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a b s t r a c t

To increase the dependability of complex systems, one solution is to assess their state of health
continuously through the monitoring of variables sensitive to potential degradation modes. When
computed in an operating environment, these variables, known as health indicators, are subject to many
uncertainties. Hence, the stochastic nature of health assessment combined with the lack of data in
design stages makes it difficult to evaluate the efficiency of a health indicator before the system enters
into service. This paper introduces a method for early validation of health indicators during the design
stages of a system development process. This method uses physics-based modeling and uncertainties
propagation to create simulated stochastic data. However, because of the large number of parameters
defining the model and its computation duration, the necessary runtime for uncertainties propagation is
prohibitive. Thus, kriging is used to obtain low computation time estimations of the model outputs.
Moreover, sensitivity analysis techniques are performed upstream to determine the hierarchization of
the model parameters and to reduce the dimension of the input space. The validation is based on three
types of numerical key performance indicators corresponding to the detection, identification and
prognostic processes. After having introduced and formalized the framework of uncertain systems
modeling and the different performance metrics, the issues of sensitivity analysis and surrogate
modeling are addressed. The method is subsequently applied to the validation of a set of health
indicators for the monitoring of an aircraft engine’s pumping unit.

1. Introduction

Over the past decade, enhancing dependability has progressively
become one of the main challenges for many industries, especially in
the field of aeronautics. Indeed, a considerable portion of the average
operating expenses of airline companies is attributable to mainte-
nance, repair and overhaul (MRO) and delays and cancellations (D&C).
These expenses are of two types. The first type includes the costs
generated by regularly scheduled MRO operations, and the second are
those generated by unexpected MRO operations. The expenses asso-
ciated with the latter can be very high in certain situations, such as
when a failure occurs in an isolated, poorly equipped airport. In this
situation, additional expenses are generated because of spare parts
delivery, aircraft immobilization and passenger indemnification. If the
expenses related to regular maintenance are irreducible because they
are derived from certification authorities, the other expenses could
represent a source of significant savings if one could achieve increased

dependability. It is for this reason that industries are increasingly more
interested in failure anticipation and real-time maintenance strategy
optimization.

To predict failures and schedule supervised maintenance, a new
field of research, prognostic and health management (PHM), has
gradually emerged over the past decade as the unavoidable solu-
tion. This new field is receiving much attention from the research
community, as evidenced by [1–3] and references therein. PHM is
based on the monitoring of relevant variables reflecting the
different degradation modes likely to occur in the system. These
relevant variables are termed health indicators (HIs). A classical
PHM framework usually performs detection, identification and
prognostic. While different forms of the PHM process can be found,
the most commonly used, at least in the industry, is the open-
structure architecture for conditioned based maintenance (OSA-
CBM) scheme [4]. Although PHM is a quite recent discipline, it has
reached a certain maturity with the development of its own
standards, as shown in [5,6]. It has also been frequently applied
and has demonstrated good results, first in its original field of
application, structural health monitoring (SHM) [7], and later, in
other fields, such as bearing monitoring [8] and battery life
prediction [9]. The present work is dedicated to the monitoring of
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multi-physics complex systems with closed loop control, which is a
novel and relatively unexplored application of PHM.

A PHM system can be defined as an entity interacting, on the
one hand, with the complex system via an extraction process and,
on the other hand, with the maintenance system via a supervision
process (see Fig. 1). The purpose of the extraction process is to
provide the set of HIs to the PHM system. The purpose of the
supervision process is to assess the current health status of the
complex system, to predict its evolution and to propose corrective
or predictive actions to maintenance operators.

Whereas the supervision framework is the subject of many
papers, the extraction framework is rarely addressed because its
complexity is often underestimated. Indeed, at first glance, the
extraction simply consists of recording data, but the real difficulty
is to determine which data are to be recorded. Even if some
research has been conducted to define certain generic methods for
constructing HIs, such as parity space [10], most of these methods
are not adapted to overcome certain challenges, such as uncer-
tainties, imposed sensor numbers and locations, limited computa-
tion capabilities and prohibitive controller retrofit costs [11]. Thus,
when an actual system is considered, it is necessary to perform a
complete knowledge analysis to determine critical degradation
modes and to construct relevant physics based HIs that are
compatible with the sensor’s configuration and the computation
capabilities. These HIs also must be validated before the system
enters into service because of the controller retrofit costs. This last
point is the most critical because PHM processes are inherently
stochastic problems, and it is obviously difficult to validate some-
thing stochastic before the availability of measured in-service data.

To overcome this lack of data for the validation of HIs,
numerical modeling associated with a complete management of
parameters uncertainties [12] is used during design stages to
simulate the HIs distributions with and without degradations.
This operation requires a good knowledge of input uncertainties,
which is usually acquired through expertise and experience feed-
back from similar systems. Once both the healthy and faulty
distributions of HIs are computed, some numerical key perfor-
mance indicators (NKPIs) are computed to quantify the quality of
the HI set in terms of detection, identification and prognostic
potential. In the aeronautic industry, the NKPIs could account for a
major step forward as online data recording is very expensive.

However, the propagation of uncertainties presents two major
issues. First, in cases where the physics-based model is defined by
numerous parameters, the quantification of uncertainties can
rapidly become very time-demanding and expensive because it
needs to collect much knowledge from various sources. Then,
when the simulation runtime of the physics-based model is
important, for example, several minutes or hours, the computation
time required for uncertainties propagation becomes prohibitive.
This is all the more true as the PHM system is composed of nume-
rous HIs and numerous degradation modes. This paper proposes to

use a combination of sensitivity analysis techniques and kriging
surrogate modeling to solve both issues. Sensitivity analysis is
performed in two stages. First, after having roughly determined
the variation range of parameters, the Morris method is used to
achieve a reduction in the parameters’ space dimension. This
allows for determining the set of uncertain parameters that will
be the inputs of the kriging model. The computation of Sobol
indices is then performed to hierarchically sort the uncertain
parameters with respect to their effects on outputs. From this
hierarchization, we identify the most influent parameters on
which the fine uncertainties quantification are targeted. Kriging
is used to obtain a low computational cost function for estimating
the model outputs. Due to the reduction of input space provided
by the sensitivity analysis, the size of the learning design of
experiments is significantly reduced. Finally, both the computation
of Sobol indices and uncertainties propagation can be run on the
kriging model at reasonable computation time costs. Finally, the
efficiency of the whole method is tested on a real complex system,
namely, the pumping unit of an aircraft engine fuel system.

The remainder of the paper is organized as follows: In Section
2, the background of uncertain systems modeling are addressed
through specific definitions of key terms. The numerical key
performance indicators for HI validation in design stages are then
introduced. The Sections 3 and 4, respectively, are dedicated to the
sensitivity analysis and the surrogate modeling. Finally, Section 5
introduces the application system, and Section 6 presents and
discusses the results.

