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This paper studies the influence of boundary conditions on a fluid medium of finite depth. We determine the frequencies and the
modal shapes of the fluid. The fluid is assumed to be incompressible and viscous. A potential technique is used to obtain in three-
dimensional cylindrical coordinates a general solution for a problem.Themethod consists in solving analytically partial differential
equations obtained from the linearized Navier-Stokes equation. A finite element analysis is also used to check the validity of the
present method. The results from the proposed method are in good agreement with numerical solutions. The effect of the fluid
thickness on the Stokes eigenmodes is also investigated. It is found that frequencies are strongly influenced.

1. Introduction

Flow modeling in confined domains leads mostly to Stokes
models [1]. The use of this model in the field of microflu-
idics and nanofluidics [2, 3] and in the understanding the
movement ofmicroorganisms [4] currently in full swing.This
recent years, several authors have focused on the modal anal-
ysis of thismodel.We can cite in particular the aspects related
to problems arising from geophysics. These studies highlight
the existence of slow wave or Stoneley waves [5–7]. Other
authors [8, 9] have focused on the dynamic aspects in the con-
text of fluid-structure interaction. The numeric aspects for
coupled (or not) modal problem were discussed in [10–12].

The theory of potential flow of viscous fluid was intro-
duced by [13]. All of his work on this topic is framed in terms
of the effects of viscosity on the attenuation of small ampli-
tude waves on a liquid-gas surface. The problem treated by
Stokes was solved exactly using the linearized Navier-Stokes
equations, without assuming potential flow, and was solved
exactly by [14]. Reference [15] has identified the main events
in the history of thought about potential flowof viscous fluids.
The problem of Stokes flow in cylindrical domain has been
investigated by several authors. References [16, 17] studied

Stokes flow in a cylindrical container by an eigenfunction
expansion procedure without the compressibility effect.

Potential flows through different kinds of geometry have
been studied by many investigators for several applications.
For example in vascular fluid dynamics, [18] presented the
role of curvature in the wave propagation and in the develop-
ment of a secondary flow. Reference [19] has studied the flow
and pressure dynamics of the cerebrospinal fluid flow.Three-
dimensional CSF flow studies have also been reported [20].

The knowledge of Stokes eigenmodes in a three-dimen-
sional confined domain, in a square/cube [10], or in any
bounded domain could provide some insight into the under-
standing or analysis of turbulent instantaneous flow field in a
geometry as simple as, for instance, the driven cavity.

This paper deals with analytical and numerical modeling
of three-dimensional incompressible viscous fluid using the
potential technique and the finite element method. The ana-
lytical formulation is based upon a convenient decomposition
of the velocity field into two contributions [9–21]: one is
related to the scalar potential and the other is the vector
potential.

The rest of the paper is organized as follows. In Section
2, we write the linearized Navier-Stokes equation, a simple



representation for the velocity field in terms of the potential.
The implementation of analytical solutions is discussed in
detail. Section 3 describes boundary condition treatment for
modeling Stokes eigenmodes. Section 4 investigates the case
of fluid-solid interaction. Section 5 is completely devoted to
the analytical and numerical results. Finally, the paper is
ended by some conclusions.

2. Governing Equations

From conservations of mass and momentum and assuming
that the fluid is viscous and incompressible, the motion of the
fluid flowing in the cylindrical waveguide in the absence of
body force is governed by

𝜌𝜕v (𝑟, 𝜃, 𝑧)𝜕𝑡 = −∇𝑝 (𝑟, 𝜃, 𝑧) + 𝜂∇2v (𝑟, 𝜃, 𝑧) , (1)

∇ ⋅ v (𝑟, 𝜃, 𝑧) = 0, (2)

in which v(𝑟, 𝜃, 𝑧) = {V𝑟, V𝜃, V𝑧}𝑇(𝑟, 𝜃, 𝑧) is the fluid velocity
vector, 𝑝(𝑟, 𝜃, 𝑧) is the fluid pressure, 𝜌 is the density of the
fluid, and ] and 𝜂 = 𝜌] are the kinematic and dynamic fluid
viscosity, respectively.

