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Abstract
The dynamics of phase transition in a binary mixture occurring during a quench
is studied taking into account composition fluctuations by solving Langer’s
equation in a domain composed of a certain number of micro-domains. The
resulting Langer’s equation governing the evolution of the distribution function
becomes multidimensional. Circumventing the curse of dimensionality the
proper generalized decomposition is applied. The influence of the interaction
parameter in the vicinity of the critical point is analyzed. First we address the
case of a system composed of a single micro-domain in which phase transition
occurs by a simple symmetry change. Next, we consider a system composed
of two micro-domains in which phase transition occurs by phase separation,
with special emphasis on the effect of the Landau free energy non-local term.
Finally, some systems consisting of many micro-domains are considered.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the last few decades considerable attention has been paid to second-order transition by
spinodal decomposition or nucleation and growth occurring in a binary mixture quench [1];
and especially to the dynamics of order parameter fluctuations that increase when approaching
the critical point. The theoretical basis of these studies is the mean field theory proposed
first by Landau to study first and second order phase transitions occurring by symmetry
change in magnetic materials [2]. The theory describes the medium in terms of a continuous



order parameter η which measures the symmetry degree, the limiting cases are a completely
symmetric phase for which η = 0 and a completely non-symmetric one for which η = 1.

Landau proposed an expression for the free energy

f (T , η) = f0 − 1
2γ η2 + 1

4η4, (1)

where γ denotes the transition parameter that depends on the temperature T , and f0 measures
the free energy in the one phase region for η = 0.

For binary mixtures, the order parameter is a conservative quantity when considering phase
transitions and it measures the difference in volume fraction between the two components
η = φA −φB , the limiting cases are η = −1 for space region containing only B molecules and
η = +1 for space region containing only A molecules. In the phase diagram the coexistence
curve separates the one phase region which occupies the domain of high temperature in which
no separation occurs and where the medium is symmetric from the two phases region in which
segregation occurs and where the medium is non-symmetric. The two phases region contains
the metastable region and the unstable region which have different separation kinetics and
which are separated by the spinodal curve.

For binary mixtures, we can derive the bulk free energy f (η) from the regular solution
model which gives the mixing enthalpy and the mixing entropy terms. We define the interaction
parameter or Flory parameter χ , which controls the phase separation. The entropic effects are
predominant in the one phase region χ � χcr whereas enthalpic effects are dominant in the
two phases region χ � χcr so that segregation occurs. The bulk free energy reads

f (η) = kBT

v

[(
1 − η

2

)
ln

(
1 − η

2

)
+

(
1 + η

2

)
ln

(
1 + η

2

)
+ χ

(
1 − η

2

) (
1 + η

2

)]
, (2)

where kB is the Bolztmann constant, and v an elementary volume in which the order parameter
is uniform.

A more general expression of the free energy can be given using the general formula of
the free energy expansion as sum of powers of the order parameter [3].

For a non-uniform system, the total free energy F is obtained as the integral over the
volume of f and an additive non-local term to take into account non-local interactions between
molecules in a way to obtain the Landau–Lifshitz functional:

F [η] =
∫

V

(f (η) + K(∇η)2) dV (3)

with K > 0 to ensure stability.
The first attempt to understand phase separation kinetics using Landau theory was proposed

by Cahn and Hilliard who suggested a diffusion equation for blends in which the drift governing
the separation is expressed in terms of the gradient of the chemical potential, obtained by a
functional derivative of the Landau free energy [4–7].

∂η

∂t
= ∇

[
M∇

(
∂f (η)

∂η
− 2K∇2η

)]
, (4)

where M denotes the mobility coefficient. The linear Cahn–Hilliard theory describe rigorously
the initial stages of spinodal decomposition by giving an expression of the amplification factor
and the effective diffusivity coefficient as functions of the wave number of the fluctuation
which reproduces accurately experimental measurements. It fails however in reproducing the
behavior at very early instants especially in the vicinity of the critical point where the deviation
from experimental data becomes important. The weakness that exhibits this equation is that it
does not take into account thermal fluctuations, the factor which initiates separation, and which
increases when approaching the critical point even for later stages of separation. This follows



from the mean field approximation on which the Cahn–Hilliard model is based. In fact, the
order parameter corresponds by definition to the minimum of the free energy assuming that
it is unique. This assumption does not hold in the immediate critical point vicinity where the
slope of free energy curves decreases and the minimum is no more unique. Thus one cannot
neglect order parameter fluctuations, and mean field theory is no longer valid.