2. Uncertain systems modeling

In [13], uncertainty is defined as “the incompleteness in
knowledge and the inherent variability of the system and its
environment”. In this section, the modeling of a complex system
S accounting for uncertainties is addressed through specific
definitions of key terms

2.1. System modeling

2.1.1. Numerical model
We propose to represent the determinist model of a complex

system by the function f :

Y ¼ f ðU ;ρ1;…;ρpÞ ð1Þ

where U is the matrix of the model inputs, Y is the matrix of the
model outputs and ρ1;…;ρp are the model parameters. As the
numerical model is a discrete system, considering a sample period
equal to T and a simulation of k samples, the input and output
matrix is written as follows:

U ¼

u1ð0Þ … unð0Þ
u1ðTÞ … unðTÞ
⋮ ⋱ ⋮

u1ððk�1ÞTÞ … unððk�1ÞTÞ
u1ðkTÞ … unðkTÞ

������������

������������
Aℝk�n;

Y ¼

y1ð0Þ … ymð0Þ
y1ðTÞ … ymðTÞ
⋮ ⋱ ⋮

y1 ðk�1ÞTð Þ … ym ðk�1ÞTð Þ
y1ðkTÞ … ymðkTÞ

������������

������������
Aℝk�m ð2Þ

Fig. 1. Interaction scheme between the complex system, the PHM system and the
maintenance system.



2.1.2. Parameters
Parameters are variables that are considered constant during a

single simulation but can vary between two different runs. When a
variable is not constant during a run, it is classified as an input.

We propose the following formalism. Parameters ρ1;…;ρp are
divided into two different types: the context parameters
λ1;…; λc; crp and the structural parameters β1;…;βs; srp. As a
parameter cannot be of both a context and structural type,
sþc¼ p. The structural parameters are sub-divided into epistemic
parameters γ1;…; γe; ers and degradation parameters δ1;…;

δd; drs. A parameter can be simultaneously epistemic and
degradation (see Fig. 2). For example, consider a hydraulic model
defined by the following parameters: cylinder diameter Dcyl; pump
displacement Dispump; pump leakage diameter Dleak;ambient tem-
perature Tamb, fluid temperature Tf luid. Following our formalism,
Tamb and Tf luid are context parameters, Dcyl and Dispump are episte-
mic parameters and Dleak is a degradation parameter.

To formalize in a more mathematical way the objects that we
handle during the modeling of the system, we propose to define
the following spaces.

2.1.3. Parameterization
We propose to define the parameter space P as a Euclidian

vector space of dimension p provided with canonical base
ðeP1 ;…; ePpÞT and Euclidian norm J U JP. Parameterization ρ is
defined as a vector of P whose components are the parameters’
values:ρ¼ ρ1e

P
1þ⋯þρpe

P
p ¼ ðρ1;…;ρpÞT . Nominal parameteriza-

tion ρnom is defined for the nominal values of the parameters as
ρnom ¼ ðρnom

1 ;…;ρnom
p ÞT .

2.1.4. Configuration
We propose to define the configuration space ℰ as a subspace

of P of dimension e with inherited canonical base ðeℰ1 ;…; eℰe ÞT and
Euclidian norm J U Jε. Configuration γ is defined as a vector of C
whose components are the epistemic parameters’ values:γ ¼
γ1e

ℰ
1 þ⋯þγee

ℰ
e ¼ ðγ1;…; γeÞT . Nominal configuration γnom is

defined for the nominal values of the epistemic parameters as
γnom ¼ ðγnom1 ;…; γnome ÞT .

2.1.5. Context
We propose to define the context space C as a subspace of P of

dimension c with inherited canonical base ðeC1 ;…; eCc ÞT and Euclidian
norm J U JK . Context λ is defined as a vector of C whose compo-
nents are the context parameters’ values:λ¼ λ1eC1þ⋯þλceCc ¼
ðλ1;…; λcÞT . Nominal context λnom is defined for the nominal values
of the context parameters as λnom ¼ ðλnom1 ;…; λnomc ÞT .

2.1.6. Condition
We propose to define the condition space D as a subspace of P

of dimension d with inherited canonical base ðeD1 ;…; eDd ÞT and
Euclidian norm J U JQ . Condition δ is defined as a vector of D
whose components are the degradation parameters' values:δ¼
δ1eD1 þ⋯þδdeDd ¼ ðδ1;…; δdÞT . Nominal condition δnom is defined
for the nominal values of the degradation parameters as
δnom ¼ ðδnom1 ;…; δnomd ÞT .

2.1.7. Degradation
We propose to define the degradation space O as an affine

subspace of D with origin Δnom and the same dimension, base and
norm. Degradation ω is a vector of O . Degradation ω¼ω1eO1 þ⋯
þωdeOd ¼ ðω1;…;ωdÞT is defined by its direction (or mode) and its
magnitude. Degradation mode is the unitary vector ω=JωJO of
the same direction and sense as ω, and the magnitude is the norm
JωJO of ω in O . It can be verified that if ω¼ 0; then the system is
in its nominal condition. In this paper, as only single degradation
modes are considered, there are d degradation modes defined as
the vectors of the canonical base. In this case, a degradation can be
written asω¼ωeOj , whereω is the degradation magnitude and eOj
is the degradation mode.

The system cannot be robust to all the degradation modes'
magnitudes because, at some point, a failure will appear. The
maximal admissible magnitude (MAM) of a degradation mode is
defined as the magnitude for which this failure occurs and is written

as ωj
MAM for degradation mode eOj , and the maximal degradation is

written as ωj
max ¼ωj

MAMe
O
j :

2.1.8. Syndromes
As previously stated, HIs are relevant variables that provide

some information about the health status of a given system. They
are named φ1;…;φh. We propose to define the syndrome space S

as a Euclidian vector space of dimension h provided with canonical
base ðbS

1;…;bS
hÞT and Euclidian norm J U J S . Syndrome φ is defined

as a vector of S whose components are the HI values
φ¼φ1b

S
1þ⋯þφhb

S
h ¼ ðφ1;…;φhÞT . A syndrome is computed from

the output matrix of the model by an extraction function g defined
as follows:

φ¼ gðY Þ ð3Þ

Nominal syndrome φnom is defined for the nominal values of
the HI as φnom ¼ ðφnom

1 ;…;φnom
h ÞT . The nominal condition is the

image of the nominal parameterization by the extraction function:

φnom ¼ gðf ðU;βnom
1 ;…;βnom

p ÞÞ ð4Þ

By defining h ¼ gof ; the numerical model can be written as

φ¼ hðU; γ;λ;δnomþωÞ ð5Þ

A syndrome φ is defined by its direction φ=JφS J and its
intensity JφS J . The diagnostic problem can be regarded as an
identification of function h. To ensure identification and to ensure
that one syndrome corresponds to only one degradation mode, a
good property for function h is injectivity.

2.2. Uncertainties management

2.2.1. Uncertainties quantification
For the modeling of multi-physics complex systems subject to

actual operating conditions, managing the uncertainties of the
parameters is of paramount importance. In this paper, two types

Fig. 2. Classification of the different types of parameters for system modeling. In
this example, the system is modeled from 3 context parameters, 2 epistemic
parameters and 3 degradation parameters.



of uncertainties are considered: random uncertainties derived from
environment variations affecting context and systematic uncertain-
ties derived from manufacturing variations affecting configurations.
Taking into account uncertainties requires replacing some of the
deterministic parameters λi; i� ½1; c� and γj; j� ½1; e� of the model
with random variables Λi and Γj. These random variables can be
characterized by their probability density function (PDF). Uncer-
tainties localization consists of identifying the parameters subject to
uncertainties, that is, the uncertain parameters. Uncertainties
quantification involves determining the PDF for every uncertain
parameter, which usually is the result of expertise and experience
feedback on similar systems. The PDFs are usually defined by the
type of their distribution (normal, uniform, generalized extreme
values, etc.) and their parameter vector θ¼ ðθ1;…;θrÞT where r
represents the number of parameters for the considered type of
distribution. For example, Λ3 � GℰV ðμ;s; ξÞ means that the uncer-
tainty on Λ3 follows a generalized extreme value law of location
μ; scale s and shape ξ. The uncertainties quantification can be a
very expensive step when the number of parameters is large.
Section 5 will discuss how to reduce the costs associated with
sensitivity analysis methods.