The obtained equations ofmotion are highly complex and
coupled. However, a simpler set of equations can be obtained
by introducing scalar potentials 𝜙, 𝜓, and 𝜒, known as the
Helmholtz decomposition. The Helmholtz decomposition
theorem [22] states that any vector v can bewritten as the sum
of two parts: one is curl-free and the other is solenoidal. In
flowfields, the velocity is thereby decomposed into a potential
flow and a viscous flow. In other words, the velocity v can be
decomposed into the following form:

v = ∇𝜙 + ∇ × (𝜓ez) + ∇ × ∇ × (𝜒ez) , (3)

where ez is the unit vector along the 𝑧 direction. Substituting
the above resolutions into (1) and (2), after some manipula-
tions, the equation for the conservation of mass (2) becomes
the Laplace equation:

∇2𝜙 (𝑟, 𝜃, 𝑧) = 0, (4)

and the equation for the conservation of momentum (1)
becomes the Helmholtz equations

∇2𝜓 (𝑟, 𝜃, 𝑧) − 1
]

𝜕𝜓 (𝑟, 𝜃, 𝑧)𝜕𝑡 = 0,
∇2𝜒 (𝑟, 𝜃, 𝑧) − 1

]

𝜕𝜒 (𝑟, 𝜃, 𝑧)𝜕𝑡 = 0,
(5)

where ∇2 = (𝜕2/𝜕𝑟2) + (1/𝑟)(𝜕/𝜕𝑟) + (1/𝑟2)(𝜕2/𝜕𝜃2) + (𝜕2/𝜕𝑧2) is the Laplacian operator in polar coordinates, and time
dependence has the form exp(𝑗𝜔𝑡). The pressure can be pre-
sented by

𝑝 = −𝜌𝜕𝜙𝜕𝑡 . (6)

Thus, the Navier-Stokes equations are reduced to formula-
tions (4), (5), and (6). Of course, it does not mean that

in any case such a decomposition of fluid’s velocity field
gives considerable simplifications in solving the problem
because boundary conditions for stresses are not separated.
Thevibrations are harmonic, with constant angular frequency𝜔; as a result all potentials components and pressure will
depend on time only through the factor exp(𝑗𝜔𝑡).

Applying the method of separation of variables, the
solution of the equations for potentials, associated with an
axial wave number 𝑘𝑧, radial wave number 𝑘𝜓, and cir-
cumferential mode parameter 𝑛, after considerable algebraic
manipulations, can be shown to be

𝜙 = [𝐴𝐼𝑛 (𝑘𝑧𝑟) + 𝐵𝐾𝑛 (𝑘𝑧𝑟)] {sin (𝑛𝜃)
cos (𝑛𝜃)}

× {cos (𝑘𝑧𝑧)sin (𝑘𝑧𝑧)} ,
(7)

𝜓 = [𝐶𝐽𝑛 (𝑘𝜓𝑟) + 𝐷𝑌𝑛 (𝑘𝜓𝑟)] {cos (𝑛𝜃)sin (𝑛𝜃)}
× {cos (𝑘𝑧𝑧)sin (𝑘𝑧𝑧)} ,

(8)

𝜒 = [𝐸𝐽𝑛 (𝑘𝜓𝑟) + 𝐹𝑌𝑛 (𝑘𝜓𝑟)] {sin (𝑛𝜃)
cos (𝑛𝜃)}

× {sin (𝑘𝑧𝑧)
cos (𝑘𝑧𝑧)} .