A corrective term was added by Cook on the right-hand side of the Cahn–Hilliard
equation, the so-called Cahn–Hilliard–Cook equation, of stochastic nature whose stochastic
noise amplitude scales with kBT and M and satisfies the fluctuation dissipation theorem. This
equation has shown more reliable results [8].

However, a full description of composition fluctuations based on a statistical description
was achieved by Langer [9]. He adopted a discrete description of the medium as a lattice divided
into micro-domains which are communicating. Thermal fluctuations and perpetual Brownian
motion state that each one exchanges molecules continuously with the other. A correct
description of the composition evolution should take into account such random fluctuations
within a statistical mechanics framework.

Thus the order parameter being stochastic, it cannot be associated with a deterministic
variable. An appealing way to describe it lies on the introduction of a probability distribution
function. Langer assigned to each micro-domain i a coordinate ηi which fluctuates in a
way to obtain a multivariate distribution function ρ({t, η}) = ρ(t, η1, . . . ηd) to describe the
whole medium. He derived from the chemical master equation a Fokker–Planck type equation
governing the evolution of ρ(t, {η}). The interest of this equation is that it is established
on the basis of a statistical model of the mechanism by which composition fluctuations are
produced by interactions with a thermal reservoir inducing transition from configuration {η}
to configuration {η}′. The Cahn–Hilliard equation is simply the first moment of Langer’s
equation whereas the Cahn–Hilliard–Cook equation derives from its second moment.

In this paper, we first introduce Langer’s equation pointing out its main drawback, its high
dimensionality. To circumvent the curse of dimensionality we introduce the proper generalized
decomposition (PGD) that is then used for discretizing the high-dimensional Langer’s equation.
Different scenarios are then treated considering a one-dimensional physical space consisting
of a different number of micro-domains.

1.1. Langer’s equation

We consider a non-uniform incompressible binary mixture of small molecules A and B. Let
φA and φB denote the volume fraction of each species. We define the variable η to be

η = φA − φB. (5)

We adopt a discrete description of the alloy, we divide the physical domain in d micro-
regions, ηi denotes the value of the variable η in the ith micro-domain, and we define
{η} = {η1, η2, . . . ηd}. Thermal fluctuations induce a continuous exchange of molecules,
so that the variable {η} does not take a unique value at equilibrium, but it is rather described in
a statistical way by introducing a probability density function ρ(t, {η}). The time evolution of
this quantity is governed by Langer’s equation which contains a drift induced by the gradient
of the chemical potential and a Brownian term accounting for fluctuations. We limit exchanges
to immediate neighbor micro-domains. The dimensionless form of Langer’s equation reads

∂ρ

∂t
=

d∑
i=1

∂

∂ηi

⎡
⎣

⎛
⎝mi

∂F

∂ηi

−
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∂F

∂ηj

⎞
⎠ · ρ +

1

2
σ 2

⎛
⎝mi

∂ρ

∂ηi

−
∑

j∈C(i)

∂ρ

∂ηj

⎞
⎠

⎤
⎦ , (6)



where mi represents the number of micro-domains directly connected to the ith micro-domain.
For example in the one-dimensional case mi = 2 for i = 2, . . . , d − 1 and mi = 1 for i = 1
and i = d. On the other hand, C(i) is the set of index related to such neighbor micro-domains.
Thus, for an internal micro-domain i this set results C(i) = {i − 1, i + 1}.

According to the discrete description, the free energy integral taking into account that ηi

is assumed constant in the ith micro-domain, f (ηi) will be also constant. The non-local term
is written using a finite difference formula. Thus, in the one-dimensional case the free energy
integral reads

F({η}) = V
(

d∑
i=1

f (ηi) +
d−1∑
i=1

K

(
ηi+1 − ηi

h

)2
)

, (7)

where V represents the micro-domains volume assumed all of them of equal volume.
The form given to the advective and diffusive fluxes assures the conservation balance.
If we define the Langer’s equation residual R(ρ(t, {η})) from
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Langer’s weak form results:∫
I×	

ρ∗ · R(ρ(t, {η})) = 0, (9)

R(ρ(t, {η})) = ∂ρ
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(10)

Despite its fine description of fluctuation dynamics, Langer’s equation is still not yet solved
and this is due to the high dimensionality it involves. In fact, each coordinate ηi takes values
into the interval [−1, 1]. Thus, the probability distribution function ρ(t, {η}) is defined I ×	,
I being the time interval considered. When the number of dimensions d increases a mesh of
the whole domain 	 is unaffordable and then, standard discretization techniques inapplicable.
We discuss the curse of dimensionality illness in the next section.