2.2.2. Uncertainties propagation
Knowing the uncertain parameters, it is possible to compute

stochastic HI distributions from a deterministic model by ran-
domly sampling them according to their PDFs (see Fig. 3). This
operation is called uncertainties propagation [12]. While many
tools are available, the most common is the Monte-Carlo simula-
tion [14]. This method is used in this paper with a number of
iterations equal to q. In this probabilistic framework, (5) can be
written as

Φ¼ hðU;Γ ; γ';Λ;λ'; δnomþωÞ ð6Þ

whereΦ¼ ðΦ1;…;ΦhÞ is the random vector of HIs, U is the input
matrix, Γ ¼ ðΓ1;…;Γ aÞ is the random vector of uncertain episte-
mic parameters, γ' ¼ ðγ1;…; γe�aÞ is the determinist vector of fixed
epistemic parameters, Λ¼ ðΛ1;…;ΛbÞ is the random vector of
uncertain context parameters, λ0 ¼ ðλ1;…; λc�bÞ is the determinist
vector of fixed context parameters, δnom is the determinist
nominal condition and ω is a determinist degradation.

2.2.3. Syndrome distributions
Let us consider q-samples γðqÞ ¼ ðγk1;…; γkeÞk ¼ 1;…;q and λðqÞ ¼

ðλk1;…; λkcÞk ¼ 1;…;q; realizations of random vectors Γ and Λ. By
using (6), it is possible to compute φðqÞ ¼ ðφk1;…;φkhÞk ¼ 1;…;q; the
realization of random vector Φ, for different degradations ω.
Syndrome distribution is defined as the q� h matrix Sω depen-
dent on degradation ω and containing the values of φðqÞ. For

example, the healthy distribution is S0, and the faulty distribution

of degradation mode eOj with magnitude ω is SωeOj .
In the case of systems actually marketed, it is necessary to

make a distinction between individual syndrome distributions
(ISDs) and fleet syndrome distributions (FSDs). The former is
computed by propagating only random uncertainties, i.e., with
Γ a deterministic vector with nominal values in (6). The latter is
computed by propagating both random and systematic uncertain-
ties. The ISDs traduce on the variability between different missions
on the same system, whereas the FSDs traduce the variability
between different systems of the same type. Even if the FSDs
contain more information, the ISDs are useful when uncertainties
are too important to ensure required detection performances.
Actually, computing ISDs and FSDs allows choosing between the
generalized monitoring of a group of systems and the particular-
ized monitoring of a single system. For example, the healthy FSD is
written as S0F ; and the ISD of degradation ω is written as SωI .

2.2.4. Reduced syndromes
From the syndrome distributions, it is possible to estimate the

parameter vector of the HIs’ PDFs. This estimation is performed by
maximum likelihood estimation (MLE) from prior knowledge of
the distribution type. The MLE of the PDF parameter vector of the
syndrome distribution SωF is θωF Aℝh�r with rAℕ the number of
parameters for the selected PDF type. For example, the healthy
reduced syndrome for normal PDF selection is θ0

F Aℝh�2.

3. Numerical key performance indicators

The purpose of this section is to propose definitions for
numerical key performance indicators (NKPIs). These NKPIs are
metrics aimed at performing early quantification of an HI set
efficiency in design phases. As they can be computed for both fleet
model and individual model, in this section, type can be replaced
either by F or I.

3.1. Detection NKPIs

Typically, detection specifications yield a maximum false posi-
tive rate (FP) and a minimum false negative rate (FN) for detection.
The basis of detection theory can be found in [15]. The detection
NKPIs are based on receiver operating characteristic (ROC) curves
[16]. Two types of detection NKPIs are used: a global detectability
matrix and a compliant detectability matrix. The ROC curve
between two PDFs of parameter vectors θ and θ0 is written as
ROCðθ;θ0Þ. For a given couple HI i and degradation ω; the ROC
curve between healthy and faulty PDF parameters is computed

from the reduced syndromes asROCðθ0
type ði; :Þ; θ

ω
type ði; :ÞÞ; where

θði; :Þ is the ith line of matrix θ. Healthy and faulty PDF parameters
are the estimated parameters of, respectively, the healthy distribu-
tion and the faulty distribution. The healthy distribution is
obtained by propagating uncertainties on a model with no
degradation mode. The faulty degradation is obtained via the
repetition of this uncertainties propagation where each time a
new degradation mode is modeled. In practice, we suppose that
these distributions are of generalized extreme value type, and we
estimate the parameters via maximum likelihood.

3.1.1. Global detectability
For a given ROC curve, global detectability (GD) is defined as a

function calculated from the area under the curve (AUC) [17]. The
closer to one the value is, the higher the detection potential. As GD
does not depend on the detection specifications, it is robust to

Fig. 3. Numerical model with parameter uncertainties and degradations.



specification changes, and it is equivalent to the Gini coefficient [18].

GDðθ;θ0Þ ¼ 2� AUCðROCðθ; θ0ÞÞ�1 ð7Þ

GD is computed for each couple ðθ0
typeði; :Þ; θ

ωj
max

type ði; :ÞÞ;
ði; jÞA ½1;h� � ½1;d� and the following NKPI, the global detectability
matrix GDx, is constructed:

GDx¼
GDðθ0

typeð1; :Þ; θ
ω1

max
type ð1; :ÞÞ … GDðθ0

typeð1; :Þ; θ
ωd

max
type ð1; :ÞÞ

⋮ ⋱ ⋮

GDðθ0
typeðh; :Þ; θ

ω1
max

type ðh; :ÞÞ … GDðθ0
typeðh; :Þ; θ

ωd
max

type ðh; :ÞÞ

��������

��������
A ½0;1�h�d

ð8Þ

3.1.2. Compliant detectability
For a given ROC curve, the compliance point is defined as the point

of the coordinates ðFPspec; TPspecÞ with FPspec as the specified
maximal false positive rate and TPspec as the specified minimal true
positive rate delimiting the compliance area (cf. Fig. 4). Compliant
detectability (CD) is defined as follows:

CDðΘ;Θ0Þ ¼ 1 if ROCðΘ; Θ0Þ is above the compliance point
0 if ROCðΘ; Θ0Þ is under the compliance point

(
ð9Þ

If specifications on the FP are considerably restrictive, it is
difficult to observe the compliance point on the curve. In this case,
it is possible to use the semi-logarithmic ROC curve with a
logarithmic scale in abscissa for the FP to give more clarity to

the curve. Eventually, CD is computed for each couple ðθ0
typeði; :Þ;

θω
d
max

type ði; :ÞÞ; ði; jÞA ½1;h� � ½1; d� and the following NKPI, the compli-
ant detectability matrix CDx is constructed:

CDx¼
CDðθ0

typeð1; :Þ; θ
ω1

max
type ð1; :ÞÞ … CDðθ0

typeð1; :Þ; θ
ωd

max
type ð1; :ÞÞ

⋮ ⋱ ⋮

CDðθ0
typeðh; :Þ; θ

ω1
max

type ðh; :ÞÞ … CDðθ0
typeðh; :Þ; θ

ωd
max

type ðh; :ÞÞ

��������

��������
A f0;1gh�d ð10Þ

3.2. Identification NKPIs

The classical identification process aims at finding the most
probable degradation mode of the system, and as such, it is based
on the classification of the current reduced syndromes relative to a
reference database of different reduced syndromes corresponding
to the degradations. In this section, one identification NKPI is
defined based on the signature vectors: the cross identificability
matrix.

