼ L
�

eff : _E
�
�N
�

eff : _f �M
�

eff � _T ð90Þ

In Appendix C, the concentration tensors are derived:

A
�
¼ I

�
�C
�

l : l
�

ep � L
�

eff
� �h i�1

a
�
¼ �A

�
: C
�

l : n
�
�N
�

eff
� �

a
�
¼ �A

�
: C
�

l : m
�
�M
�

eff
� �

ð91Þ

where C
�

l is the local part of the modified Green tensor.

5.2. Homogenisation of the behavior of the c phase

Eq. (64) expresses local behavior laws in A and M as:



_r
�
¼ l
�

ep : _e
�
� n
�
� _f �m

�
� _T ð92Þ

By using the local representation of the behavior (Eq. (92)) and the strain rate concentration relation (89), the global
behavior law of the c phase is written as:

_R
�
¼ _r

�

D E
¼ l

�
ep : A

�

D E
: _E
�
þ l

�
ep : a

�
�n
�

D E
_f þ l

�
ep : a

�
�m
�

D E
_T ð93Þ

The effective macroscopic moduli are identified by comparing Eq. (93) to Eq. (90):

L
�

eff ¼ l
�

ep : A
�

D E
N
�

eff ¼ n
�
� l
�

ep : a
�

D E
M
�

eff ¼ m
�
� l
�

ep : a
�

D E ð94Þ

where hi is the averaging operator over the RVE.
The macroscopic behavior is also given as a function of the macroscopic transformation strain rate _E

�

T
:

_R
�
¼ L
�

eff : _E
�
� _E
�

T
� �

�M
�

eff � _T ð95Þ

By comparing Eqs. (90)–(95), the transformation strain rate is identified as:

_E
�

T ¼ L
�

eff�1 : N
�

eff � _f ð96Þ

N
�

eff is explicitly derived by inserting Eq. (66) in Eq. (94) such as:

N
�

eff ¼ ð1� f Þ:
l
�

epA : �n
�

T

1� f
� l
�

epA : a
�

A

0
B@

1
CA� f : l

�
epM : a

�
M ð97Þ

Since

a
�

D E
¼ 0 i:e: f :a

�
M ¼ �ð1� f Þ � a

�
A ð98Þ

the macroscopic transformation strain rate (Eq. (96)) is finally derived such as:

_E
�

T ¼ L
�

eff�1 : l
�

epA : �n
�

T þ ð1� f Þ l
�

epM � l
�

epA
� �

: a
�

A

� �
� _f ð99Þ

It can be noticed that, at the beginning of the transformation, where f = 0, l
�

epA ¼ L
�

eff and a
�

A ¼ 0, or if behaviors of
austenite and martensite are identical (i.e. l

�
epA ¼ l

�
epM ¼ L

�
eff ), the transformation strain rate (99) is reduced to the

expression:

_E
�

T ¼ �n
�

T _f ð100Þ

The latter condition is the case of shape memory alloys where behaviors of austenite and martensite are only elastic and
identical (C

�
A ¼ C

�
M). Hence, only the Magee effect is rendered.

For the description of the TRIP effect, there is additional plastic flow in austenite induced by transformation. As under-
lined by Diani et al. (1995), the macroscopic transformation strain characteristic of a TRIP effect is such as:

_E
�

T
– �n
�

T _f ð101Þ

6. Application to multiaxial thermomechanical behaviors of a RVE with TRIP effect

The constitutive equations of the model presented in Section 4 for the description of the elementary processes and in Sec-
tion 5 for the derivation of the overall behavior (Eq. (90)) are implemented in a Fortran 77 program. A Newton–Raphson cor-
rection procedure is used to control the convergence of the simulation. The response of the model is tested for entirely
austenitic steel grade and a multiphased TRIP steel. Cooling simulations at a constant stress and monotonic radial loading
paths at a constant temperature are tested. For monotonic tests, no kinematical hardening is taken into account in this sec-
tion (i.e. X

�
¼ 0). The model is also used for the simulation of different monotonic loading paths of a multiphase TRIP aided

steel compared to experiments performed by Furnemont (2003).



6.1. Austenitic steel grade

The case of an entire austenitic steel (Fc = 1 and f = 0) is analysed. The model parameters are calibrated with experimental
tensile data (stress vs strain curve and martensitic volume fraction) available on AISI304 steel grade at 213 K (Kubler et al.,
2003).