1.2. Curse of dimensionality of Langer’s equation

Problems defined in high-dimensional spaces abound. The direct solution of these problems
in scientific computing has long been thought intractable in view of the so-called curse of
dimensionality. Consider for example Langer’s equation related to a system containing
d micro-domains. This equation defines a transient problem to be solved in a space of
dimension d. A typical grid-based discretization with M nodes for each coordinate would yield
a total number of discrete unknowns of order Md . A rather coarse discretization (M = 103)
of a systems containing d = 30 micro-domains would thus involve 1090 unknowns and this is
a gigantic number indeed.

In two recent papers [10, 11], we have proposed a technique able to circumvent,
or at least alleviate, the curse of dimensionality. This method is based on the use of
separated representations. It basically consists in constructing by successive enrichment
an approximation of the solution in the form of a finite sum of N functional products
involving d functions of each coordinate. In contrast to the shape functions of finite elements



approximations, these individual functions are unknown a priori. They are obtained by
introducing the approximate separated representation into the weak formulation of the original
problem and solving the resulting non-linear equations. If M nodes are used to discretize each
coordinate, the total number of unknowns amounts to N × M × d instead of the Md degrees
of freedom of classical mesh-based discretization techniques. Thus, the complexity of the
method grows linearly with the dimension d of the space wherein the problem is defined, in
large contrast with the exponential growth of classical mesh-based techniques.

In [10], for example, this new technique has allowed us to compute solutions of the
Fokker–Planck equation in configuration spaces of dimension 20 using the multi-bead-FENE
spring model of dilute polymer solutions.

The method was later coined PGD, as in many cases the number N of terms in the separated
representation needed to obtain an accurate solution is found to be close to that of the optimal
decomposition obtained by applying a posteriori the proper orthogonal decomposition to the
problem solution.

2. The PGD at a glance

Consider a problem defined in a space of dimension d for the unknown field u(x1, . . . , xd).
Here, the coordinates xi denote any usual coordinate (scalar or vectorial) related to physical
space, time, or conformation space, for example, but they could also include problem
parameters such as boundary conditions or material parameters. We seek a solution for
(x1, . . . , xd) ∈ 	1 × . . . × 	d .

The PGD yields an approximate solution in the separated form

u(x1, . . . , xd) ≈
N∑

i=1

F 1
i (x1) × · · · × Fd

i (xd). (11)

The PGD approximation is thus a sum of N functional products involving each a number
d of functions F

j

i (xj ) that are unknown a priori. It is constructed by successive enrichment,
whereby each functional product is determined in sequence. At a particular enrichment step
n+1, the functions F

j

i (xj ) are known for i � n from the previous steps, and one must compute
the new product involving the d unknown functions F

j

n+1(xj ). This is achieved by invoking
the weak form of the problem under consideration. The resulting discrete system is non-linear,
which implies that iterations are needed at each enrichment step. A low-dimensional problem
can thus be defined in 	j for each of the d functions F

j

n+1(xj ).
If M nodes are used to discretize each coordinate, the total number of PGD unknowns

is N × M × d instead of the Md degrees of freedom involved in standard mesh-based
discretizations. Moreover, all numerical experiments carried out to date with the PGD show
that the number of terms N required to obtain an accurate solution is not a function of the
problem dimension d, but it rather depends on the regularity of the exact solution. The PGD
thus avoids the exponential complexity with respect to the problem dimension.

In many applications studied to date, N is found to be as small as a few tens, and in all
cases the approximation converges towards the solution associated with the complete tensor
product of the approximation bases considered in each 	j . Thus, we can be confident about
the generality of the separated representation (11), but its optimality depends on the solution
regularity. When an exact solution of a particular problem can be represented with enough
accuracy by a reduced number of functional products, the PGD approximation is optimal. If
the solution is a non-separable function for the particular coordinate system used, the PGD
solver proceeds to enrich the approximation until all the elements of the functional space are



included, i.e. the Md functions involved in the full tensor product of the approximation bases
in each 	j .

Let us now consider in more detail the specific example related to Langer’s equation.

3. PGD of Langer’s equation

In what follows we consider Langer’s equation, previously introduced. For the sake of clarity
we consider the one-dimensional physical domain containing d micro-domains and we set
	 = ⋃i=d

i=1 	i

Langer’s equation reads

∂ρ

∂t
= ∂

∂η1
(a1 · ρ) +

∂

∂η2
(a2 · ρ) + · · · +

∂

∂ηd

(ad · ρ)

+
σ 2

2
·
(

∂2ρ

∂η1
− 2

∂2ρ

∂η1η2
+ 2

∂2ρ

∂η2
− 2

∂2ρ

∂η2η3
+ · · · +

∂2ρ

∂ηd

− 2
∂2ρ

∂ηd−1ηd

)
(12)

with

ai =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂F

∂η1
− ∂F

∂η2
if i = 1,

2
∂F

∂ηi

− ∂F

∂ηi−1
− ∂F

∂ηi+1
if 1 < i < d,

∂F

∂ηd

− ∂F

∂ηd−1
if i = d.