3.2.1. Signature and distinguishability
The signature space ℛ is defined as a Euclidian vector space of

dimension h provided with canonical base ðgℛ
1 ;…; gℛ

p ÞT and norm

jjU jjℛ. The signature Sgnj of a degradation mode j is a vector of ℛ
indicating the level of similarity between the reduced healthy

syndrome and the reduced faulty syndrome computed for the
MAM. As it is a function of the global detectability, the sign of the
difference between distributions means:

Sgnj ¼ ðSgnj
1;…; Sgnj

hÞT A ½�1;1�h

Sgnj
k ¼ sign½μðφ0ðk; :ÞÞ�μðφωj

max ðk; :ÞÞ�GDxðk; jÞ; kA1;h

8<
: ð11Þ

Thus, the distinguishability index Dis is defined as the angle
between two similar vectors. For two degradation modes j and k,

DisðSgnj ; SgnkÞ ¼ arccos
SgnjT USgnk

Sgnj
ℛSgnk

ℛ

!
ð12Þ

3.2.2. Cross identificability
The cross identificability matrix CIx is a symmetric matrix

defined as follows:

CIx¼
DisðSgn1; Sgn1Þ … DisðSgnk ; Sgn1Þ

⋮ ⋱ ⋮
DisðSgn1; SgnkÞ … DisðSgnk; SgnkÞ

�������
�������A ℝd�d ð13Þ

3.3. Prognostic NKPIs

3.3.1. Minimal detectable magnitude
The minimal detectable magnitude (MDM) of degradation

mode j is ωj
MDM and is defined as follows:

ωj
MDM ¼ min

ωAℝ;iA1;h
fω= CDðθ0

typeði; :Þ; θ
ωeOj
typeði; :ÞÞ ¼ 1g ð14Þ

It is the lowest magnitude for which a degradation mode is
detectable when all HIs are combined. If the ensemble defined in
Eq. (16) is empty, then ωj

MDM ¼∅ and the degradation mode is not
detectable.

3.3.2. Detection margin
To quantify the prognostics capabilities, the following prognos-

tic NKPI is defined as the detection margin vector DMv, which is
computed as follows:

DMv¼ ðω1
MDM�ω1

MAM ;…;ωd
MDM�ωd

MAMÞAℝd ð15Þ

The detection margin vector indicates, for each degradation
mode, the gap between the lowest detectable magnitude and the
highest admissible magnitude before degradation.

Due to these NKPIs, it is possible to determine the detectable
degradation modes, to determine whether they are separable and
to determine the margin between the detection magnitude and
the failure magnitude. It is also possible to quantify the efficiency
of each single HI for the detection and the identification process
such that useless HIs would be eliminated.

4. Sensitivity analysis

As previously mentioned, the computation of the necessary
data for the validation of HIs is based on uncertainties propaga-
tion. The quality of this propagation depends on the quantification
of uncertainties. This task can be very long and complex when the
number of parameters is large and no priorities are defined. Thus,
to enhance the quantification of uncertainties, we propose to use
sensitivity analysis techniques. Sensitivity analysis (SA) is the
study of how the uncertainties in its inputs. In the present
application, inputs are parameters and outputs are HIs. There are
three types of sensitivity analysis methods: local, global and
screening [19]. In this paper, we will use one screening technique,

Fig. 4. Compliance point and compliance area on a ROC curve.



the Morris method [20], and one global technique, the computa-
tion of Sobol indices [21].

4.1. Morris method

The Morris method belongs to the screening techniques family.
These techniques are used to perform a fast but rather coarse
exploration of the behaviors of outputs of a costly computation
cost with numerous inputs, typically hundreds. Screening methods
are based on a discretization of the inputs into different levels,
they do not use probabilities. Many types of screening methods
are described in literature, such as the supersaturated design,
group screening or sequential bifurcation. The usual design of
experiments (DOE), such as factorial designs or one at a time (OAT)
designs, are also part of this family. In this paper, the Morris
screening method is used. The Morris method consists in ran-
domly repeating r times an OAT design in the input space. This
method provides a sorting of inputs into three categories:

� Inputs with negligible effects
� Inputs with linear effects without interaction
� Inputs with non-linear effects and/or interactions

Each repetition i ði¼ 1;…; rÞ evaluates an elementary effect EðiÞj
(increase between two successive points) for each input Xj. The r
repetitions of the DOE furnishes an r-sample of the effects for each
input Xj from which the sensitivity indices are as follows:

μn

j ¼ ∑
r

i ¼ 1
jEðiÞj j; and sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑r

i ¼ 1ðE
ðiÞ
j �μjÞ
r

s
ð16Þ

where μj ¼∑r
i ¼ 1E

ðiÞ
j . If μn

j and/or sj are significantly different from

zero, then input j has an important influence on the output. A large
index sj indicates either a highly non-linear effect on the output
or some interactions between input j and other inputs. These
measures can be plotted on a graph where the x- and y-axes are
the modified means and standard deviations, respectively.

4.2. Sobol indices

In a non-linear and non-monotonic model framework, it is
possible to estimate the impact of inputs on outputs by using the
decomposition of a function Z into a sum of elementary functions
[22]:

ZðX1;…;XnÞ ¼ Z0þ ∑
n

i ¼ 0
Z iðXiÞþ ∑

n

io j
Z ijðXi;XjÞþ⋯þZ12…nðX1;…;XnÞ

ð17Þ

where Z is integrable on Ω¼ ½0;1�n, Z0 is a constant and other
functions have particular characteristics. This decomposition was
extended to the sensitivity analysis by Sobol [21], hence, the name
Sobol decomposition. One of its contributions was to prove that
this decomposition is unique. If the Xi are independent random
variables, the functional variance decomposition, that is, the
functional ANOVA representation, can be obtained from (17):

Var½Y � ¼ ∑
n

i ¼ 0
ViðYÞþ ∑

n

io j
V ijðYÞþ ∑

n

io jok
VijkðYÞþ⋯þV12…nðYÞ ð18Þ

where ViðYÞ ¼ Var½EðY jXiÞ�; VijðYÞ ¼ Var½EðY jXiXjÞ��ViðYÞ�VjðYÞ;
and so on. Accordingly, the Sobol sensitivity indices are defined

as follows:

Si ¼
Var½EðYjXiÞ�

VarðYÞ ¼ ViðYÞ
VarðYÞ; Sij ¼

VijðYÞ
VarðYÞ; Sijk ¼

VijkðYÞ
VarðYÞ;… ð19Þ

These coefficients are “variance based importance measures” or
Sobol indices. Ranging from 0 to 1, they are quite easy to interpret,
which explains their popularity. For example, index Sij traduces
the model sensitivity to the interaction between Xi and Xj. The
sum of these indices is equal to 1. When the input n number
increases, the number of Sobol indices grows exponentially (equal
to 2n�1Þ. Homma and Saltelli [23] introduced the notion of the
total sensitivity index to express the whole effect of an input on
the output, thus simplifying their interpretation:

STi ¼ Siþ ∑
n

ja i
Sijþ ∑

n

ja i;ka i;jok
Sijkþ⋯¼ ∑

lA#i
Sl ð20Þ

where #i represents all the indices subsets containing index i.
Thus, ∑lA#iSl is the sum of all the Sobol indices involving i. In
practice, when n is large, only first order indices and total indices
are utilized.

