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SUMMARY

The numerical solution of the chemical master equation (CME) governing gene regulatory networks and
cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the
number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like
techniques, we present here a new technique based on the approximation of the unknown variable (the proba-
bility of having a particular chemical state) in terms of a finite sum of separable functions. In this framework,
the complexity of the CME grows only linearly with the number of state space dimensions. This technique
generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition
for ensuring convergence.

But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is
frequently the case when modeling gene regulatory networks, for instance). These unknown parameters
can be considered as new space dimensions. In this way, the proposed method provides solutions for any
value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When chemically reacting species are present at very low concentrations (in the number of tens

or hundreds of molecules, for instance) the resulting state can not be modeled accurately as

deterministic, and the inherent randomness of the system should be taken into account. This is the

case, for instance, when modeling gene regulatory networks. It is well known that small numbers of

molecules can alter these networks significantly [1, 2].

It is also well known that under some circumstances (a well stirred mixture, fixed volume

and fixed temperature), such a system can be considered Markovian, and that it is governed

by the so-called chemical master equation (CME) [3], which is a set of linear ordinary differen-

tial equations.

The complexity of the CME comes from the fact that it involves one state space dimension for

each species involved in the reactions. This means that very classic techniques such as finite ele-

ments involve a number of degrees of freedom (DOFs) growing exponentially with the number

of reacting species. This difficulty is present in many other branches of science and engineering

such as the Schroedinger equation, among others, and has been coined the curse of dimensionality.
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In practice, finite element-based techniques are limited by this reason to problems on the order of

20 state space dimensions [4], by using sparse grid techniques, for instance.

If we restrict ourselves to the field of cell signaling processes, or in general to the numerical

solution of the CME itself, the so-called stochastic simulation algorithm [5] is the most extended

algorithm to this end. Basically, the stochastic simulation algorithm is a Monte Carlo method,

based upon the realization of individual trajectories within the chemical system. The method can

become very computationally expensive when the system undergoes enormous numbers of individ-

ual reactions. Two different families of alternative methods exist. The first one can be categorized

as time-leaping methods, with the � -leaping method as the most extended one [6], whereas the

second one separates slow and fast partitions of the system. For a more detailed analysis see, for

instance [3].

It is well known, however, that for some simple systems, it is necessary to run on the order of 106

Monte Carlo simulations to achieve the needed precision [3]. On the contrary, models established

for complex systems such as the cross-talk pathways of IL-1/NF-�B and TGF-ˇ/Smad involve some

50 different reactions [2], giving a potential state space belonging to N
50 (N represents the set of

natural numbers). Considering an interval from 0 to 100 possible copies of each species, this would

give a potential state space comprising the order of 10100 different states. Noting that the presumed

number of elementary particles in the universe is on the order of 1080, we clearly take notice of the

formidable task of modeling such systems.

The approach followed herein is completely different. The essential variable of the problem, the

probability of having a particular state on the system, provided an initial state, is approximated as

a finite sum of separable functions. In this way, we avoid the burden associated with the curse of

dimensionality, and all the variables will be approximated by a sum of tensor products.

This kind of representation is not new; it was widely employed in the last decades in the frame-

work of quantum chemistry. In particular, the Hartree–Fock (that involves a single product of

functions) and post-Hartree–Fock approaches (as the multi-configurational self-consistent field that

involves a finite number of sums) made use of a separated representation of the wave function [7].

In the context of computational mechanics, a similar decomposition was proposed that was called

radial approximation and that was applied for separating the space and time coordinates in thermo-

mechanical models [8]. In fact, some prior works that employ Hartree-like approximations for the

solution of models established in the form of a CME already exist, see [9] and references therein,

for instance. These models assume a particular form of the functions employed along each spatial

direction (usually, Poisson-like distributions, [10]).

