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a b s t r a c t

In this paper a new method is presented in order to determine the pore size distribution in a porous

medium. This original technique uses the rheological properties of some non-Newtonian yield stress flu-

ids flowing through the porous sample. This technique is based on the capillary bundle model (like the

other classical methods) which, despite its apparent simplicity, is capable of properly characterizing

the percolating pore size distribution. Then this distribution can be simply obtained from the measure-

ment of the total flow rate as a function of the imposed pressure gradient. The present technique is suc-

cessfully tested analytically and numerically for usual pore size distributions such as the Gaussian mono

and multimodal distributions, using Bingham and Casson fluids. The technique can also be extended to

any yield stress fluid and any kind of distribution.

Ó 2014 Elsevier B.V. All rights reserved.

1. Introduction

Porous media are found literally everywhere around us [1–4], in

living matter, in Nature and in various technological applications.

The need in porous media will keep on growing in the future be-

cause of the increase in the price of energy and because of environ-

mental challenges; let us cite for example the recent application of

heat storage in granular porous media for solar collectors [5]; an-

other instance concerns heat storage for human housing using por-

ous phase change materials [6]; the continuous decrease in

conventional oil and gas reserves implies a high level of invest-

ments for tertiary recovery techniques [7]; the storage and the

behavior of pollutants in porous matter (hazardous wastes, CO2

sequestration. . .) are today an important challenge; they are also

used in some biological processes (dialysis, membrane transport)

[8]. . . These numerous applications make them the object of abun-

dant studies and are topics for which it is essential to have an in-

depth knowledge and an accurate characterization.

Since the early work of Darcy [9], the transport phenomena in

general and particularly the flow through porous media generated

an important research activity which is today still relevant. In fact,

all the porous media are made of networks of pores delimited by a

solid. Among the pores constituting this network we are particu-

larly interested in the percolating conduits excluding the isolated

pores, the dead ends and the finite clusters which do not carry

any flow. In these conditions the characterization of the percolat-

ing pore size distribution (PSD) of these porous media is a crucial

goal [10]. In fact the strong dependence of the transport properties

in porous media with the size of their pores and their polydisper-

sity constitute a challenge in many scientific areas. Various tech-

niques have been developed to characterize the network of such

porous solids, and particularly their pore size distribution. Among

the most popular techniques, we can quote: the mercury intrusion

porosimetry (MIP) [1–3,11] consisting into the injection of mer-

cury in the porous medium. This technique is based on the exis-

tence of a threshold below which the pores cannot be invaded.

Indeed due to its large surface tension mercury does not wet most

of the materials. A pressure difference DPlg must be imposed so

that mercury penetrates the pores whose radii rp are greater than

r�p ¼ 2rlg cos h=DPlg where rlg is the liquid/gas interfacial tension

and h the contact angle. The pore size volume distribution is ob-

tained with the derivative of the curve representing the volume

of the invaded pores according to the radius of the pores. Because

of the toxicity of mercury, this technique is intended to be phased

out. Another method to measure the pore-size distributions is the

BJH. method [12]. This classical method uses two mechanisms: the

isothermal adsorption (of nitrogen at 77 K) on the pore walls and

the capillary condensation, due to the molecular Van der Waals

interactions between a condensing vapor and the internal surface

of the pores. This BJH technique is based on the relationship be-

tween the imposed pressure and the radius of a cylindrical pore

where the capillary condensation takes place. This is the Kelvin–

Laplace equation: lnðP=P0Þ ¼ ÿ2rlgv l cos h=NkTrp, where P and P0

are respectively the partial vapor pressure, the saturation vapor

pressure at the temperature T; rp the pore radius, N the Avogadro’s

number, k the Boltzmann’s constant and v l the liquid phase molar

volume. This method consists in measuring the desorption volume
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vs. the relative pressure: P=P0. Then the pore size distribution is

obtained from the derivative of this curve.