(13)

Because of the high-dimensionality of Langer’s equation, mesh-based discretization
techniques fail in solving it. The PGD strategy introduced in the previous sections allows
for circumventing the curse of dimensionality. Thus, the solution is searched in the separated
form

ρ(t, η1, . . . , ηd) ≈
i=N∑
i=1

F 0
i (t) ·

j=d∏
j=1

F
j

i (ηj ). (14)

The constructor of such separated representation proceeds by successive enrichment
steps until reaching the desired accuracy. Thus, if we assume at iteration n the separated
representation of the solution given by

ρn(t, η1, . . . , ηd) =
i=n∑
i=1

F 0
i (t) ·

j=d∏
j=1

F
j

i (ηj ) (15)

the solution at the next enrichment step ρn+1(t, η1, . . . , ηd) writes

ρn+1(t, η1, . . . , ηd) = ρn(t, η1, . . . , ηd) + F 0
n+1(t) ·

j=d∏
j=1

F
j

n+1(ηj ) (16)

requires the calculation of the d + 1 unknown functions: the time function F 0
n+1(t) and the d

functions F
j

n+1(ηj ), j = 1, . . . , d.
The resulting enrichment problem is non-linear and a linearization strategy is compulsory

to solve it. The simplest procedure consists in using alternating directions fixed point algorithm
that assuming known d of the d + 1 functions involved in (16), compute the unknown one.
The iteration procedure starts by considering arbitrary functions F

j

n+1, j = 0, . . . , d that are



denoted by F
j,0
n+1, j = 0, . . . , d and then iterate until reaching convergence according to

• While ‖ ∑j=d

j=0(F
j,r

n+1 − F
j,r−1
n+1 )2‖ > ε, with ε a small enough parameter:

∗ Compute F
0,r+1
n+1 from [F 1,r

n+1, · · · , F d,r
n+1] assumed known.

∗ ∀j ∈ [1, · · · , d − 1] compute F
j,r+1
n+1 from:

[F 0,r+1
n+1 , · · · , F j−1,r+1

n+1 , F
j+1,r

n+1 , · · · , F d,r
n+1] assumed known.

∗ Compute F
d,r+1
n+1 from [F 0,r+1

n+1 , · · · , F d−1,r+1
n+1 ] just computed.

∗ r ← r + 1

Thus, at each iteration of the non-linear solver we should solve d + 1 one-dimensional
linear problems.

3.1. Illustrating the separated representation construction

In order to illustrate in more detail the solution of each one of the problems concerned by the
procedure just described, we are considering, without loss of generality, a system involving
two micro-domains. In this case Langer’s equation involves the time and the two configuration
coordinates η1 ∈ 	1 and η2 ∈ 	2. Despite the fact that in this case the solution of the resulting
two-dimensional transient problem can be obtained by invoking any discretization technique
(finite elements, finite differences, finite volumes, etc) we consider the PGD solution because
it is the only one able to address systems containing several micro-domains.

Thus, in a system containing two micro-domains Langer’s equation reduces to

∂ρ

∂t
= ∂

∂η1
(a1 · ρ) +

∂

∂η2
(a2 · ρ) +

σ 2

2
·
(

∂2ρ

∂η1
− 2

∂2ρ

∂η1η2
+

∂2ρ

∂η2

)
(17)

with (t, η1, η2) ∈ I × 	1 × 	2 (I ⊂ R, 	1 ⊂ R and 	2 ⊂ R).
Now, assuming the first n sums of the separated representation already computed, that is

ρn(t, η1, η2) =
i=n∑
i=1

F 0
i (t) · F 1

i (η1) · F 2
i (η2) (18)

the solution at the next enrichment step ρn+1(t, η1, . . . , ηd) reads

ρn+1(t, η1, η2) = ρn(t, η1, η2) + F 0
n+1(t) · F 1

n+1(η1) · F 2
n+1(η2). (19)

For alleviating the notation we introduce the following notation: T (t) ≡ F 0
n+1(t),