To estimate Sobol indices, we choose to use the Monte-Carlo
based method developed by Sobol [21] and Saltelli [24]. The main
disadvantage of the Monte-Carlo method is that the number of
model evaluations needed to reach 10% precision is sometimes
nearly 10,000, which means that in cases where the model is
computationally time-demanding, this method is not feasible. As
proposed in [25], we have chosen to compute these indices from a
surrogate model to reduce the computation costs. Note that the
computation of Sobol indices can be performed using the FERUM
open-source Matlab™ toolbox [26].

4.3. Global sensitivity analysis strategy

Finally, two types of sensitivity analysis methods are addressed
in this paper:

� The Morris method: a coarse and rather qualitative method, but it
can be performed with limited calls to the model. In this paper, it
is used on the complete physics-based model to determine the
list of uncertain parameters.

� Sobol sensitivity indices: a fine and quantitative method, but it
necessitate a very large number of calls to the model. In this paper,
it is used on a surrogate model to hierarchize the parameters and
target the uncertainties quantification priorities.

The global sensitivity analysis strategy is divided into the
following steps:

1. Determining the initial set of parameters.
2. Performing a coarse quantification of uncertainties. Typically,

we can determine the minimum and maximum reasonable
values of parameters from expert knowledge such that at this
step the PDFs of the parameters are uniform.

3. Performing Morris method from these uniform PDFs. Deter-
mining the list of uncertain parameters.

4. Building the surrogate model (c.f. Section 5).
5. Computing Sobol indices from uniform PDFs with uncertain

parameters as inputs. Hierarchizing the uncertain parameters
and determining the most influent ones.

6. Performing a fine quantification of uncertainties for the most
influent uncertain parameters. Estimating the type and para-
meters of their PDFs.

7. Running uncertainties propagation on the surrogate model
with uncertain parameters as inputs.



The global sensitivity analysis scheme proposed in this paper is
presented in Fig. 5.

5. kriging surrogate modeling

In this section, the surrogate modeling is introduced. Its usefulness
is twofold: Not only it allows computing a simplified model of the
system but it also enables the computation of Sobol indices.

5.1. Surrogate modeling

When physics-based models are time-demanding, it is plausi-
ble to use surrogate modeling, which is a low cost model of a
model in terms of computation time. For example, surrogate
modeling has been used to optimize aerospace design [27]
because the simulation of the airflow around the wing profiles is
highly computationally time-demanding. The construction of a
surrogate model is generally composed of the following steps (see
Fig. 6):

1. Determination of the variation range of input parameters. In this
paper, the variation range is determined by the coarse quantifica-
tion of uncertainties presented in the previous section.

2. Construction of the learning DOE. In the present case, we have
chosen to use the Latin hypercube sampling, as introduced in
Section 5.2.

3. Estimation of the surrogate model hyperparameters from a set
of learning points. In this work, we have chosen to use kriging,
as presented in Section 5.3.

5.2. Design of experiment

As shown in Fig. 6, some learning points, also called design
sites, are required to build a surrogate model. To optimize the sites

Fig. 5. Uncertainties management and sensitivity analysis.

Fig. 6. Principle of surrogate modeling. The low cost model is constructed from
XLearningand YLearning .



selection, DOEs are constructed. Even if the DOE to be used
depends on the type of surrogate model, the choice is typically
made among low discrepancy DOEs. Indeed, this type of DOE
allows for an exhaustive search of the range of variations with
respect to model parameter space. For example, the Latin hyper-
cube sampling (LHS) method is widely used with kriging to create
design sites from multidimensional PDFs of p variables. The LHS
consists of the following steps:

1. Discretization of the p PDF into n intervals with equal prob-
ability. Intervals are noted as ℐp

1 ;…;ℐp
n.

2. Creation of a permutation matrix AAℕn�p:

A¼
s1ð1Þ ⋯ spð1Þ
⋮ ⋱ ⋮

s1ðnÞ ⋯ spðnÞ

�������
������� ð21Þ

where s1;…;sp are permutations of ½1;n�
3. Random sampling according to the different PDFs to construct

the DOE:

DOE¼
randðℐ1

s1ð1ÞÞ ⋯ randðℐp
spð1ÞÞ

⋮ ⋱ ⋮
randðℐ1

s1ðnÞÞ ⋯ randðℐp
spðnÞÞ

��������

��������
ð22Þ

where rand is a function drawing randomly a value according to
an interval PDF. The main advantage of LHS is that under certain
hypotheses not detailed in this paper, it is possible to obtain a DOE
with a low discrepancy not only in the global space but also in
each single dimension.

5.3. Kriging

Kriging, also called a Gaussian process, was initially developed
by the mining engineer Daniel Krige for interpolation in geosta-
tistics before being applied to numerical modeling. See [28] for a
recent survey. A kriging model can be written as follows:

YðxÞ ¼ f T ðxÞbþZðxÞ ð23Þ
where x is a point in a d-dimensional input space, f T ðxÞb is a
regression model and Z is a Gaussian process of mean zero and
covariance s2ℛðθ; xi; xjÞ with ℛ an assumed correlation function
between outputs and inputs such that:

ℛðθ; xi; xjÞ ¼ ∏
d

k ¼ 1
ℛkðθk; xik; xjkÞ ð24Þ

The kriging model hyperparameters θ; b and s2 are generally
computed by maximum likelihood estimation. Some examples of
correlation functions are given in Table 1. These functions imply
that YðxiÞ and YðxjÞ are more correlated as their input locations xi
and xj are closer. While the choice of the correlation function is of
paramount importance because it determines the quality of the

kriging model estimations, it depends on the characteristics of the
model. For example, a Gaussian correlation suits generally well the
linear models, whereas an exponential correlation is more adapted
to non-linear models.

From n observations Y ¼ ðy1;…; ynÞT corresponding to design
sites X ¼ ðx1;…; xnÞT , kriging uses best linear unbiased predictor
(BLUP) criterion to minimize the mean squared error of the
predictor. For a point xnþ1, the kriging predictor is

Ŷð xnþ1Þ ¼ f T ðxnþ1Þbþrðxnþ1ÞTR�1ðY�FbÞ ð25Þ
where b is the matrix of the regression coefficients, R is the
correlation matrix, F ¼ ðf ðx1Þ;…; f ðxnÞÞT and r is the correlation
function between xnþ1 and design sites such that:

rðxnþ1Þ ¼ ½ℛðθ; x1; xnþ1Þ⋯ℛðθ; xn; xnþ1Þ�T ð26Þ

It is determined that if xnþ1 coincides with a design site, the
predictor equals the observation. Thus, the kriging predictor is an
exact interpolator. Thus, it is possible to calculate the variance of
the prediction Σ2 at any point x:

Σ2ðxÞ ¼ s2 1�rTR�1rþð1�1TR�1rÞ2
1TR�11

!
ð27Þ

Finally, the kriging predictor has three main advantages: it is a
BLUP, it is an exact interpolator on design sites and it is capable of
estimating its own prediction variance. A kriging toolbox available
for the software Matlab™ is introduced in [29]. This toolbox
proposes an algorithm for the estimation of the kriging hyper-
parameters that is used in the following application.