6.1.1. Tensile test on a metastable austenitic steel
The modelled stress vs strain behavior is presented on Fig. 8 with the corresponding evolution of martensitic volume frac-

tion. The hardening parameters of austenite and martensite are presented in Table 1. They are identified with the experimen-
tal stress–strain curve previous to transformation for austenite and at saturation for martensite. The parameters describing
transformation (Table 2) are identified according to the experimental evolution of martensitic volume fraction. MS temper-
ature of AISI304 is measured at 70 K and the volume change is 4%. B is set to 2 MPa/K as seen in Bumbieler (1999). K0, d01; d02,
j, k and n are identified to calibrate the start and the evolution of martensitic volume fraction.

On the stress vs strain curve of Fig. 8, we can observe that the model predicts the increase of the hardening coefficient
with the evolution of the martensitic volume fraction. In Figs. 8 and 9, the behavior with transformation is compared to
the behavior without transformation. In Fig. 9, the focus is made on the dynamic softening effect at the onset of martensitic
transformation which is reproduced by the model. The stress–strain curve with transformation passes below the curve with-
out transformation exhibiting the sudden increase of transformation strain as described by Olson and Cohen (1982).

6.1.2. Cooling at constant stress level of metastable austenite
At different tensile stresses, the material is cooled down from 493 K. The modelling parameters are identical to the one

presented in Tables 1 and 2. The isotropic dilatation coefficients for austenite c and martensite a0 are respectively
24.5 � 10�6 K�1 and 11.5 � 10�6 K�1 (Jaramillo and Lusk, 2004).

Fig. 8. Stress–strain behavior and martensite volume fraction of an entire metastable austenitic steel under uniaxial tension at 213 K and at 333 K.
Experiment vs model.

Table 1
Hardening parameters for austenite c and martensite a0 for an austenitic steel (AISI304).

ry (MPa) Q0 (MPa) b

c 450 400 5
a0 1000 1000 20

Table 2
Parameters describing the transformation for an austenitic steel (AISI304).

Ms (K) B (MPa/K) K0 (MPa) j DV/V d01 ðMPa�1Þ d02 ðMPa�2Þ k n

70 2 20 1 0.04 2 � 10�5 �2 � 10�7 400 1/3



Fig. 10 represents the transformation strain in the tensile direction (ET
11) vs. volume fraction of martensite. When mar-

tensitic transformation occurs, the transformation strain increases until the saturation of martensitic volume fraction. Under
no macroscopic stress, transformation starts at temperature MS. It can be observed that the initial slope at f = 0 increases with
the applied stress level. This initial slope defined as _ET

11=
_f is the MITS as expressed in Eq. (100). It is the signature of the var-

iant selection by their orientation with respect to the stress (i.e. Magee effect). The transformation strain at saturation in-
creases with the applied stress agreeing qualitatively with experimental results in the literature (Bumbieler, 1999;
Gautier, 1985; Petit-Grostabussiat et al., 2004).

The evolution of the mean instantaneous transformation strain (MITS) along the tensile direction versus the martensitic
volume fraction is shown in Fig. 11. As seen in the MITS formulation (78), the initial value of the MITS increases with the local
stress in austenite, which is the applied stress at the start of the transformation. At a constant applied stress, when martens-

Fig. 9. Comparison between the stress–strain behavior with and without martensitic transformation under uniaxial tension at 213 K. Dynamic softening
appears at the beginning of the transformation.

Fig. 10. Transformation strain in the tensile direction vs. volume fraction of martensite for cooling at different stress levels.



ite is created, the stress distribution between austenite and martensite evolves (Kubler et al., 2002). The average stress in
austenite decreases balanced by the stress in the created martensite. The consequence is that the MITS is also decreasing
and the transformation strain is less oriented when martensitic transformation progresses.

When the transformation progresses, plastic yielding occurs in austenite if the yield stress is reached, allowing transfor-
mation induced plasticity. The transformation strain includes the part of the Greenwood Johnson effect describing the plastic
accommodation in the austenitic phase. Fig. 12 compares the total transformation strain ET

11 with the accumulated MITS de-
fined as:

Fig. 11. MITS in the tensile direction vs. volume fraction of martensite for cooling at different stress levels.

Fig. 12. Transformation strain in the tensile direction vs. volume fraction of martensite for cooling at different stress levels. Transformation induced
plasticity (solid line) compared to transformation without induced plasticity (dashed line).