The approach here presented has been introduced in one of the former works of the authors,

[11,12] under the name of proper generalized decompositions and then applied in numerous contexts

as follows: (i) quantum chemistry [13]; (ii) Brownian dynamics [14]; (iii) kinetic theory description

of polymers solutions and melts [15]; and (iv) kinetic theory descriptions of rod suspensions [16];

among many others. See [17, 18] for two recent reviews on the topic.

The outline of the paper is as follows. In the next section, we describe the basics of the stochastic

modeling of chemical systems of very low number of molecules. In Section 3, we introduce the

essential ingredients of the method, whereas in Section 4, some examples of the performance of the

method are presented.

2. THE CHEMICAL MASTER EQUATION

When dealing with chemical system in which the different species are present at very low copy

numbers, it is necessary to work with the number of molecules present at each time instant, instead

of working, as usual, with the concentration of each species. Thus, consider a well mixed system, at

constant volume and temperature, described by the state vector

Z .t/D .#A, #B , #C , #D, : : :/T , (1)

with initial state Z .t0/ D ´0. Here, A, B , and so on, represent different chemical species. When

some reaction rj occurs, the system moves from ´0 to ´�, where the change in the number of



molecules is equal to its stoichiometry in the reaction rj :

rj W s
in
1,j x1C sin

2,j x2C � � � C sin
N ,j xN

kj

�! sout
1,j x1C sout

2,j x2C � � � C sout
N ,j xN , (2)

with kj as the rate constant of reaction rj . In turn, s
in,out
i ,j represent the stoichiometric coefficients of

the i th species, and xk represent the concentrations of each biochemical species.

This state transition depends on the probability that the changes owing to any reaction occur as

described by the propensity function. For any reaction j ,

aj .´/dt � the probability, given Z .t/D ´, that rj occurs in Œt , t C dt�

This state transition results in a change of molecules of each species:

vij D s
in
i ,j C s

out
i ,j ,

or, equivalently,

´� vj

aj .´�vj /
�! ´, (3)

and

´
aj .´/
 � ´C vj . (4)

Let us define the probability that each species exists in ´ number of molecules at any time t :

P.´, t j´0, t0/� ProbfZ .t/D ´, given Z .t0/D ´0g.

The CME describes the time evolution of the probability, taking into account each propensity aj :

@P.´, t j´0, t0/

@t
D

X

j

�

aj .´� vj /P.´� vj , t j´0, t0/� aj .´/P.´, t j´0, t0/
�

. (5)

In compact notation, we will write the CME hereafter as

@P.´, t /

@t
DAP.´, t /, (6)

where operator A contains the propensities of each reaction:

AD
X

j

Aj (7)

Note that the choice of the probability, instead of chemical concentrations as essential variable of

the problem, eliminates the need of determining the rate constants of each reaction and translates

the problem to finding the value of the propensities.

3. A METHOD BASED ON PROPER GENERALIZED DECOMPOSITIONS

The proposed method is constructed by assuming that the essential variable of the problem, the

probability of having a particular chemical state, is given by a finite sum of separable functions

(separated representation), that is,

P.´, t /D

nFX

j D1

˛j F
j
1 .´1/˝F

j
2 .´2/˝ : : :˝F

j
N .´N /˝Ft .t/, (8)

where, as mentioned before, the variables ´i represent the number of molecules of species i present

at a given time instant. This particular choice of the form of the basis functions allows for an



important reduction in the number of DOFs of the problem, nN�N�nF instead of .nN /N , where N

is the number of dimensions of the state space and nN the number of DOFs of each one-dimensional

grid established for each spatial dimension. For this to be useful, one has to assume that the probabil-

ity is negligible outside some interval, and therefore, substitute the infinite domain by a subdomain

Œ0, : : : , m � 1�N , m being the chosen limit number of molecules for any species in the simulation.

A similar assumption is behind other methods in the literature, such as the finite state projection

algorithm, for instance [3].

Another important point to be highlighted is the presence of a function depending solely on time,

Ft .t/. This means that the algorithm is not incremental. Instead, it solves for the whole time history

of the chemical species at each iteration of the method.