An alternative technique rests on the liquid–solid phase transi-

tion of the fluid in a porous medium [13,14]. This approach for

determining the PSD in porous materials has been suggested by

Kuhn et al. [15] and derived later by Brun et al. [16]. The principle

of the method is based on the lowering of the triple point temper-

ature of a liquid filling a porous material. It uses a thermodynam-

ical relationship between the reduction of the triple point

temperature DT of the confined liquid in the pores of radius rp
where the phase transition occurs. It is expressed by the Gibbs–

Thomson equation: DT=T0 ¼ 2rlsv l=DH0rp, where rls is the liquid/

solid interfacial tension, v l the liquid phase molar volume, DH0

the molar heat of fusion, rp the pore radius, and T0 the triple point

temperature of the unconfined liquid. Then the phase transitions

(solidification or melting) for a liquid confined within a pore occur

at lower temperatures when the pore size decreases. This differ-

ence in transition temperature DT , between confined and bulk li-

quid can be measured calorimetrically by DSC thermoporometry

(differential scanning calorimetry) [17] or cryoporometry using

nuclear magnetic resonance (NMR) [18]. Notice that all the tech-

niques mentioned above and developed in order to measure the

pore size distribution are based on the existence of a threshold.

The first one is due to the capillary pressure; the two others are

due to the phase change phenomena. Finally let us quote destruc-

tive techniques such as stereology [19] or non-destructive methods

such as Small Angle Neutron (SANS) or X-Ray Scattering (SAXS)

[20,21]. Unfortunately all these techniques can give quite different

results; moreover they are very expensive and require complex

equipment. Therefore in this study we propose a new alternative,

simpler and cheaper technique, in order to characterize the PSD

of a porous medium.

2. Objective of the study

Starting from the same principle utilized in the first three ther-

modynamical methods described above, we develop an approach

based on the threshold introduced by a yield stress fluid (which be-

longs to the class of non-Newtonian viscoplastic fluids without

time dependence). These fluids do not flow, before being subject

to a minimum shear stress called the flow yield stress s0. Many

materials such as polymers (carbopol. . .), foodstuffs (mayon-

naise. . .), cosmetics (beauty cream, toothpaste. . .), concentrated

slurries, electro-rheological fluids (suspensions of very fine

conducting particles in an electrically insulating fluid) and mag-

neto-rheological fluids (suspensions of magnetically polarizable

micron-sized particles in oil) [22]. . . have a rheological behavior

which is situated between a purely viscous liquid and a plastic so-

lid. These fluids may have a more or less well defined yield stress.

This critical stress that accompanies the transition between the so-

lid and the viscous behaviors is related to the internal structure of

the network of the material. The magnitude of the yield stress may

depend on the concentration of the dissolved substances inducing

the threshold and it may also vary with the pH of the solution (like

bentonite [23]). A lot of behavior laws are available to describe

such complex fluids. In our study we focus only on the classical

Bingham fluids [24,25] (drilling muds, oil painting, Laponite

[26]. . .), and Casson fluids (printing ink [27], sludge suspensions

and dispersion paint, blood [28]. . .).

The basic idea is the following: in order to set such fluids into

motion, it is necessary to impose between both ends of a pore a

pressure gradient ðrPÞ greater than a critical value depending on

the fluid yield stress ðs0Þ and the pore radius ðrpÞ. In other words,

for the pressure gradient rP, only the pores whose radius is

greater than the critical radius r0 ¼ 2s0=rP are invaded. Then it

is possible to scan the PSD by increasing the pressure gradient step

by step and measuring the corresponding flow rate Q.

3. Models and procedure

3.1. Porous medium and yield stress fluid models

In order to determine the pore size distribution of the percolat-

ing pores, the most popular model in all the thermodynamical

techniques described above is the capillary bundle model [29,30].

Although it is quite simple, it can account for most of the geomet-

rical properties of the real porous media such as the tortuosity, the

permeability and the variation in the pore cross-section as we shall

see later. Nevertheless the interconnectivity cannot be modeled.

We will use this model to derive the inversion technique which al-

lows us to obtain the PSD from the characteristic curve Q ¼ f rPð Þ
for a given yield stress fluid in non-inertial regimes. The simplest

yield stress fluid is described by the Bingham model. Such a fluid

obeys the following rheological behavior law:

s ¼ 2 gþ s0
ffiffiffiffiffiffiffiffi
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with s the shear stress tensor, D the rate of deformation tensor and

g the plastic viscosity of the fluid. For the flow in a tube with circu-

lar cross-section, these equations take the simpler form:

sr0z ¼ s0 þ g @uz
@r0

�

�

�

� for sr0z > s0
@uz
@r0 ¼ 0 for sr0z 6 s0

(

ð2Þ

where sr0z is the shear stress, ð@uz=@r0Þ the rate of deformation and r0

is the radial coordinate.