Z t

0

�nT
11

_f dt ð102Þ

At the beginning of the transformation both quantities are the same and an additional accommodating strain appears and
increases with the applied load if the yield stress of austenite is reached. As a consequence, for cooling at an applied stress
of 200 MPa, no transformation induced plasticity is predicted. However, at an applied stress of 400 MPa, some induced plas-
ticity is added to the total strain.

6.2. Multiphase TRIP 800 steel

6.2.1. Tensile test on a multiphase TRIP 800 steel at room temperature
The simulation of a tensile test of a TRIP 800 steel grade (0.2%C, 1.65%Mn, 1.65%Si) at 300 K is presented in Fig. 13 and is

compared to the experimental behavior (Hourman et al., 2000). The proportions of different phases are Fc = 16.5% of meta-
stable austenite, Fa = 70% of ferrite and Fb = 13.5% of bainite. The hardening parameters of the different phases are identified
from the only knowledge of the macroscopic response (Table 3). The average behavior of the ferrite–bainite mixture is in
good agreement with experimental data from the literature (Furnemont, 2003). In this multiphase material, the behavior
of ferrite and bainite cannot be differentiated by diffraction methods (Delannay et al., 2008). The yield strength of martensite
is set to 2 GPa (Jacques et al., 2007). The MS temperature is measured by differential scanning calorimetry and set to 190 K. In
Fig. 13, the evolution of the volume fraction of residual austenite is plot as a function of the total tensile strain during the
tensile test. In comparison with entirely austenitic steels, the TRIP signature (i.e. increase of stress level) is less obvious with
the transformation evolution. Martensitic transformation occurs at the first stage of plastic strain. The martensitic volume
fraction reaches 75% of the initial austenitic phase at a total strain of 22%.

In Fig. 14, the instantaneous hardening coefficient n is plot as a function of the total strain. The instantaneous hardening
coefficient n is defined as:

n ¼ ðdR11=dE11Þ � ðE11=R11Þ ð103Þ

Fig. 13. Stress strain behavior (with and without transformation) and martensite volume fraction in uniaxial tension at T = 300 K. Model vs. experimental
data (Hourman et al., 2000).

Table 3
Hardening parameters for TRIP 800.

ry (MPa) Q0 (MPa) b

c 300 400 5
a0 1000 1000 20
Ferrite 350 280 10
Bainite 950 1200 20



To underline the effect of martensitic transformation on the ductility property, the simulation is run without martensitic
transformation and compared on Figs. 13 and 14 to the one with martensitic transformation. On Fig. 13, it is observed that
the model predicts a weaker stress when martensitic transformation is not taken into account. Moreover, Considere’s neck-
ing criterion predicts necking (i.e. loss of ductility), if n = e. Applying this criterion to TRIP 800 exhibiting martensitic trans-
formation, the model predicts that the transformation induced plasticity effect delays the necking by 3% compared to a
multiphased material without TRIP effect (Fig. 14). This increase of ductility of 3% corresponds to a volume fraction of formed
martensite of 65% in the austenitic phase representing only 16.5% of the total volume. Hence, the new model predicts the
increase in strength and ductility when martensitic transformation and the resulting TRIP effect are taken into account.

6.3. Multiaxial loadings on a multiphase TRIP steel

The mean-field model is applied to predict the behavior of a multiphase TRIP steel submitted to multiaxial loading paths
and compared to the literature experimental results obtained by Furnemont (2003). The chemical composition is 0.29%C,
1.42%Mn, 1.41%Si with phase proportions such as Fc = 17.5% of metastable austenite, Fa = 55% of ferrite and Fb = 27.5% of bai-
nite. Tensile, shear and biaxial tests as well as volume fraction determination at room temperature are performed. Moreover,
the local stress–strain behavior of austenite and ferrite and bainite was measured during a tensile test with neutron diffrac-
tion. The hardening parameters (Table 4) are identified from the local tensile behaviors. Transformation parameters are iden-
tified from the global behavior laws and from the volume fraction of residual austenite for the tensile and shear tests in order
to fit the experimental volume fraction of austenite. The experimental (Furnemont, 2003) and modelling results are pre-
sented in Fig. 15. A biaxial tension is simulated and the evolution of volume fraction of residual austenite is compared to
experimental data. Good agreements are obtained according to the volume fraction of residual austenite. Above a total strain
of 15%, the predicted volume fraction in shear is underestimated. For the tensile stress–strain curve, the light difference be-
tween experimental results and simulation is due to martensite transforming before the austenite yield stress is reached,
which is not the case with the calibrated parameters. From these comparisons between different loading paths, it is observed
that at room temperature biaxial tension favors martensitic transformation before plastic yielding in austenite. The multi-
axial characteristic of this new model is explicitly shown with the 2D transformation surface in Fig. 16 for the identified

Fig. 14. Evolution of the hardening coefficient n = (dR/dE). (E/R) during the tensile test (with and without transformation). Increase of 3% of the ductility.
Model vs. experimental data.