R(η1) ≡ F 1
n+1(η1) and S(η2) ≡ F 2

n+1(η2).
If we define Langer’s equation residual from

R(ρ(t, η1, η2)) = ∂ρ

∂t
− ∂

∂η1
(a1 · ρ) − ∂

∂η2
(a2 · ρ) − σ 2

2
·
(

∂2ρ

∂η1
− 2

∂2ρ

∂η1η2
+

∂2ρ

∂η2

)
(20)

Langer’s equation results in

R(ρ(t, η1, η2)) = 0 (21)

Because Langer’s equation linearity it follows at the enrichment step at iteration n + 1:

R(ρn+1) = R(ρn) + R(T · R · S) = 0 (22)

that can be rewritten as

R(T · R · S) = −R(ρn) (23)



with

R(T · R · S) = dT

dt
· R · S −

(
∂a1

∂η1
+

∂a2

∂η2

)
· (T · R · S) − a1 · T (t) · dR

dη1
· S − a2 · T (t)

·R · dS

dη2
− σ 2

2
·
(

T · d2R

dη2
1

· S − 2T · dR

dη1
· dS

dη2
+ T · R · d2S

dη2
2

)
. (24)

The weak form of equation (23) reads∫
I×	1×	2

ρ∗ · R(T · R · S) dt · dη1 · dη2 = −
∫

I×	1×	2

ρ∗ · R(ρn) dt · dη1 · dη2, (25)

where the dependence of T , R and S on t , η1 and η2, respectively, is omitted for the sake of
clarity.

As in our former works we consider the test function ρ∗ given by

ρ∗ = T ∗ · R · S + T · R∗ · S + T · R · S∗. (26)

In what follows we are illustrating the sequential construction of functions T (t), R(η1)

and S(η2):

• Calculation of T (t) assuming known R(η1) and S(η2).
In this case the test function reduces to

ρ∗ = T ∗ · R · S (27)

that introduced into the weak form gives:∫
I×	1×	2

T ∗ · R · S · R(T · R · S) dt · dη1 · dη2

= −
∫

I×	1×	2

T ∗ · R · S · R(ρn) dt · dη1 · dη2 (28)

As all the functions depending on η1 and η2 are assumed known at the present step, we
could integrate the weak form in the domains 	1 and 	2 to obtain a problem depending
on the time coordinate:∫

I
T ∗ ·

(
α

dT

dt
+ βT

)
dt =

∫
I
T ∗ · f (t) dt, (29)

where coefficients α and β come from the integrations of the different functions involving
the η1 and η2 coordinates and f (t) comes from all the integrals involved in the right-hand
side of equation (28).
This weak form could be integrated using an appropriate discretization technique taking
into account its hyperbolic character (e.g. discontinuous Galerkin -DG-, streamline upwind
-SU-, etc). Another possibility taking into account that equation (29) works for any test
function T ∗ is to come back to the strong formulation

α
dT

dt
+ βT = f (t) (30)

and then integrating it using an appropriate technique accounting for its first order (e.g.
backward Euler, Runge–Kutta, etc)

• Calculation of R(η1) assuming known T (t) and S(η2).
Now, using the just computed T (t) and the former S(η2) we will compute function R(η1).
In the present case the test function reduces to

ρ∗ = T · R∗ · S (31)



that introduced into the weak form gives:∫
I×	1×	2

T · R∗ · S · R(T · R · S) dt · dη1 · dη2

= −
∫

I×	1×	2

T · R∗ · S · R(ρn) dt · dη1 · dη2 (32)

As all the functions depending on t and η2 are assumed known at the present step, we
could integrate the weak form in the domains I and 	2 to obtain a problem depending on
the η1 coordinate:∫

	1

R∗ ·
(

γ1
d2R

dη2
1

+ μ1
dR

dη1
+ ξ1R

)
dη1 =

∫
	1

R∗ · g(η1) dη1, (33)

where coefficients γ1, μ1 and ξ1 come from the integrations of the different functions
involving the t and η2 coordinates and g(η1) comes from all the integrals involved in the
right-hand side of equation (32).
This weak form could be integrated using an appropriate discretization technique. Another
possibility taking into account that equation (33) works for any test function R∗ is to come
back to the strong formulation

γ1
d2R

dη2
1

+ μ1
dR

dη1
+ ξ1R = g(η1) (34)

and then integrating it by applying any collocation technique accounting for its second
order derivatives (e.g. finite differences, pseudo-spectral collocation techniques, etc).