3.2. Procedure and inversion

Our model is composed of parallel capillaries (Fig. 1) whose ra-

dii are distributed according to the unknown probability density

function pðrÞ. When a pressure gradientrP is imposed on this sys-

tem, the total flux is calculated from the elementary flow rate

q rP; rð Þ in a single capillary of radius r and from pðrÞ by the

integral:

QðrPÞ ¼
Z 1

r0¼
2s0
rP

qðrP; rÞpðrÞdr ð3Þ

This integral constitutes a Volterra equation of the first kind. As long

as the regime is non-inertial, the kernel of Eq. (3) is given by [31]:
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Fig. 1. Capillary bundle model.



For r 6 r0 the fluid does not flow. The critical radius r0 ¼ 2s0=rP is

also the radius of the core zone of the Bingham plug flow (Fig. 2).

The pore size distribution pðrÞ can be obtained through differen-

tial operators applied to QðrPÞ [32,33]:

pðrÞ ¼ gðrPÞ2
ps0r4

5
@2:

@ðrPÞ2
þrP

@3:

@ðrPÞ3

" #

Q jrP¼2s0
r

ð5Þ

3.3. Validation

As encountered usually in Nature and literature, the pore size

distributions may be approximated by Gaussian mono-modal or

multimodal (bi or tri-modal) distributions [34] and such PSD will

be considered in this article. Note that the log-normal or Maxwell-

ian distributions [12] are sometimes used but they are not consid-

ered here. To verify the applicability of formula (5), let us assume

that the PSD can be described by a given Gaussian distribution of

mean value l and standard deviation r. In order to remain as gen-

eral as possible and exhibit the control parameters of this problem,

we will write from now on the equations in non-dimensional form:

pþðrþÞ ¼ 1

rþ
ffiffiffiffiffiffiffi

2p
p exp ÿ rþ ÿ lþð Þ2

2rþ2

" #

ð6Þ

where rþ ¼ r=L; pþðrþÞ ¼ L � pðrÞ; rþ ¼ r=L, lþ ¼ l=L, and L the

thickness of the studied sample. As the other natural scales of the

material are a priori unknown, we use this thickness L as the length

scale because it is the most accessible dimension of the system.
_cc ¼ g=ðqL2Þ is the characteristic shear rate scale and q the fluid

density. The non-dimensional rheological behavior law is then writ-

ten as:

sþr0z ¼ 1þ 1
He

@uþz
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with sþr0z ¼ sr0z=s0 the adimensional shear stress and the Hedström

number He [35] given by:

He ¼ qs0L
2

g2
ð8Þ

This non-dimensional number represents the relative importance of

the yield stress to the viscous one. The adimensional rheograms for

a Bingham fluid at different He is shown in Fig. 3.

Now, it is possible to normalize the Volterra equation (Eq. (3))

as follows:

QþðrPþÞ ¼
Z 1

rþ
0
¼ 2
rPþ

qþðrPþ; rþÞpþðrþÞdrþ ð9Þ

where the flow rate is normalized by Q c ¼ pgL=8q and the pressure

gradient is normalized by rPc ¼ s0=L. The non-dimensional ele-

mentary flow rate in a single capillary tube is:

qþðrPþ; rþÞ ¼ He rPþðrþÞ4 ÿ 8
3
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The adimensional PSD (5) can now be written as follows:

pþ rþð Þ ¼ rPþÿ �6

128He
5

@2:

@ rPþÿ �2
þrPþ @3:

@ðrPþÞ3

" #
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rþ
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Eq. (11) is called the ‘‘Pore Size Distribution Equation’’ or PSDE. In a

first step, we use a given Gaussian PSD calculated by Eq. (6) for

rþ ¼ 2 � 10ÿ5 and lþ ¼ 10ÿ4. Fig. 4 below shows the normalized to-

tal flow rate vs. the normalized pressure gradient resulting from the

flow of the Bingham fluid through such a porous medium. This flow

rate is calculated by Eq. (9). This figure is characterized by a first re-

gion at low pressure gradients in which the flow rate is zero. This

region extends until the largest pore in the material is invaded. It

is followed by a second region in which the flow rate increases with

the pressure gradient.