(9)

𝐽𝑛 and 𝑌𝑛 are Bessel functions of the first and second kind
of order 𝑛. 𝐼𝑛 and 𝐾𝑛 are modified Bessel functions of
the first and second kinds of order 𝑛. 𝑛 and 𝑘𝑧 are the
azimuthal and axial wavenumbers. 𝑛 = 0, 1, 2, . . ., whereas𝑘𝑧 is found by satisfying the symmetry boundary condition
on the 𝑧 = 0 and 𝑧 = 𝑙. Note that the velocity field
v has components that are symmetric or antisymmetric in𝜃 and 𝑧. Following standard practice, the solutions with
symmetric (antisymmetric) axial velocities are called the
antisymmetric (symmetric) axial modes, respectively, with𝑘𝑎𝑧 and 𝑘𝑠𝑧 denoting the corresponding eigenvalues. Thus, we
have 𝑘𝑎𝑧 = (𝑚 − 1)𝜋/𝑙 and 𝑘𝑠𝑧 = 𝑚𝜋/𝑙 (𝑚 = 0, 1, 2, . . .).
However, the azimuthal modes corresponding to cos(𝑛𝜃) and
sin(𝑛𝜃) are really the same, due to periodicity in the azimuthal
direction; that is, there is no distinction in the values of 𝑛 for
the two families.𝐴,𝐵,𝐶,𝐷,𝐸, and𝐹 are unknown coefficients
which will be determined later by imposing the appropriate
boundary conditions. The radial wave number 𝑘𝜓 is related
to the axial wave number 𝑘𝑧 by

𝑘2𝜓 = 𝛼2 − 𝑘2𝑧, 𝜔 = 𝑗]𝛼2, (10)

where 𝑗 = √−1. In the end, the pressure can be obtained by
insertion of (7) into (6),

𝑝 = 𝜂𝛼2 [𝐴𝐼𝑛 (𝑘𝑧𝑟) + 𝐵𝐾𝑛 (𝑘𝑧𝑟)] cos (𝑛𝜃) cos (𝑘𝑧𝑧) . (11)



Using (3) and taking into account (7), (8), and (9), the
fluid particle velocities in terms of the Bessel functions can
be written as

V𝑟 = {𝐴𝐼𝑛 (𝑘𝑧𝑟) + 𝐵𝐾𝑛 (𝑘𝑧𝑟) − 𝑛𝑟𝐶𝐽𝑛 (𝑘𝜓𝑟) − 𝑛𝑟𝐷𝑌𝑛 (𝑘𝜓𝑟)
+ 𝑘𝑧𝐸𝐽𝑛 (𝑘𝜓𝑟) + 𝑘𝑧𝐹𝑌𝑛 (𝑘𝜓𝑟) }
× sin (𝑛𝜃) cos (𝑘𝑧𝑧) ,

V𝜃 = {𝑛𝑟𝐴𝐼𝑛 (𝑘𝑧𝑟) + 𝑛𝑟 𝐵𝐾𝑛 (𝑘𝑧𝑟) − 𝐶𝐽𝑛 (𝑘𝜓𝑟)
− 𝐷𝑌𝑛 (𝑘𝜓𝑟) + 𝑛𝑘𝑧𝑟 [𝐸𝐽𝑛 (𝑘𝜓𝑟) + 𝐹𝑌𝑛 (𝑘𝜓𝑟)]}

× cos (𝑛𝜃) cos (𝑘𝑧𝑧) ,
V𝑧 = {𝑘2𝜓𝐸𝐽𝑛 (𝑘𝜓𝑟) + 𝑘2𝜓𝐹𝑌𝑛 (𝑘𝜓𝑟) − 𝑘𝑧𝐴𝐼𝑛 (𝑘𝑧𝑟)

−𝑘𝑧𝐵𝐾𝑛 (𝑘𝑧𝑟) } sin (𝑛𝜃) sin (𝑘𝑧𝑧) .
(12)

In the following section we consider a fluid with different
boundary conditions.