6. Application system

6.1. System presentation

For the higher purpose of monitoring the whole fuel system of
the aircraft engine, it is necessary to monitor all its critical
subsystems, for example, the hydromechanical loops as explained
in [30]. In this paper, the studied system is a pumping unit of an
aircraft engine fuel system [31]. This system is composed of a
centrifugal low pressure pump and a gear high pressure pump.
The pumping unit is located in the fuel system, as shown in Fig. 7,
and interacts with the following equipments:

� BSV: Burning stage valve to switch between 1 and 2 injector
lines

� TBV: Transient bleed valve to produce a discharge
� HPSOV: High pressure shut off valve to maintain the pressur-

ization of the system ΔP ¼ PHP�PLP

Table 1
Different types of correlation models for kriging.

Correlation type ℛkðθk ; xik ; xjkÞ

Exponential expð�θkjxjk�xikjÞ
Gaussian expð�θjjxjk�xikj2Þ
Exponential – Gaussian expð�θjjxjk�xikjθnþ 1 Þ; 0oθnþ1r2
Linear max f0; 1�θkjxjk�xikjg
Spherical 1�1:5ξjþ0:5ξ3j ; ξj ¼ min f1; θkjxjk�xikjg
Cubic 1�3ξ2j þ2ξ3j ; ξj ¼ min f1; θkjxjk�xikjg Fig. 7. Aircraft fuel system scheme with PA=C aircraft pressure supply, PLP and PHP ,

respectively, low and high pressures of the system and QInj injection flow.



� FMV: Fuel metering valve to regulate the amount of
injected fuel

� Bypass: Valve to redirect the excess of pumped fuel into the
pump inlet

6.2. System analysis

6.2.1. Failure modes
The failure modes of the system have been determined by

experience feedback and verified by expertise. They are listed in
Table 2 with their associated modeling method and degradation
parameters. Among these degradation modes, two have been identi-
fied as critical: the HP pump internal and external leakage. Indeed, a
failure modes, effects, and criticality analysis (FMECA) [32] performed
on the system from expert knowledge and experience feedback
revealed that both these degradation modes can lead to the highly
critical event defined in the system’s specifications: “the outlet flow at
10% of the maximal rotation speed of the pump is inferior to Qm”,
where Qm is the minimal theoretical value of the flow that ensures
both the engine on-ground start and in-flight restart capabilities. On
the contrary, as the other degradation modes do not lead to critical
events, they are considered as marginal. However, it was necessary to
take the other modes into account for the evaluation of identification
potential. Indeed, they can influence the values of the HIs, and they
can be confused with critical degradation modes, which can lead to
false prognostics and unnecessary maintenance operations.

6.2.2. Health indicators
The selection of HIs can be a complex task in cases were the

number, location and characteristics of sensors are imposed.
Indeed, if it is not possible to organize sensors to set up a direct
monitoring of the system, the solution is to find indirect ways to
follow the evolution of degradation modes. In the present case,
the best solution to monitor degradation modes is to monitor
their common effect, i.e., when the outlet flow at 10% of the
maximal rotation speed of the pump is inferior to Qm. However,
if this value is available, which is not the case in real life service,
it is due to a lack of sensors. Actually, the only values available
online are:

� ω: rotation speed of the pump (via a reduction ratio from the
high pressure core rotation speed)

� OSOV : Boolean equal to 1 if the HPSOV is open and to 0 if it is
closed. It is computed from a proximeter.

� OTBV : Boolean equal to 1 if the TBV is open and to 0 if it is
closed. It is computed from a proximeter.

� OBSV : Boolean equal to 1 if the BSV is open and to 0 if it is
closed. It is computed from a proximeter.

� XFMV : Value of the FMV position, equal to 0 during the start
sequence.

To define a HI to monitor indirectly the outlet flow of the pump,
the idea is to find variables that are images of the hydraulic power
gradient over the starting sequence. It appears that the three
valves, HPSOV, BSV and TBV, are in a close position at the
beginning of the start sequence (t ¼ 0), but their command
requires them to be open. However, as the system is not pressur-
ized at t ¼ 0, the valves cannot move and their opening occurs
only when the hydraulic power has reached a minimal value. Thus,
considering the evolution of the necessary rotation speed to open
the different valve is a good way to assess the health status of the
pump. Accordingly, we define the following HIs, which were
validated by expert knowledge:

� ωSOV : Rotation speed of the pump at the HPSOV opening,
i.e., ωSOV ¼ min fω = OSOV ¼ 1g.

� ωBSV : Rotation speed of the pump at the BSV opening, i.e.,
ωBSV ¼ min fω = OBSV ¼ 1g.

� ωTBV : Rotation speed of the pump at the TBV opening, i.e.,
ωTBV ¼ min fω = OTBV ¼ 1g.

The a priori advantage of these HIs is that in real life service,
the values are easily retrievable as only the value of the rotation
speed when Booleans indicating the positions of the valves switch
from 0 to 1 needs to be stored. In simulation, we do not have the
Boolean values, but we do have the continuous value of the valve’s
spool position. Thus, to retrieve the HIs, we need the values of the

Table 2
Degradation modes and degradation parameters.

Degradation mode Modeling method Degradation parameter

1. HP pump internal leakage Orifice between pump outlet and pump inlet Orifice diameter: DILkg

2. HP pump external leakage Orifice between pump outlet and ambient pressure tank Orifice diameter: DELkg

3. BSV striction increase Increase of striction coefficient Striction coefficient: StBSV
4. BSV viscous friction increase Increase of viscous coefficient Viscous coefficient: ViBSV
5. BSV leakage Orifice between the two chambers of the valve Orifice diameter: DBSV

6. Bypass striction increase Increase of striction coefficient Striction coefficient: StByp
7. Bypass viscous friction increase Increase of viscous coefficient Viscous coefficient: ViByp
8. Bypass leakage Orifice between the two chambers of the valve Orifice diameter: DByp

9. HPSOV striction increase Increase of striction coefficient Striction coefficient: StHPSOV
10. HPSOV viscous friction increase Increase of viscous coefficient Viscous coefficient: ViHPSOV
11. HPSOV leakage Orifice between the two chambers of the valve Orifice diameter: DHPSOV

12. TBV striction increase Increase of striction coefficient Striction coefficient: StTBV
13. TBV viscous friction increase Increase of viscous coefficient Viscous coefficient: ViTBV
14. TBV leakage Orifice between the two chambers of the valve Orifice diameter: DTBV

Fig. 8. Example of HI extraction: the case of wBSV .



switch positions SwSOV , SwBSV and SwTBV . These values can be
found in the equipment’s specifications. Finally, the HIs from the
model are computed as follows:

ωSOV ¼minfω = XSOV 4 SwSOV g
ωBSV ¼minfω = XBSV 4 SwBSV g
ωTBV ¼minfω = XTBV 4 SwTBV g

8><
>: ð28Þ

where XSOV , XBSV , and XTBV are, respectively, the continuous
positions of HPSOV, BSV and TBV.