In a second step, the given distribution is forgotten and the flow

rate vs. pressure gradient (or the characteristic curve) given by the

initial calculation (or obtained by an experiment) is used as a start-

ing point. Now, Eq. (11) is applied to the non-dimensional charac-

teristic curve to calculate pþðrþÞ which is plotted in Fig. 5

(obtained from real data corresponding to He ¼ 0:02 with

q ¼ 103 kg mÿ3; s0 ¼ 20 Pa; g ¼ 10 Pa s; L ¼ 10ÿ2 m). Notice that

this non-dimensional characteristic curve depends only on the

PSD but not on He. Indeed as the non-dimensional pore size distri-

bution given by Eq. (11) is inversely proportional to He and the

non-dimensional elementary flow rate qþ is proportional to He

(see Eq. (10)), He vanishes and does not affect the curve

Qþ ¼ f ðrPþÞ according to Eq. (9).

Fig. 2. Bingham flow through a pore of radius r.

Fig. 3. Bingham fluid rheograms for different He.

Fig. 4. Total flow rate vs. pressure gradient for a Gaussian distribution and a

Bingham fluid.



This figure exhibits a perfect agreement between the original

Gaussian distribution and the one calculated with the relationship

obtained for pþðrþÞ by the inverse method. To verify the efficiency

of this technique with more complex distributions, a bimodal

Gaussian distribution is considered, with two peaks at lþ
1 ¼ l1=L

and lþ
2 ¼ 2lþ

1 and different standard deviations rþ
2 ¼ 2rþ

1 ¼ r2=L

for instance such as:

pþðrþÞ ¼ 1

2
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in which the radius and the PSD are also scaled by L. The total flow

rate Qþ is also obtained and shown in Fig. 6. Now, Eq. (11) is applied

again to the non-dimensional characteristic curve (Fig. 6). The result

is plotted in Fig. 7. Once again one can see the perfect agreement

between the initial PSD and the one calculated by Eq. (11).

Finally, for a more complex tri-modal distribution with for

example: lþ
2 ¼ 2lþ

1 ; l
þ
3 ¼ 3lþ

1 and rþ
2 ¼ 3rþ

1 =2; r
þ
3 ¼ 2rþ

1 the

non-dimensional characteristic curve (Fig. 8), is obtained and once

again the application of the PSDE gives with accuracy the initial

density probability function as shown in Fig. 9.

3.4. Casson model

As the results obtained with the Bingham model are very

encouraging and since it is difficult to find a fluid having the ideal

Bingham behavior, we apply in the next section the analysis to an-

other yield stress fluid: the Casson model that is more frequent

than the Bingham fluid. For this occasion, we check the indepen-

dence of the analysis on the chosen rheological law. In this model

the general rheological behavior law can be written as:

s ¼ 2 g1=2 þ s0
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As in the previous section, these equations reduce to the following

simpler forms in the case of the shear flow in a circular tube:

s1=2r0z ¼ s1=20 þ g1=2 @uz
@r0

�

�

�

�

1=2
for sr0z > s0

@uz
@r0 ¼ 0 for sr0z 6 s0

(

ð14Þ

The elementary flow rate in a circular capillary tube constituting

the kernel of Eq. (3) can be written as in [36]:

q rP; rð Þ ¼
ps0r
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Similarly to the previous section, the total flow rate through a bun-

dle of capillary tubes, the radii of which are distributed according to

a probability density function p rð Þ, is obtained with the sameFig. 5. Comparison between the initial and the calculated PSD.

Fig. 6. Total flow rate vs. pressure gradient for a bimodal distribution with

lþ
2 ¼ 2lþ

1 ; r
þ
2 ¼ 2rþ

1 and a Bingham fluid.

Fig. 7. Comparison between the initial and the calculated PSD for a bimodal

distribution with lþ
2 ¼ 2lþ

1 ; r
þ
2 ¼ 2rþ

1 and a Bingham fluid.

Fig. 8. Total flow rate vs. pressure gradient for a tri-modal distribution with

lþ
2 ¼ 2lþ

1 ; l
þ
3 ¼ 3lþ

1 and rþ
2 ¼ 3rþ

1 =2; r
þ
3 ¼ 2rþ

1 for a Bingham fluid.