• Calculation of S(η2) assuming known T (t) and R(η1).
Finally from the just updated T (t) and R(η1) we will compute function S(η2). In the
present case the test function reduces to

ρ∗ = T · R · S∗ (35)

that introduced into the weak form gives:∫
I×	1×	2

T · R · S∗ · R(T · R · S) dt · dη1 · dη2

=
∫

I×	1×	2

T · R · S∗ · R(ρn)dt · dη1 · dη2 (36)

As all the functions depending on t and η1 are assumed known at the present step, we
could integrate the weak form in the domains I and 	1 to obtain a problem depending on
the η2 coordinate:∫

	2

S∗ ·
(

γ2
d2S

dη2
2

+ μ2
dS

dη2
+ ξ2S

)
dη2 =

∫
	2

S∗ · h(η2) dη2, (37)

where coefficients γ2, μ2 and ξ2 come from the integrations of the different functions
involving the t and η1 coordinates and h(η2) comes from all the integrals involved in the
right-hand side of equation (36).
This weak form could be integrated using an appropriate discretization technique. Another
possibility taking into account that equation (37) works for any test function S∗ is to come
back to the strong formulation

γ2
d2S

dη2
2

+ μ2
dS

dη2
+ ξ2S = h(η2) (38)

and then integrating it by applying any collocation technique accounting for its second
order derivatives (e.g. finite differences, pseudo-spectral collocation techniques, etc).



3.2. Parametric Langer’s equation in a single domain

Consider Langer’s equation with a single domain. In that case the single conformation
coordinate η represents an order parameter taking values in the interval η ∈ 	 = [0, 1].
The limit values are associated with a perfect disorder η = 0 or a perfect order η = 1.

Using Landau’s local free energy the resulting balance Langer’s equation reads

∂ρ

∂t
= ∂

∂η

(
(−γ η + η3) · ρ

)
+

σ 2

2

∂2ρ

∂η2
. (39)

Classically, this equation should be solved for different values of the parameter γ . Thus, a
solution must be computed for each value of the parameter γ by solving equation (39). In order
to avoid the solution of many problems, one for each value of the model parameter, one could
introduce the parameter γ as an extra coordinate in the model, looking for a general solution
ρ(t, η, γ ) of equation (39). Thus, the resulting multidimensional model must be solved only
once, and then the resulting solution can be particularized for each considered value of the
parameter γ .

The residual of equation (39) R(ρ) reads

R(ρ) = ∂ρ

∂t
− (−γ + 3η2) · ρ − (−γ η + η3) · ∂ρ

∂η
− σ 2

2

∂2ρ

∂η2
(40)

with (t, η, γ ) = I × 	 × �, where I ⊂ R, 	 ⊂ R and � ⊂ R.
The weak form related to equation (39) reads∫

I×	×�

ρ∗ · R(ρ) dt · dη · dγ = 0. (41)

The separated representation of the solution at iteration n writes

ρn(t, η, γ ) =
i=n∑
i=1

F 0
i (t) · F 1

i (η) · F 2
i (γ ) (42)

from which the following enrichment steps read

ρn+1(t, η, γ ) = ρn(t, η, γ ) + T (t) · R(η) · ϒ(γ ). (43)

Again, we consider the test function ρ∗ given by

ρ∗ = T ∗ · R · ϒ + T · R∗ · ϒ + T · R · ϒ∗. (44)

Because the linearity of equation (39) the weak form (41) can be written as∫
I×	×�

ρ∗ · R(T · R · ϒ) dt · dη · dγ = −
∫

I×	×�

ρ∗ · R(ρn(t, η, γ )) dt · dη · dγ (45)

Now, we can follow the procedure described in the previous section for computing
sequentially the functions T (t), R(η) and ϒ(γ ) until reaching the fixed point of the alternating
directions iteration:

• Computing T (t) from R(η) and ϒ(γ ).
In this step the test function reduces to

ρ∗ = T ∗ · R · ϒ (46)

that introduced in the weak form (45) gives∫
I×	×�

T ∗ · R · ϒ · R(T · R · ϒ) dt · dη · dγ

= −
∫

I×	×�

T ∗ · R · ϒ · R(ρn(t, η, γ )) dt · dη · dγ (47)



Because all the functions depending on the coordinates η and γ are assumed known at
this step, we can integrate the weak form (47) in the domain 	 × � to obtain∫

I
T ∗ ·

(
α

dT

dt
+ βT

)
dt =

∫
I
T ∗f (t) dt (48)

or the equivalent strong form:

α
dT

dt
+ βT = f (t) (49)

• Computing R(η) from T (t) and ϒ(γ ).
In this step the test function reduces to

ρ∗ = T · R∗ · ϒ (50)

that introduced in the weak form (45) gives∫
I×	×�

T · R∗ · ϒ · R(T · R · ϒ) dt · dη · dγ

= −
∫

I×	×�

T · R∗ · ϒ · R(ρn(t, η, γ )) dt · dη · dγ (51)