The CME is then written in a similar form, as expressed in Equation (7), by expanding the operator

A in the form

AD

nAX

j D1

A
j
1 ˝A

j
2 ˝ � � � ˝A

j
N ˝ I, (9)

where Ai represents the matrix form of each operator Ai involved in the CME and I represents

the identity matrix, acting on the terms depending on time only. Their particular form will be

seen readily.

An essential ingredient of the method is how to determine the coefficients ˛j and also the par-
ticular form of the functions F

j
i .´i /. This is carried out in a two-step algorithm consisting of a

projection procedure to determine the coefficients ˛i and an enrichment procedure to build the

functions F
j
i .´i /.

3.1. Projection algorithm

Assume that we know a set of suitable functions F
j
i .´i /. To determine the coefficient ˛j , we put

the CME into a weighted form:

P � @P

@t
D P �

AP (10)

where the test function P � is of the form

P �.´, t /D

nFX

j D1

˛�j F
j
1 .´1/˝F

j
2 .´2/˝ : : :˝F

j
N .´N /˝Ft .t/. (11)

If we represent F
j
i by its nodal values collected in vectors F

j
i , the weighted form of the CME

will have the following matrix expression:

nFX

iD1

nFX

j D1

˛�i Gij ˛j D

nFX

iD1

nFX

j D1

˛�iHij ˛j , (12)

where

Gij D
�

.F i
1/T

F
j
1

�

�
�

.F i
2/T

F
j
2

�

� : : : �
�

.F i
N /T

F
j
N

�

� .F i
t /

T � .F
0j
t / (13)

with F
0j
t , the backward finite difference time derivative of the function F

j
t and

Hij D

nAX

kD1

�

.F i
1/T

A
k
1F

j
1

�

�
�

.F i
2/T

A
k
2F

j
2

�

� : : : �
�

.F i
N /T

A
k
N F

j
N

�

� .F i
t /

T � .F
j
t /. (14)

Since Equation (12) must be verified independently of the value of the coefficients ˛�i , we arrive

at an nF � nF system of algebraic equations to be solved for the ˛j . A normality condition of

the probability function is enforced during the solution. To preserve the verification of the initial

condition, we assume that ˛1 D 1, and the first component of F
j
t (j > 2) is vanishing.



3.2. Enrichment algorithm

If, once solved through the system given by Equation (12), the accuracy of the result is adjudged not

enough, a method for the enrichment of the basis should be employed. In this case, new functions

will be added to the basis:

P.´, t /D

nFX

j D1

˛�j
F

j
1 ˝F

j
2 ˝ : : :˝F

j
N ˝F t

„ ƒ‚ …

PF

CR1˝R2˝ : : :˝RN C1
„ ƒ‚ …

PR

. (15)

To determine the functions Ri , we employed a fixed-point alternating directions algorithm, looking

for one Rj at each iteration. Other methods such as Newton–Raphson algorithm could equally be

employed. In our case, the weighting functions are of the following form:

P � DR1˝R2˝ : : :˝Rj �1˝R
�
j ˝Rj C1˝ : : :˝RN C1, (16)

when we look for the function Rj . In this case, the different terms of the discrete representation are

then given by

P �
APR D

nAX

kD1

0

@

�

.R�
j /T

A
k
j Rj

� N
Y

hD1,h¤j

�

.Rh/T
A

k
hRh

�

1

A � .RT
N C1RN C1/

D .R�
j /T

Kj Rj (17)

and

P �
APF D

nAX

kD1

0

@

�

.R�
j /T

A
k
j F j

� N
Y

hD1,h¤j

�

.Rh/T
A

k
hF h

�

1

A � .RT
N C1F t /

D .R�
j /T

V j (18)

with their equivalents for the right-hand side

P � @PR

@t
D

0

@
�

.R�
j /T

Rj

�
N
Y

hD1,h¤j

�

.Rh/T
Rh

�

1

A � .RT
N C1R

0
N C1/

D .R�
j /T

Mj Rj (19)

with R
0
N C1, the backward finite difference time derivative of the function RN C1 and

P � @PF

@t
D

0

@
�

.R�
j /T

F j

�
N
Y

hD1,h¤j

�

.Rh/T
F h

�

1

A � .RT
N C1F

0
t /D .R�

j /T
W j (20)

with F
0
t , the backward finite difference time derivative of the function F t . This gives rise to a

system of equations of the form

.Mj �Kj /Rj D V j �W j . (21)

For the initial conditions to be verified at subsequent time instants, we take ˛1 D 1, with the first

value of the new functions F
j
t (for j > 2) vanishing.