Volterra integral equation (Eq. (3)). The determination of p rð Þ from
this integral equation leads to the new dimensional PSDE:

p rð Þ ¼ 2g rPð Þ2
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For the same reason justified above, we use the non-dimensional

rheological behavior law of the Casson fluid:

sþr0z
ÿ �1=2 ¼ 1þ 1
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where He is the same Hedström number as defined in the Bingham

model. Then the non-dimensional kernel and PSD are given respec-

tively by:

qþðrPþ ;rþÞ¼
He rPþðrþÞ4ÿ16
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and
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where all parameters are normalized as in Section 3.3. The adimen-

sional rheograms are presented in Fig. 10 for different He. When the

PSD is supposed to be the same Gaussian distribution as the one

used in Section 3.3, the calculated total flow rate is shown in

Fig. 11. In this figure we also compare the characteristic curves

for the Bingham and Casson fluids. Notice that the normalized total

flow rate for the Casson fluid exhibits a less steep evolution than for

the Bingham fluid. Now, when Eq. (19) is applied to the Casson

characteristic curve (Fig. 11), the initially injected Gaussian PSD is

retrieved as we can see in Fig. 12.

Finally for the same tri-modal distribution as used above, the

characteristic curve in Fig. 13 is obtained and once again the appli-

cation of the new PSDE (Eq. (19)) gives the initial Gaussian tri-

modal density probability function as shown in Fig. 14.

This method is therefore effective and robust and can be applied

to all yield stress fluids (for example Herschel–Bulkley) and for all

kinds of distributions.

4. Discussion

We propose a new technique in order to determine the pore size

distribution based on the rheological properties of yield stress

fluids such as Bingham, Casson or any other fluids of the same type.

Like the previously quoted and described methods, this technique

uses the capillary bundle model which, despite its apparent sim-

plicity, is capable of characterizing the pore size distribution. In-

deed the tortuosity of the percolating pores will introduce only a

multiplying factor for the real flow rate but does not affect the type

of the PSD [1,2]. For isotropic porous media, the flow rate in one

particular direction is simply one third of the total flow rate and

the PSD is not affected either as explained by Saffman [37]. In

the case of pores whose radius varies along the flow path, the flow

rate of yield stress fluids is controlled by the smallest pore section.

Thus the measured distribution gives the PSD of the minimal pore

size of each percolating conduit. As to the dead arms and the finite

isolated clusters of pores, they do not take part in the flow and are

not taken into account in the distribution. Finally the main weak-

ness of this model is to neglect the interconnections between the

percolating pores. We can nevertheless estimate that the measured

PSD will be that of the pores presenting the minimum energy loss

along the streamtube (corresponding to the shortest flow path and/

or the largest radius). In conclusion, the model and the analysis

adopted here are relevant as a first step in order to check the valid-

ity of our approach but aware of its weaknesses, we hope that this

work can be extended to descriptions of more 3D realistic porous

media using more sophisticated techniques such as homogeniza-

tion [38]. The numerical and experimental validations of our model

have been done by our team and co-workers [39]. Notice that be-

cause of the high order derivatives in Eqs. (11) and (19), we used a

polynomial regression to filter the noise of the experimental data.

Fig. 9. Comparison between the initial and the calculated PSD for a tri-modal

distribution with lþ
2 ¼ 2lþ

1 ; l
þ
3 ¼ 3lþ

1 and rþ
2 ¼ 3rþ

1 =2; r
þ
3 ¼ 2rþ

1 for a Bingham

fluid.

Fig. 10. Casson fluid rheograms for different He.

Fig. 11. Total flow rate vs. pressure gradient for a Gaussian distribution (Casson and

Bingham fluids).



This regression gives enough data to calculate accurately the high

order derivatives.

5. Conclusion

This work presents a new method for determining the pore size

distribution of porous media. It is based on the capillary bundle

model like most of the alternative experimental techniques. The

method rests on the existence of a yield stress in non-Newtonian

pseudo-plastic fluids. This threshold gives the possibility of scan-

ning the pore distribution and leads to a Volterra integral equation

of the first kind whose kernel is analytically known. The mathe-

matical determination of the probability density function p rð Þ in

this equation is done using the partial derivatives of the total flow

rate of fluid through the porous medium as a function of the pres-

sure gradient. This technique is successfully tested for Bingham

and Casson fluids in the case of classical Gaussian and bi or tri-

modal distributions. Nevertheless any other distribution or any

other yield stress fluid could be used. It could become in the future

an alternative, non-toxic and cheap method for the characteriza-

tion of porous materials. An experimental validation of this ap-

proach is about to be published.
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