Because all the functions depending on the coordinates t and γ are assumed known at this
step, we can integrate the weak form (51) in the domain I × � to obtain∫

	

R∗ ·
(

γ
d2R

dη2
+ μ

dR

dη
+ ξR

)
dη =

∫
	

R∗g(η) dη (52)

or the equivalent strong form

γ
d2R

dη2
+ μ

dR

dη
+ ξR = g(η) (53)

• Computing ϒ(γ ) from T (t) and R(η).
In this step the test function reduces to

ρ∗ = T · R · ϒ∗ (54)

that introduced in the weak form (45) gives∫
I×	×�

T · R · ϒ∗ · R(T · R · ϒ) dt · dη · dγ

= −
∫

I×	×�

T · R · ϒ∗ · R(ρn(t, η, γ )) dt · dη · dγ. (55)

Because all the functions depending on the coordinates t and η are assumed known at this
step, we can integrate the weak form (55) in the domain I × 	 to obtain∫

�

ϒ∗ · (θ + ϕγ ) · ϒ(γ ) dγ =
∫

�

ϒ∗h(γ ) dγ (56)

or the equivalent strong form:

(θ + ϕγ ) · ϒ(γ ) = h(γ ). (57)

We can note that as the original partial differential equation (39) does not contain
derivatives involving the parameter γ , the equation allowing to update function ϒ(γ )

is an algebraic equation.
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Figure 1. Modes of the separated representation: (a) F 1
i (η ∈ [0, 1]), i = 1, . . . , 10; (b) F 2

i (γ ∈
[−0.8, 0.8]), i = 1, . . . , 10; (c) F 0

i (t ∈ [0, 10]), i = 1, . . . , 10.

4. Numerical results

For all the algorithmic details concerning the practical application of the PGD (residual
minimization for non-symmetric differential operators, introduction of boundary conditions,
etc) the interested reader can refer to [12, 13] and the references therein. In what follows we
are considering three different scenarios: (i) a system composed of a unique micro-domain;
(ii) a system consisting of two micro-domains and finally a system composed of many micro-
domains defining a high-dimensional model suffering the so-called curse of dimensionality.

4.1. Phase transition in a system consisting of a unique micro-domain

First, we consider a single micro-domain in which the order parameter is homogenous.
We assume that the phase transition occurs by a simple symmetry change. The associated
parametric Langer’s equation and its solution procedure using the PGD was described in detail
in section 3.2.

In what follows we consider (t, η, γ ) ∈ [0, 10] × [0, 1] × [−0.8, 0.8] and σ = 0.5. The
distribution function ρ(t, η, γ ) was searched in the separated form

ρ(t, η, γ ) ≈
i=N∑
i=1

F 0
i (t) · F 1

i (η) · F 2
i (γ ), (58)
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Figure 2. (a) Time evolution of the distribution function ρ(η; tj , γcr)—each curve corresponds to
a time instant, (b) Steady-state distribution function ρ(η; t → ∞, γj ) for different values of the
interaction parameter γj ∈ [−0.8 · · · 0.8] moving from one phase to two phases.

where the one-dimensional functions F
j

i (i = 1, . . . , N ; j = 0, 1, 2) where approximated
from a one-dimensional finite element approximation defined on a uniform mesh consisting of
101 nodes. The nodal values are denoted by F 0

i (tj ), F 1
i (ηj ) and F 2

i (γj ), with j = 1, · · · , 101.
We consider as initial condition:

ρ(t = 0, η, γ ) = G0(t) · G1(η) · G2(γ ) (59)

with

G0(tj ) =
{

1 if j = 1,

0 if j > 1
(60)

the values G1(ηj ) taken from a Gaussian distribution with a null mean value and a unit variance,
and G2(γj ) = 1 ∀j .

Figures 1(a)–(c) show the 10 first modes F 0
i (t), F 1

i (η) and F 2
i (γ ) in the resulting separated

representation (58). The fact that time functions reach a constant value for long times indicates
that the steady state is attained.

Figure 2 depicts the steady-state distribution function curves for different values of the
parameter γ around the critical point. We find that over the critical point, the mean value
of the order parameter vanishes and that the fluctuation grows when approaching the critical
temperature Tcr. The bifurcation behavior occurs once under Tcr and the order parameter
increases to tend to the limiting value +1.