Remark 1

The sequence projection-enrichment is iterated until convergence is reached. Two stopping criteria

are considered in our works. The simplest one consists of computing the norm of PR. Despite its

simplicity, the convergence is not guaranteed. The other possibility consists of computing the norm

of the equation residual. This stopping criterion ensures the convergence, but it is more expensive

from the computational viewpoint.

Remark 2

When convergence is reached, functions Rj are normalized and named F
nF C1
j .

Remark 3

We also can use the separated representation introduced before in the framework of an incremental

strategy. This enforces us to solve a problem in dimension N at several time instants. Assuming Pt

is known in the solution at time t , the solution at the next time instant can be obtained after solving

the following problem, written as a tensorial product of operators:

0

@I1˝ : : :˝ IN ��t �

nAX

j D1

A
j
1 ˝ : : :˝A

j
N

1

A P tC�t D P t (22)

In this last equation, the right-hand-side term is known, and one only needs to find P tC�t . This

discretization corresponds to an implicit time integration scheme.

4. NUMERICAL EXAMPLES

4.1. Simulation of a toggle switch

The behavior of the �-phage virus is one the most studied and well-known examples in gene

regulatory networks. When a bacteriophage � infects a cell, it either stays dormant, or it repro-

duces until the cell dies. The resulting behavior depends crucially on two competing proteins that

mutually inhibit each other, see a schematic representation in Figure 1. The so-called toggle switch

is composed of a two-gene co-repressive network.

The operator form of the CME for this example is composed of two terms [19]: A D A1 CA2,

given by

A1P.´1, ´2/D
˛ˇ

ˇC ´2

P.´1 � 1, ´2/C ı.´1C 1/ �P.´1C 1, ´2/

�

�
˛ˇ

ˇC ´2

C ı � ´1

�

P.´1, ´2/. (23)

and A2 equivalent to ´1 and ´2 interchanged. We computed the solution for ı D 0.05, ˛ D 1.0,

 D 1.0 and ˇ D 0.4.

The simulation started from a non-physiological state in which both proteins showed a very high

probability, around ´1 D ´2 D 15. Despite this initial state, after t D 100 s (Figure 2), one has a case

where both average values of both proteins and small levels of the one protein combined with higher

level of the other protein are quite likely, and this remains the case for the stationary distribution as

well [19], Figure 3.

4.2. A cascade of 20 genes

In order to show the potential of the method, we have solved a completely academic example,

composed of a cascade of 20 terms. A cascading process occurs when (usually) adjacent genes



Figure 1. Schematic mechanism of the toggle switch [1]. The constitutive PL promoter drives the expression
of the lacI gene, which produces the lac repressor tetramer. The lac repressor tetramer binds the lac oper-
ator sites adjacent to the P trc�2 promoter, thereby blocking transcription of cI . The constitutive P trc�2
promoter drives the expression of the cI gene, which produces the �-repressor dimer. The �-repressor dimer
cooperatively binds to the operator sites native to the PL promoter, which prevents transcription of lacI .
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produce protein, which enhances the expression of the succeeding gene. One typical example

can be found in the lytic phase of the �-phage system [19], but is composed of substantially

fewer terms.

This example is intended to show the potential of the proposed method, because methods

based upon sparse grids, for instance, rarely can cope with more than 10 proteins [19]. Although

completely academic, we believe that this example clearly demonstrates how a realistic number of

different reactions can be handled without any particular difficulty (Figure 4).