The model is run for simulations of the engine starting
sequence, i.e., for the seven first seconds of a classical flight
scheme. The input of the system is the rotation speed of the high
pressure turbine N2ðtÞ. This rotation speed is a second degree
polynomial function of time such that

N2ðtÞ ¼ AN2 � t2þBN2 � t ð29Þ

Fig. 8 presents how wBSV is recorded from the signal of its
position considering that the valve opening is confirmed at 50% of
the stroke. As one simulation of the model is approximately 2 min
long, it is too expensive to run a Monte-Carlo algorithm for
uncertainties propagation. In the next section, the use of kriging
to decrease the computational costs is discussed.

6.3. System modeling

6.3.1. Model parameters
The modeled system is composed of 43 parameters, including

5 context parameters, 24 epistemic parameters and 14 degradation
parameters. The list of context and epistemic parameters is
provided in Table 3. The list of degradation parameters is pre-
sented in Table 2.

7. Results

7.1. Uncertain parameters

7.1.1. Coarse quantification of uncertainties
All the parameters defined in Table 3 are subject to uncertainties

of a random or systematic type, respectively, for context and
random parameters. In a first time, we suppose that the distribu-
tions of parameters are uniform. The minimum and maximum
values are evaluated via the analysis of experience feedback on
other engines, whereas systematic uncertainties are determined
through the analysis of equipment specifications and, particularly,
confidence intervals given by manufacturers. For the degradation
parameters, we also use uniform laws with the minimum value
equal to the nominal value and the maximum value determined
from expert knowledge. The results of these coarse uncertainties
quantifications are given in Table 4.

In Table 4, the parameters are assumed to be independent. This
assumption was verified either by the computation of the correla-
tion coefficient or by the analysis of scatter plots for uncertainties
that can be measured on similar systems, namely, Tfuel, PA=C , Pinj,
AN2, and BN2. For other parameters, this hypothesis was not
verified but strongly presumed via physical consideration from
expert knowledge. Note that it can be verified from simulations
after the kriging model is constructed.

7.1.2. Morris method
The Morris method is performed for a model with a parameters

space dimension equal to 43. We chose a number of repetitions
equal to 5 so the model is called 215 times, which is equivalent to
approximately 7 h of computation. The results of the Morris
method corresponding to each HI are presented in Fig. 9:

Using Fig. 9, we can hierarchize the parameters with respect to
their influence on each of the outputs. This influence is proportional to
the distance between the points and the origin. From the results of
this sorting, it appear that 23 parameters have negligible influence on
the three HIs and that the 20 remaining parameters have significant
influence Hence, the former are identified as fixed parameters and the
latter as uncertain parameters. The Morris method also allows for the
qualitative evaluation of the supposed effects of each uncertain
parameter on the three outputs. Table 5 shows an example of effects
evaluation for HI wBSV , revealing that only 7 out of 14 degradation
modes actually have influence on the HIs. We notice that the critical
degradation modes (DILkg and DILkg) are expected to have a strong
effect onwBSV , which is a good point for detection purposes.

7.2. Influent parameters

7.2.1. Kriging model
In this application, the kriging model is a function aimed at

estimating wBSV, wTBV and wHPSOV . We define the inputs of
the kriging model as the uncertain parameters determined in the
previous subsection. The learning sites are constructed via a LHS of
size 400 and uniform distributions to ensure a good space filling.
The kriging model is then built using a first degree polynomial
regression and an exponential correlation. The estimation of
kriging hyperparameters is performed using the DACE algorithm
[33].

7.2.2. Sobol indices
The Sobol indices of the 20 inputs presented in Table 5 are

computed using the Monte-Carlo method performed on the kriging
model constructed in the previous subsection. For this application,
both first order and total indices are computed from the MCS for a
number of iterations q¼ 100;000. The results are presented in Fig. 10
for each HI.

Table 3
Epistemic and context parameters.

Parameter Type Parameter Type Parameter Type

Fuel temperature: Tfuel Ctx Bypass feedback stiffness: KByp Epi TBV rod diameter: DRTBV Epi
Aircraft supply pressure: PA=C Ctx Bypass head diameter: DHByp Epi TBV opening pressure: PopTBV Epi
Injection pressure: Pinj Ctx Bypass rod diameter: DRByp Epi BSV mass: MBSV Epi
Second order coefficient of N2ðtÞ: AN2 Ctx Bypass strength calibration: CByp Epi BSV feedback stiffness: KBSV Epi
First order coefficient of N2ðtÞ: BN2 Ctx HPSOV mass: MHPSOV Epi BSV head diameter: DHBSV Epi
Opening stroke for BSV: SwBSV Epi HPSOV feedback stiffness: KHPSOV Epi BSV rod diameter: DRBSV Epi
Opening stroke for TBV: SwTBV Epi HPSOV head diameter: DHHPSOV Epi BSV strength calibration: CBSV Epi
Opening stroke for HPSOV: SwHPSOV Epi HPSOV strength calibration: CHPSOV Epi BSV servo gain: GSVBSV Epi
HP pump displacement: Dis Epi TBV mass: MTBV Epi BSV servo damping: DSVBSV Epi
Bypass mass: MByp Epi TBV head diameter: DHTBV Epi



Fig. 9. Morris plot for wBSV (top left), zoomed wBSV (top right), wTBV (bottom left) and wHPSOV (bottom right).

Table 5
List of uncertain parameters.

Param Effect Param Pdf Param Pdf Param Pdf

1. Tfuel Weak non-linear 6. DHByp Strong non-linear 11. KBSV Weak linear 16. StByp Weak non-linear
2. AN2 Strong linear 7. CByp Weak linear 12. DHBSV Average non-linear 17. DByp Very weak non-linear
3. BN2 Very strong linear 8. DHTBV Strong non-linear 13. CBSV Weak linear 18. ViTBV Weak non-linear
4. SwBSV Average linear 9. DRTBV Weak non-linear 14. DILkg Very strong non-linear 19. ViBSV Very weak non-linear
5. Dis Weak non-linear 10. PopTBV Very strong non-linear 15. DELkg Very strong non-linear 20. DBSV Average non-linear

Table 4
Coarse uncertainties quantification results.