3. Boundary Conditions and
Frequency Equation

First we define Γ1 (𝑟 = 𝑅1), as the inner boundary of the fluid
region, and Γ2 (𝑟 = 𝑅2), as the outer boundary. We begin
the analysis of frequency equation for imposing the no-slip
boundary conditions.

3.1. Stokes Eigenmodes in the Case of “No-Slip-No-Slip” Bound-
ary Conditions. The no-slip hypothesis of fluid mechanics
states that liquid velocity at a solid surface is equal to the velo-
city of the solid surface. Hence the no-slip boundary condi-
tion can be written as

(1) the velocity is equal to zero at Γ1:
V𝑟 = V𝜃 = V𝑧 = 0, (13)

(2) the velocity is equal to zero at Γ2:
V𝑟 = V𝜃 = V𝑧 = 0. (14)

Combining these boundary conditions with (12) yields for
each mode number (𝑛,𝑚) the following linear system:

[M1] {𝑥} = {0} , {𝑥} = {𝐴 𝐵 𝐶 𝐷 𝐸 𝐹}𝑇, (15)

where [M1] is a 6 × 6matrix whose components 𝑎𝑖𝑗 are given
in Appendix A. For a non-trivial solution, the determinant of
the matrix [M1]must be equal to zero

det [M1] = 0. (16)

The roots of (16) give the natural frequencies 𝜔 of the
cylindrical oscillations. Figure 16 in Appendix D shows ana-
lytical calculation of eigenvalues 𝛼 and using (10) we obtain
the natural frequencies 𝜔 [rd/s].

3.2. Stokes Eigenmodes in the Case of ”No-Slip-Normal
Stress-Free” Boundary Conditions. The pressure and velocity
boundary conditions on the free surface are both formulated
from the dynamic constraint of continuity of normalmomen-
tum flux across the free surface. The component of the stress
tensor in the outward normal direction is therefore

𝜎 ⋅ n = {−𝑝I + 𝜂 [∇v + (∇v)𝑇]} , n = 0, (17)

in which I is a unit tensor. By applying this condition on Γ1
we obtain

𝜎𝑟𝑟 = 𝜎𝑟𝜃 = 𝜎𝑟𝑧 = 0. (18)

Combining these boundary conditions and (14) yields for
each mode number (𝑛,𝑚) the following linear system:

[M2] {x} = {0} , {x} = {𝐴 𝐵 𝐶 𝐷 𝐸 𝐹}𝑇, (19)

where [M2] is a 6 × 6matrix whose components 𝑏𝑖𝑗 are given
in Appendix B. For a nontrivial solution, the determinant of
the matrix [M2]must be equal to zero

det [M2] = 0. (20)

The roots of (20) give the natural frequencies 𝜔 of the
cylindrical oscillations.

3.3. Torsional, Flexural, and Breathing Stokes Eigenmode. The
results presented in (16) and (20) are a general natural fre-
quencies equation. For some simpler modes, the abovemen-
tioned method can be simplified. For example, we have the
following.

3.3.1. Torsional Stokes Eigenmode. The torsion mode vibra-
tion is such a mode in which the scalar components of the
velocity {V𝑟, V𝑧} are zeros and only the circumferential velocity
V𝜃 is independent of 𝜃. This condition is achieved if 𝜙 = 0
and 𝜒 = 0. Through (3) this gives for the nonvanishing com-
ponents of displacement and stresses:

V𝜃 = −𝜕𝜓𝜕𝑟 . (21)

Thus, the general solution for𝜓must be constructed from
the set

𝜓 (𝑟, 𝑧) = [𝐶𝐽0 (𝑘𝜓𝑟) + 𝐷𝑌0 (𝑘𝜓𝑟)] sin (𝑘𝑧𝑧) . (22)

In this case the boundary conditions equations (13) and
(14) become

V𝜃 = 0 at 𝑟 = 𝑅1,
V𝜃 = 0 at 𝑟 = 𝑅2. (23)

Then, (15) becomes

[T] {x} = {0} , {x} = {𝐶 𝐷}𝑇. (24)

[T] is a 2 × 2matrix whose components are calculated using
Appendices A and B. Solving det[T] = 0 gives the torsional
modes.