Figure 4. Schematic representation of a cascade.

Figure 5. The simulation of a cascade composed of 20 terms shows the typical delay that has been observed
for simpler examples.

The operator for this example is composed of 20 terms: A D A1 C : : :CA20. Operator A1 has

the same form as that of the previous example, whereas the succeeding operators are

Ai P.´/D
ˇ´i�1

ˇ´i�1C 
P.´� ei /C ı.´i C 1/P.´C ei /

�

�
ˇ´i�1

ˇ´i�1C 
C ı´i

�

P.´/, 8i > 1, (24)

where ei is the i th standard basis of R
n.

In the cascade, the expectations of the marginal distributions have a clear in-built delay. As an

example, consider the case of three species with production of the first species ˛0 D 0.7, decay for

all the species ı D 0.07 and the production of succeeding species equal to ´i�1=.5.0C ´i�1/ for

i D 2, : : : , 20, respectively, see [19]. The results are depicted in Figure 5.

It can be noticed that the size of the bounded domain does not very much influence the resulting

size of the model owing to the special separated representation of the variables. Note how, since only

one-dimensional domains are ‘meshed’ for each species, a large domain can be considered without

any special difficulty.

To compare the proposed method with Hartree-like methods, we conducted the same simulations,

but employing only one summand in Equation (8), that is, nF D 1. This is essentially the main

difference of the proposed method with Hartree approaches. It must be noted, in addition, that no

particular form of the separated function is assumed.

To see the implication of the use of one summand only, a convergence plot is shown in Figure 6

for the two cases described earlier.
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The final result could also be importantly affected. For comparison, we show the final state of the

toggle-switch system using only one function and the converged one, as provided by the method,

see Figure 7. As can be noticed, the result can be quite different, and this is particularly noteworthy

for the toggle-switch system.

4.3. Simulations in the presence of uncertainty

The most important problem when modeling gene regulatory networks, however, comes from the

fact that many reaction’s parameters are unknown or very difficult to determine in an easy way [2].

The easy way in which the method copes with many state space dimensions allows it to handle

unknown parameters in a natural way, by considering them as new state space dimensions, thus,

opening the way to designing in silico experiments in which one could eventually observe the effect

of different values of the unknown parameters on the final chemical state of the system.

The transient solution for a particular value of the propensity can then be computed by restricting

the general solution to each particular value of this extra coordinate. Obviously, the price to be paid

is the increase of the model dimensionality. However, this is not a serious issue when one proceeds

within the separated representation framework just described.

To illustrate this feature, we have simulated a cascade of two terms. The operator related to a

cascade was introduced in the previous section. To check the proposed technique, and for the ease

of illustration, we have considered a cascade of only 2 terms, with the parameter ı as an unknown.

Note that the solution (obtained in one execution of the program), see Figure 8, provides the solution

for different values of ı, that reproduces the ones in the literature [19].

In order to obtain the solution for a given value of the unknown parameter, one has to cut the

hypercube of the solution by a hyperplane located at a particular value of the variable.

5. CONCLUSIONS

We have presented a technique for the numerical solution of the CME based on the approximation

of the essential variable through a finite sum of separable functions. In this way, we can avoid the

burden associated with the curse of dimensionality, that is, the exponentially growing number of

DOFs with the number of state space dimensions.

This strategy allows for a simple method in which time is considered as another variable, such

that all the time history of the system is solved for at each iteration, very much like space–time finite

element techniques. Indeed, unknown parameters of the problem, such as reaction propensities, can

be considered as new state space dimensions. This produces results for any value of the unknown

variable. By cutting the hypercube of the solution field through any hyperplane, we readily obtain

the behavior of the system for particular values of the unknowns.

This technique avoids the problems related to Monte Carlo-like techniques, such as the burden

associated with high number of dimensions, the need for a large number of realizations of the system

if high accuracy is needed or the lack of appropriate error bounds in the results.