Nevertheless, the results found above do not agree with critical theory predictions. In fact,
we expected to have a divergence of the fluctuation for γ = γcr and this has not been found.
It was expected that ρ(t → ∞, η, γcr) have a constant value. From a mathematical point
of view, the equation as it has been written, does not predict any divergent behavior because

the stationary distribution function is approximately e− F
kBT , so even if the free energy slope

decreases around η = 0, it remains non-null far away from it.

4.2. Phase transition by spinodal decomposition in a system composed of two micro-domains

In this section, we consider a system of two micro-domains characterized by a distribution
function ρ(t, η1, η2). The associated Langer’s equation and its solution procedure was
described in section 3.1.
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Figure 3. Transient marginal distribution functions ρ1(η1, t) and ρ2(η2, t): (a), (b) ρ1(η1, t) and
ρ2(η2, t) for χ < χcr and σ = 0.1. (c), (d) ρ1(η1, t) and ρ2(η2, t) for χ = χcr and σ = 0.5.
(e), (f ) ρ1(η1, t) and ρ2(η2, t) for χ > χcr and σ = 0.1.

We consider first only the local part of the free energy. Figure 3 shows the time evolution
of the marginal distribution functions ρ1(η1, t) and ρ2(η2, t) for three values of the interaction
parameter: χ < χcr, χ = χcr and χ > χcr. The two functions are identical because of the
symmetric role of η1 and η2. We note also that we reproduce the bifurcation but we do not find
any divergent behavior. When plotting ρ(η1, η2, t) we note the complementarity of η1 and η2.



Figure 4. Time evolution of distribution function ρ(η1, η2, t) during a quench from one phase
region to the instable region for t = 0, 2, 4, 6, 8 and 16 (σ = 0.1).

Figure 4 depicts the distribution function at different times for χ � χcr. Mass
conservation has been checked. The distribution evolves from the symmetric distribution
localized around the (η1, η2) = (0, 0) towards the strong segregated distribution localized
around (η1, η2) = (−1, 1) and (η1, η2) = (1, −1). The resulting distribution verifies the mass
conservation.

We are now introducing the non-local term K(∇η)2 in the free energy expression. We
consider different values : K = 0, 0.025, 0.05, 0.075, 0.1. We notice in figure 5 that the degree
of segregation reduces as K increases. The segregation is canceled for high values of K . We
find here a classical result which estimates that phase separation and interface creation occur



Figure 5. Steady-state distribution function ρ(η1, η2) in the unstable region (χ = 2.5, σ = 0.1)

for K = 0, 0.025, 0.05, 0.075, 0.1. Starting from K = 0, for which spinodal decomposition
occurs, phase separation goes down as K increases until being canceled for K = 0.1.

only when the decrease in the free energy resulting from separation compensate the increase
due to surface energy creation.

4.3. Phase transition by spinodal decomposition in a system consisting of many
micro-domains

We consider a system composed of five micro-domains. We solve the transient Langer’s
equation using the PGD. We consider the following values of the model parameters: χ = 2.5
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Figure 6. Time evolution of the marginal distribution function in a system composed of five micro-
domains system (χ = 2.5 and (σ = 0.1): (a), (b) ρ1(η1, t) and ρ5(η5, t). (c), (d) ρ2(η2, t) and
ρ4(η4, t). (e) ρ3(η3, t).

and σ = 0.1. We compute ρ(t, η1, η2, η3, η4, η5). We consider 60 time instants and 101
values uniformly distributed along each domain 	i = [−1, 1].

Figure 6 shows the marginal distribution functions relative to each coordinate. The
simulation was also done for 7, 8, 10 and even 20 micro-domains partitions.

5. Conclusion

In this work, we have studied phase separation by spinodal decomposition under a quench
from one phase region, and we have focused especially on composition fluctuations dynamics



increase when passing through the critical region. This was done by solving Langer’s equation
and calculating the transient probability distribution function ρ(t, {η}). Because the resulting
equation is highly multidimensional, mesh-based discretization techniques fail to solve that
equation. PGD allows circumventing the curse of dimensionality by constructing a separated
representation of the distribution function. It allows also the introduction of some parameters as
extra coordinates. Thus, from the solution of the resulting multidimensional parametric model,
we can particularize the solution for each choice of the model parameters. In this paper, we
introduced the interaction parameter χ as an extra coordinate proving the potentialities of the
PGD for addressing multidimensional parametric models.

Finally, we analyzed different scenarios ranging from systems composed of a unique
micro-domain to the ones involving many micro-domains. The obtained results were in
agreement with the expectations, proving the ability of PGD to cope with the modeling of
spinodal decomposition within a statistical mechanics framework.
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