3.4. Longitudinal Stokes Eigenmode. Another simpler mode
vibration is called longitudinal mode vibration in which V𝜃 =0 and {V𝑟, V𝑧} are independent of 𝜃. This means that the
motion is confined to planes perpendicular to the 𝑧-axis,
which can move, expand, and contract in their planes. The
solution for the displacement field and stress vector follows
from (3) and (17):

V𝑟 = 𝜕𝜙𝜕𝑟 + 𝑘𝑧 𝜕𝜒𝜕𝑟
V𝑧 = −𝑘𝑧𝜙 + 𝑘2𝜓𝜒,

𝜎𝑟𝑟 = 2𝜂{𝜕2𝜙𝜕𝑟2 − 𝛼22 𝜙 + 𝑘𝑧 𝜕2𝜒𝜕𝑟2 } ,
𝜎𝑟𝑧 = 𝜂{−2𝑘𝑧 𝜕𝜙𝜕𝑟 + (𝑘2𝜓 − 𝑘2𝑧) 𝜕𝜒𝜕𝑟 } .

(25)

Thus, the general solution for 𝜙 and 𝜒 must be con-
structed from the set:

𝜙 = [𝐴𝐽0 (𝑘𝑧𝑟) + 𝐵𝑌0 (𝑘𝑧𝑟)] sin (𝑘𝑧𝑧) ,
𝜒 = [𝐸𝐽0 (𝑘𝜓𝑟) + 𝐹𝑌0 (𝑘𝜓𝑟)] cos (𝑘𝑧𝑧) . (26)

In this case the boundary conditions equations (14) and
(18) become

𝜎𝑟𝑟 = 𝜎𝑟𝑧 = 0 at 𝑟 = 𝑅1,
V𝑟 = V𝑧 = 0 at 𝑟 = 𝑅2. (27)

Then, (19) becomes

[L] {x} = {0} , {x} = {𝐴 𝐵 𝐸 𝐹}𝑇. (28)

[L] is a 4 × 4matrix whose components are calculated using
the Appendices A and B. Solving det[L] = 0 gives the longitu-
dinal modes.

3.4.1. Flexural and Breathing Stokes Eigenmodes. The mode
shape 𝑛 = 1 is called flexural mode vibration in which
all components of the displacement are nonvanishing and
depend on 𝑟, 𝜃, and 𝑧. Themode shape 𝑛 ⩾ 2 is called breath-
ing mode vibration in which all components of the displace-
ment are non-vanishing and depend on 𝑟, 𝜃, and 𝑧.

In the following we will introduce the interest of the
fluid-structure interaction and we will study the influence of
viscosity on the eigenmodes of an elastic solid. For this, the
inner boundary of the fluid region Γ1 is represented by an
elastic wall.

4. Fluid-Structure Interaction

Fluid-structure interaction problems have long since
attracted the attention of engineers and appliedmathematics.
The most important applications of this theory, are probably,
structural acoustics [23], vibrations of fluid-conveying pipes
[24, 25], and biomechanics. As these problems are rather
complicated, some simplifications are typically adopted to

facilitate their solving. In particular, it is quite typical to
ignore viscosity effects (especially in structural acoustics) or
to use local theories of interaction, such as the one referred
to as thin layer or plane wave approximation.

4.1. Governing Equations of Elastic Media. The wave motion
in an isotropic elastic medium is governed by the classical
Navier’s equation:

−𝜌𝑠𝜔2u = 𝜇∇2u + (𝜆 + 𝜇) ∇∇ ⋅ u, (29)

where 𝜌𝑠 is the density, 𝜆, 𝜇 are the Lamé constants, and
u(𝑟, 𝜃, 𝑧) = {𝑢𝑟, 𝑢𝜃, 𝑢𝑧}𝑇(𝑟, 𝜃, 𝑧) is the vector displacement of
particles.