Of course, it remains to be determined if the method can help clarify some very complex systems

such as the cross-talk between interleukin-1-induced nuclear factor-�B and TGF-ˇ-induced Smad

pathways, for instance. This system has been modeled by using some 50 different reactions [2], with

approximately one half of them not appropriately understood nor characterized. But, undoubtedly,

the presented technique can help to understand the effect of some values of the unknown variables

in the final state of the system.

Figure 8. Solution for the cascade problem with unknown propensities. Probability distribution function
(top row) and marginal probability distribution function of each species (bottom row) at time t D 0, t D 30 s,
and t D 600 s (approx. steady state). The left column presents the results for a value ı D 0.015, whereas
the central one is for ı D 0.03 and the left one for ı D 0.05. Note that all the results are obtained in one
execution of the program. The four-dimensional hypercube containing the solution space, whose dimensions
are the concentrations of the two proteins, the value of ı and time, is then cut by the hyperplanes defined by

the different values of ı and time to give these plots.



APPENDIX A: DISCRETE FORMS

In order to make a discrete form of the equations of the cascade model, we need to define some matri-

ces. These matrices are related to each species ‘i’, and their associated size is equal to .mi �mi /,

the number of operators in the model. The identity matrices will be denoted

Ii D

0

B
B
B
B
@

1 0 � � � 0

0 1
. . .

...
...

. . .
. . . 0

0 � � � 0 1

1

C
C
C
C
A

(25)

Two other matrices are also required to define the shift allowing to get the neighboring probability

I
C
i D

0

B
B
B
B
B
B
@

0 1 0 � � � 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

1

0 � � � 0 0

1

C
C
C
C
C
C
A

(26)

I
�
i D

0

B
B
B
B
B
B
B
@

0 0 � � � 0

1 0
. . .

...

0 1
. . .

...
. . .

. . . 0

0 � � � 0 1 0

1

C
C
C
C
C
C
C
A

(27)

According to these definitions, one can write each operator Ai in terms of tensorial product

of operators applied on each dimension that consists of f0, : : : , mi�1g components. The first

operator writes

A1 D

0

B
B
B
B
@

˛ � I�
1 C ı �

0

B
B
B
B
@

1 0 � � � 0

0 2
. . .

...
...

. . .
. . . 0

0 � � � 0 m1

1

C
C
C
C
A

� IC
1

� ˛ � I1 � ı �

0

B
B
B
B
@

0 0 � � � 0

0 1
. . .

...
...

. . .
. . . 0

0 � � � 0 m1 � 1

1

C
C
C
C
A

1

C
C
C
C
A

˝ I2˝ ...˝ IN (28)

that defines a single tensor product. For i > 1 the operator Ai consists of four-tensor products:

Ai D I1˝ : : :˝ Ii�2˝

0

B
B
B
B
@

a.0/ 0 � � � 0

0 a.1/
. . .

...
...

. . .
. . . 0

0 � � � 0 a.mi�1 � 1/

1

C
C
C
C
A

˝ I
�
i ˝ IiC1˝ : : :˝ IN



C ı � I1˝ : : :˝ Ii�1˝

0

B
B
B
B
@

1 0 � � � 0

0 2
. . .

...
...

. . .
. . . 0

0 � � � 0 mi

1

C
C
C
C
A

� IC
i ˝ IiC1˝ : : :˝ IN�

� I1˝ : : :˝ Ii�2˝

0

B
B
B
B
@

a.0/ 0 � � � 0

0 a.1/
. . .

...
...

. . .
. . . 0

0 � � � 0 a.mi�1 � 1/

1

C
C
C
C
A

˝ Ii ˝ IiC1˝ : : :˝ IN�

� ı � I1˝ : : :˝ Ii�1˝

0

B
B
B
B
@

0 0 � � � 0

0 1
. . .

...
...

. . .
. . . 0

0 � � � 0 mi � 1

1

C
C
C
C
A

� Ii ˝ IiC1˝ : : :˝ IN (29)

where

a.y/D
ˇy

ˇy C 
. (30)
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