Param Pdf Param Pdf Param Pdf

Tfuel Uð�40;30Þ KHPSOV Uð0:99;1:01Þ DELkg Uð0;1:5Þ
PA=C Uð1:9;2:1Þ DHHPSOV Uð24;26Þ StBSV Uð0;100Þ
Pinj Uð0:95;1:05Þ CHPSOV Uð19;21Þ ViBSV Uð50;2000Þ
AN2 Uð1:7;2:3Þ MTBV Uð0:2;0:22Þ DBSV Uð0;0:5Þ
BN2 Uð0:96;1:04Þ DHTBV Uð42:22;46:22Þ StByp Uð0;100Þ
SwBSV Uð2:3e�03;2:7e�03Þ DRTBV Uð18;20Þ ViByp Uð50;2000Þ
SwTBV Uð1:2e�02;1:3e�02Þ PopTBV Uð7;15Þ DByp Uð0;0:5Þ
SwHPSOV Uð0:9;1:1e�03Þ MBSV Uð0:38;0:40Þ StHPSOV Uð0;100Þ
Dis Uð2:3e�05;2:4e�05Þ KBSV Uð0:99;1:01Þ ViHPSOV Uð0;2000Þ
MByp Uð0:18;0:22Þ DHBSV Uð28:87;30:87Þ DHPSOV Uð0;0:5Þ
KByp Uð0:99;1:01Þ DRBSV Uð5:29;7:29Þ StTBV Uð0;100Þ
DHByp Uð29;31Þ CBSV Uð�2;2Þ ViTBV Uð0;2000Þ
DRByp Uð23;25Þ GSVBSV Uð0:067;0:267Þ DTBV Uð0;0:5Þ
CByp Uð�7; �3Þ DSVBSV Uð1:6;2Þ
MHPSOV Uð0:29;0:31Þ DILkg Uð0;1:5Þ



The computation of Sobol indices indicates that the results are
not completely correlated with those obtained from the Morris
method. Indeed, the most influent parameters for wBSV are DILkg

and DELkg according to Sobol indices, whereas according to the
Morris method, the most influent parameters are BN2 and DHByp.
This difference justifies that both methods should be used.
Additionally, the first order indices and the total indices are very
close, which indicates that there are few or no correlations
between inputs. This observation justifies a posteriori of the
independency assumption between parameters. Thus, it is possible
to hierarchically sort the most influent parameters for each HI:

� For wBSV , the most influent parameters are, in decreasing
order, DILkg ; DELkg ;BN2 and DBSV� For wBSV , the most influent parameters are, in decreasing
order, PopTBV ;DELkg and DILkg� For wBSV , the most influent parameters are, in decreasing
order, DILkg ; DELkg ;PopTBV and BN2

7.3. Uncertainties propagation

7.3.1. Fine uncertainties quantification
As presented in the previous section, the computation of Sobol

indices reveal that 5 uncertain parameters are more influent than the
others: DILkg ; DELkg ; PopTBV ;BN2 and DBSV . It is notable that both
parameters relative to critical degradation modes belong to this list.

We then perform a complete finer uncertainties quantification for
these influent parameters and find that BN2 and PopTBV were
actually normal distribution and the maximum value of degradation
parameters was not good. The results are presented in Table 6.

7.3.2. Uncertainties propagation
At this point, we have precise PDFs for influent parameters and

uniform PDFs for less influent uncertain parameters. Hence, we can
perform the uncertainties propagation via Monte-Carlo simulations
run on the kriging model, as defined in Section 7.2.1. This propagation
is repeated for each triplet ðHI i; Degradation Mode j; MagnitudeωÞ
with linearly growing magnitudes. Some of the results are presented
in Fig. 11 for the three HIs for degradation mode 1 of growing
magnitudes ranging from 0 to 1.5. Only the individual model case is
considered at this time.

Fig. 10. First order and total Sobol indices for each HI: wBSV(top left), wTBV (top right) and wHPSOV (bottom).

Table 6
List of the most influent uncertain parameters with fine uncertainties quantifica-
tion results.

Parameter Pdf Parameter Pdf

BN2 Nð1;0:01Þ DELkg Uð0;1:7Þ
PopTBV Nð11;1:67Þ DBSV Uð0;0:33Þ
DILkg Uð0;2:1Þ



7.4. Numerical key performance indicators

Based on the reduced syndromes resulting from the MCS
presented in the previous section, the NKPIs presented in

Section 4 are computed. The NKPIs are computed for the following
specifications: a maximal false positive rate equal to 5% and a
minimal true positive rate equal to 80%. In practice, the true
positive and false positive ratios necessary to draw the ROC curves

Fig. 11. Distributions for degradation mode 1 (external leakage) with growing magnitudes of values [0, 0.5, 1.0, 1.5] for wBSV(top left), wTBV (top right) and wHPSOV
(bottom).

Table 7
Detection NKPIs for fleet model case.

Table 8
Detection NKPIs for individual model case.

Table 9
Identification NKPIs for fleet and individual model cases.



are computed from the healthy and faulty distributions of HIs.
For example, in Fig. 11, the top left distributions are obtained via
uncertainties propagation on the kriging model. The healthy
distribution is the one corresponding to a magnitude equal to 0,
and the faulty distribution is the one with the highest magnitude.
This faulty distribution is associated with degradation mode 1.
Other similar uncertainties propagation are run for the rest of the
degradation modes and other HIs to complete the set of distribu-
tions. The results are presented in the following tables for fleet and
individual model cases. Tables 7 and 8 indicate that the results are
better for the individual model case, which means that a monitor-
ing particularized by the system is more efficient. Moreover, these
tables indicate that of the degradation modes, seven are detectable
with the required FP and TP, but as previously discussed, the most
important are the critical degradation modes DELkg and DILkg. This
condition is widely verified because they are detectable by all
three HIs.

Considering that two signatures are separable enough if the
angle between them is superior to 0.5 rad, Table 9 indicates that
the critical degradation modes are identifiable from the other
ones. The fact that they are not identifiable from each other is
irrelevant because they concern the same equipment. Table 10
shows that DBSV and DByp have short detection margins, whereas
the critical degradation modes have extremely large margins of
approximately 70% of the MAM.

8. Conclusion

In this paper, we have proposed and implemented a novel
method aimed at performing an early validation of HIs for
detection and identification in design stages. This method is based
on a combination of a sensitivity analysis and surrogate modeling
techniques to perform a model-based computation of the HIs
distributions for each degradation mode of the system. The
sensitivity analysis is performed in two stages, the first is based
on the Morris method, and the second is based on Sobol indices.
This sensitivity analysis allows for a reduction in the number of
input parameters for the kriging model and for a focus on the
uncertainties quantification efforts of the most influent para-
meters. The method then proposes to calculate certain numerical
key performance indicators to quantify the efficiency of the health
indicators set, with respect to detection, identification and prog-
nostics, before the controller implementation.

The main novelty of this paper is to import a well-known surro-
gate modeling technique to the domain of prognostics and health
management for complex systems and, more precisely, to add the
degradation parameters into the modeling process. From an indus-
trial perspective, the benefits are threefold: health monitoring
algorithm developers rely on it to provide themwith data, controller
designers rely on it to give them some quantified information and
insurance about health indicators before the entry into service of the
system and maintenance operators rely on it to provide a preview of
the embedded health monitoring system capabilities in to jointly
develop their maintenance strategy.

This method was applied to the monitoring of the fuel pumping
unit of an aircraft engine and exhibited good results first in analyzing
the sensitivity of the HI to each parameter and in subsequently
modeling the distributions of the HIs for different magnitudes of

degradations. Eventually, the computation of numerical key perfor-
mance indicators allowed us to conclude that a specific model, or
individual model, is more suitable for this application and that, in
this case, the critical degradation modes are detectable and identifi-
able with a good detection margin. For future prospects, theoretical
improvement can be made in the construction of the kriging model,
particularly in the definition of the learning points and the estima-
tion of the correlation parameters. On a more practical level, the
method could be applied to other aircraft engine subsystems, such as
the fuel metering unit.
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