The obtained equations ofmotion are highly complex and
coupled. However, a simpler set of equations can be obtained
by introducing scalar potentials Φ, Ψ, and Θ, known as the
Helmholtz decomposition such that

u = ∇Φ + ∇ × (Ψez) + ∇ × ∇ × (Θez) . (30)

Substituting (30) into (29) leads to three sets of differential
equations

∇2Φ (𝑟, 𝜃, 𝑧) − ]2𝛼4𝑐2𝐿 Φ (𝑟, 𝜃, 𝑧) = 0,
∇2Ψ (𝑟, 𝜃, 𝑧) − ]2𝛼4𝑐2𝑇 Ψ (𝑟, 𝜃, 𝑧) = 0,
∇2Θ (𝑟, 𝜃, 𝑧) − ]2𝛼4𝑐2𝑇 Θ (𝑟, 𝜃, 𝑧) = 0,

(31)

where 𝑐𝐿 = √(𝜆 + 2𝜇)/𝜌𝑠 and 𝑐𝑇 = √𝜇/𝜌𝑠 are the compres-
sional and shear wave velocities in the solids, respectively.
Applying the method of separation of variables, the solution
of the equations for potentials, associated with an axial wave
number 𝑘𝑧, radial wave number (𝑘Φ, 𝑘Ψ), and circumferential
mode parameter 𝑛, after considerable algebraic manipula-
tions, can be shown to be

Φ = [𝑎𝐼𝑛 (𝑘Φ𝑟) + 𝑏𝐾𝑛 (𝑘Φ𝑟)] sin (𝑛𝜃) cos (𝑘𝑧𝑧) ,
Ψ = [𝑐𝐼𝑛 (𝑘Ψ𝑟) + 𝑑𝐾𝑛 (𝑘Ψ𝑟)] cos (𝑛𝜃) cos (𝑘𝑧𝑧) ,
Θ = [𝑒𝐼𝑛 (𝑘Ψ𝑟) + 𝑓𝐾𝑛 (𝑘Ψ𝑟)] sin (𝑛𝜃) sin (𝑘𝑧𝑧) .

(32)

The radial wave number (𝑘Φ, 𝑘Ψ) is related to the axial
wave number 𝑘𝑧 by

𝑘2Φ = ]2𝛼4𝑐2𝐿 + 𝑘2𝑧, 𝑘2Ψ = ]2𝛼4𝑐2𝑇 + 𝑘2𝑧 (33)

and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are unknown coefficients which will
be determined later by imposing the appropriate boundary
conditions.



Using (30) the scalar components of the displacement
vector u in cylindrical coordinates can be expressed by

𝑢𝑟 = 𝜕Φ𝜕𝑟 − 𝑛𝑟Ψ + 𝑘𝑧 𝜕Θ𝜕𝑟 ,
𝑢𝜃 = 𝑛𝑟Φ − 𝜕Ψ𝜕𝑟 + 𝑛𝑘𝑧𝑟 Θ,

𝑢𝑧 = −𝑘𝑧Φ − 𝑘2ΨΘ,
(34)

and the radial and tangential stresses are given byHooke’s law
as

Σ𝑟𝑟 = 𝜆]2𝛼4𝑐2𝐿 Φ + 2𝜇𝜕𝑢𝑟𝜕𝑟 ,
Σ𝑟𝜃 = 𝜇{𝜕𝑢𝜃𝜕𝑟 − 𝑢𝜃𝑟 + 1𝑟 𝜕𝑢𝑟𝜕𝜃 } ,

Σ𝑟𝑧 = 𝜇{𝜕𝑢𝑟𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑟 } .
(35)

4.2. Boundary Condition and Frequency Equation. We defineΓ1 (𝑟 = 𝑅1) as the boundary contact between the fluid region
and the solid region and Γ2 (𝑟 = 𝑅2) as the outer boundary.
The relevant boundary conditions can be taken as follows.