Table 4
Hardening parameters for 0.29%C, 1.42%Mn, 1.41%Si TRIP steel.

ry (MPa) Q0 (MPa) b

c 720 800 5
a0 2000 3000 10
Ferrite 300 400 5
Bainite 950 500 15



parameters. The transformation surface is compared to the yield surface of austenite in the macroscopic R11–R22 reference
system. It is seen that for uniaxial tension, the yield stress in austenite is reached at the same time as martensite transforms.
For loading paths between uniaxial tension and biaxial tension, martensitic transformation precedes plastic flow in austen-
ite, whereas for other loading paths, plastic flow occurs first. A finer optimisation of the parameters of the model has still to
be carried out.

7. Conclusions

The development of a new semi-phenomenological model of the thermomechanical behavior of TRIP aided steels has
been presented in this work. It is based on a mean-field description of the plastic and transformation strains in the different
phases. Deriving constitutive equations at the phase level in residual austenite transforming into martensitic domains, the
concept of Mean Instantaneous Transformation Strain �n

�

T (MITS) is introduced. The MITS averages the contribution of the

Fig. 15. Simulation vs experimental results (Furnemont, 2003) for multiaxial loadings (tension, shear, biaxial tension). (a) Equivalent stress vs equivalent
strain. (b) Residual austenite volume fraction vs equivalent strain.



transforming domains in the RVE. To capture the saturation of the Magee effect with the local stress state, a non-linear
dependance of the MITS with the local stress in austenite is adopted. A transformation criterion based on the stress invari-
ants in austenite I1–J2–J3 is derived resulting in an induced anisotropy of martensitic transformation, as observed experi-
mentally. This new criterion underlines that the tension–compression asymmetry usually observed in martensitic
transformation is not only due to the volume variation from austenite to martensite. The non-linear dependence of the
MITS (i.e. the saturation of the transformation strain with the local stress) plays an important role in the asymmetric
response.

Discussions according to the multiaxial transformation criterion and its representation (2D and 3D) give strong insights
about the number of parameters needed to capture the effects of martensitic transformation and their influences on the glo-
bal response for a non-reductive modelling of the thermomechanical behavior of TRIP steels. The Greenwood Johnson effect
is captured via the classical self-consistent scheme (i.e. _E

�

T
– _f �n

�

T ). The proposed model is suited for cooling tests and multi-
axial loadings. It is tested for cooling at constant stress and uniaxial loading at different temperatures for entirely austenitic
steels. Through scale transition equations, the ability to capture the dynamic softening effect at the onset of martensitic
transformation is shown. For industrial multiphase TRIP steels, the model gives valid estimates of the macroscopic
stress–strain behavior as well as the evolution of martensitic transformation under different loading conditions. The model
showed an increase of 3% in ductility when martensitic transformation is considered within a multiphase TRIP steel with
16.5% of metastable austenite.

The advantage of this semi-phenomenological model compared to a crystallographic model as presented in this work is
that the number of internal variables are reduced to the global volume fraction, the elastoplastic strain in each phase and the
MITS. Thus, the reduced cost of this type of model, capturing the effects of transformation on the global behavior, should
permit its use in simulations of metal forming processes. Due to the anisotropy of the martensitic transformation, an accu-
rate calibration of the present model at a given temperature requires three distinct loading paths (tension, biaxial expansion,
shear) with martensitic volume fraction determination.

The model has been fully detailed in order to be readily implemented in an user subroutine of a finite element code for
on-going work on metal forming simulations (Kubler et al., 2010) of TRIP steels.
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Fig. 16. Transformation and yield surfaces of austenite in the macroscopic coordinate system R11–R22 for the identified parameters.



Appendix A. List of symbols and abbreviations

Symbols Definition

u Displacement vector

E� Total macroscopic strain tensor

E�
Tp Total macroscopic inelastic strain tensor

E�
T Total macroscopic transformation strain tensor

e� Total local strain tensor

e�
e Elastic local strain tensor

e�
th Thermal local strain tensor

e�
p Plastic local strain tensor

e�
T Transformation local strain tensor

�n
�

T Mean Instantaneous Transformation Strain (MITS) tensor

e�
T Deviatoric part of the MITS tensor

R� Macroscopic stress tensor

S� Deviatoric part of the stress tensor

r� Local stress tensor

s� Deviatoric part of the local stress tensor

C
�

Tensor of elastic moduli

a�
th Thermal expansion tensor

h = DV/V Volume variation
f Volume fraction of martensite within austenite
Fc Total volume fraction of austenite
Fa Volume fraction of ferrite
FB Volume fraction of bainite
DS, DV Surface and volume dissipation
Ff Driving force for martensitic transformation

x Velocity vector of the moving boundary

cg Slip amplitude on slip system g
R�

g Schmid orientation tensor for slip system g

hi Averaging operator over the RVE
RVE Representative Volume Element
V, @V Volume and boundary of the RVE
MITS Mean Instantaneous Transformation Strain

Appendix B. Expression of the MITS

The deviatoric part of the MITS (Eq. (74)) is expressed as a non-linear quadratic function of the stress deviator in austenite
s
�

A:

eT
ij ¼ D1

ijkl þ
1
2

D2
ijklmnsA

mn

� �
sA

kl ðB:1Þ

For a isotropic function, tensors D1 and D2 depend only on five parameters (d12,d44,d123,d144 and d244).

D1
ijkl ¼ d12dijdkl þ 2:d44Iijkl ðB:2Þ

D2
ijklmn ¼ d123dijdkldmn þ 6 � d144dðijIklmnÞ þ 4 � ðd244 � d144Þdikdlmdnj

d12 and d44 are in MPa�1, d123, d144 and d244 are in MPa�2.
d(ijIklmn) represents the symmetry with respect to indices i and j, k and l, m and n, ij, kl and mn. For example:

dðijdlmdnjÞ ¼
1
4

dikIjlmn þ dilIjkmn þ dimIklnj þ dinIklmj
� �

ðB:3Þ



By inserting Eq. (B.2) in Eq. (B.1), the deviatoric part of the MITS is expressed by:

eT
ij ¼ d12sA

kldijdkl þ 2d44IijklsA
kl þ

d123

2
dijdklsA

kls
A
mndmn þ 3d144dðijIklmnÞsA

kls
A
mn þ 2ðd244 � d144ÞdðijdlmdnjÞsA

kls
A
mn ðB:4Þ

Since s
�

A is a deviator, i.e. sA
kk ¼ 0, the expression reduces itself to:

eT
ij ¼ 2d44sA

ij þ
9

16
d144sA

kls
A
kldij þ 2ðd244 � d144Þ þ

27
16

d144

� 	
sA

kis
A
kj ðB:5Þ

Since e
�

T is also a deviatoric tensor, there is a condition on the parameters so that:

d244 ¼ �
11
16

d144 ðB:6Þ

and the MITS can be expressed as:

�nT
ij ¼

h
3

dij þ d01sA
ij þ d02

9
16

sA
kls

A
kl

� �
dij �

27
16

sA
kis

A
kj

� �
ðB:7Þ

with

d01 ¼ 2 � d44

d02 ¼ d144
ðB:8Þ

Using this expression, the mechanical term r
�

A : �n
�

T of the driving force for martensitic transformation (Eq. (58)) becomes:

rA
ij
�nT

ij ¼ sA
ij þ

1
3
rA

ppdij

� �
h
3

dij þ d01sA
ij þ d02

9
16

sA
kls

A
kl

� �
dij �

27
16

sA
kis

A
kj

� �� �
ðB:9Þ

By developing Eq. (B.9), the expression of the mechanical driving force is expressed such as:

rA
ij
�nT

ij ¼ I1
h
3
þ 2d01J2 �

81
16

d02J3 ðB:10Þ

where I1, J2 and J3 are the invariants of the average stress tensor in austenite and its deviatoric part defined as:

I1 ¼ Tr r
�

A
� �

¼ rA
kk

J2 ¼ 1
2 Tr r

�
A

� �2
� �

¼ 1
2 sA

ijs
A
ij

J3 ¼ 1
3 Tr r

�
A

� �3
� �

¼ 1
3 sA

ijs
A
jksA

ki

8>>>>>>>><
>>>>>>>>:

ðB:11Þ

Appendix C. Integral equation and concentration relations for the mean-field representation

In order to calculate concentration tensors A
�
; a
�

and a
�

of Eq. (89) for a microscopically heterogeneous material, the nec-
essary equations are:

– the balance equation in the quasi-static assumption with no body force

divr
�
¼ 0 ðC:1Þ

– the compatibility equation in case of small strain assumption,

_e
�
¼ grads _uð Þ ðC:2Þ

– the local behaviour laws with martensitic transformation

_r
�
ðrÞ ¼ l

�
epðrÞ : _e

�
ðrÞ � n

�
ðrÞ � _f �m

�
ðrÞ � _T ðC:3Þ

where l
�

ep is the elastoplastic tangent modulus and m
�

the thermal modulus.

n
�

is defined as:



n
�
ðrÞ ¼

n
�

A ¼
l
�

epA :�n
�

T

1�f if r 2 VA

n
�

M ¼ 0 if r 2 VM

8>>><
>>>:

ðC:4Þ

By combining Eqs. (C.1), (C.2) and (C.3), it results in:

lep
ijklðrÞ _uk;lðrÞ � nijðrÞ � _f �mijðrÞ � _T
h i

;j
¼ 0 ðC:5Þ

To solve Eq. (C.5), fluctuations around a reference homogeneous material with properties L
�

ep0; N
�

0; M
�

0 are considered:

l
�

epðrÞ ¼ L
�

ep0 þ d l
�

epðrÞ

n
�
ðrÞ ¼ N

�
0 þ d n

�
ðrÞ

m
�
ðrÞ ¼ M

�
0 þ d m

�
ðrÞ

ðC:6Þ

Inserting Eq. (C.6) in Eq. (C.5), one can obtain:

Lep0
ijkl

_uk;lj þ dlep
ijklðrÞ _eklðrÞ � dnijðrÞ � _f � dmijðrÞ � _T

h i
;j
¼ 0 ðC:7Þ

Eq. (C.7) can be solved using Green tensor G
�

for an infinite homogeneous media with property L
�

ep0. The Green tensor is a
second order tensor Gij used to determine the velocity at a point r along direction i when a concentrated force is applied
at point r0 along direction j.

By a derivative and integration by parts of Eq. (C.7), the local velocity is linked to the global one _U such as:

_umðrÞ ¼ _Um þ
Z

V 0
Gmi;jðr � r0Þ dlep

ijklðrÞ _eklðrÞ � dnijðrÞ � _f � dmijðrÞ � _T
h i

dV 0 ðC:8Þ

_emnðrÞ ¼ _Emn þ
Z

V 0
Cmnijðr � r0Þ dlep

ijklðrÞ _eklðrÞ � dnijðrÞ � _f � dmijðrÞ � _T
h i

dV 0 ðC:9Þ

where C
�

is the modified Green tensor defined as a function of G
�

by:

Cmnij ¼
1
2
ðGmi;jn þ Gni;jmÞ ðC:10Þ

Eq. (C.9) is similar to the one obtained in case of thermoelastoplasticity where an additional stimuli associated to martensitic
transformation via the tensor n

�
is considered. The solving of this equation uses the self-consistent approach (Berveiller,

1981) with the one site approximation where only the local part C
�

l of C
�

is taken. If the effective material properties are con-
sidered, i.e. L

�
0 ¼ L

�
eff ; n

�
0 ¼ n

�
eff ; m

�
0 ¼ m

�
eff , Eq. (C.9) becomes:

_emnðrÞ ¼ _Emn þ Cl
mnij dlep

ijklðrÞ _eklðrÞ � dnijðrÞ � _f � dmijðrÞ � _T
h i

ðC:11Þ

In the framework of thermoelastoplasticity with transformation, the strain concentration equation at a point r is:

_eklðrÞ ¼ Aklmn
_Emn � AklmnC

l
mnij dnijðrÞ � _f � dmijðrÞ � _T
h i

ðC:12Þ

with

Aklmn ¼ Iklmn � Cl
klpq lep

pqmn � Leff
pqmn

� �h i�1
ðC:13Þ

The general form of the concentration equation is:

_eklðrÞ ¼ Aklmn
_Emn þ akl � _f þ akl � _T ðC:14Þ

with:

akl ¼ �AklmnC
l
mnij nij � Neff

ij

� �
akl ¼ �AklmnC

l
mnij mij �Meff

ij

� � ðC:15Þ
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