(1) The normal components of the solid stresses must be
zero on the interface Γ0:

Σ𝑟𝑟 = Σ𝑟𝜃 = Σ𝑟𝑧 = 0. (36)

(2) Kinematic boundary condition (velocity must be
continuous) on the interface Γ1:
V𝑟 = 𝑗𝜔𝑢𝑟, V𝜃 = 𝑗𝜔𝑢𝜃, V𝑧 = 𝑗𝜔𝑢𝑧. (37)

(3) Dynamic boundary condition (normal stresses must
be continuous) on the interface Γ1:

𝜎𝑟𝑟 = Σ𝑟𝑟, 𝜎𝑟𝜃 = Σ𝑟𝜃, 𝜎𝑟𝑧 = Σ𝑟𝑧. (38)

(4) On the interface Γ2 at the outer cylinder the normal
stress is equal to zero:

𝜎𝑟𝑟 = 𝜎𝑟𝜃 = 𝜎𝑟𝑧 = 0. (39)

Combining these boundary conditionswith (34)-(35) and
taking into account (7)–(9) and (32) yields for each mode
number (𝑛,𝑚) the following linear system:

[M] {y} = {0} , (40)

where {y} = {𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓}𝑇 and [M] is an
twelfth-order operator matrix, which is given in Appendix C.
For nontrivial solution, the determinant of thematrixMmust
be equal to zero:

det [M] = 0. (41)

This equation indicates a relationship between the
dynamic fluid viscosity 𝜂, density of the fluid 𝜌, and the elastic
constants. The roots of (41) give the infinite natural frequen-
cies 𝜔.
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z

z = l

Fluid domain

z = 0

Figure 1: Configuration of the viscous oscillations of a cylindrical
incompressible fluid of length 𝑙 in circular cylindrical coordinate
system (𝑟, 𝜃, 𝑧). 𝑅1 and 𝑅2 are the inner and outer radius of fluid
domain, respectively.
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R1

Figure 2: Geometry of fluid domain.

5. Analytical, Numerical
Results and Validation

Numerical calculationswere performed on the example of the
hollow cylinder (Figures 1, 2, and 3) with 𝑙 = 0.15 [m], and
different dimensions such as the inner radius 𝑅1 = 0.07 [m]
and the outer radius 𝑅2 = 0.09 [m] of fluid domain are used.
The fluid used in the hollow cylinder for which density of920 [kg⋅m−3] and dynamic’s viscosity of 0.1 [Pa⋅s] is assumed.
The following values of parameters of the the elastic solid
are in contact with a viscous liquid were assumed: 𝜌𝑠 =1150 [kg/m3], ]𝑠 = 0.48, 𝐸 = 3 ⋅ 105 [Pa], and the inner radius
of elastic solid 𝑅0 = 0.068 [m].

With the derived eigenfrequency equations, natural fre-
quencies 𝜔𝑛𝑚 = Im(]𝛼2𝑛𝑚𝑗) for each pair of (𝑛,𝑚) are cal-
culated in the software Mathematica. 𝑚 and 𝑛 denote the
mode in axial and azimuthal (propagating clockwise around
the vortex) direction, respectively. To validate the analytical
results, the natural frequencies and mode shapes are also
computed using Comsol Multiphysics FEM Simulation Soft-
ware. The natural frequencies are computed directly from



R2

Fluid domain

Solid domain

R1

R0

Figure 3: Geometry of fluid-solid interation model. 𝑅0 and 𝑅1 are
the inner and outer radius of solid domain, respectively.
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Figure 4: Variations of flexural eigenmode for different boundary
conditions.
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Figure 5: Variations of breathing eigenmode for different boundary
conditions.
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Figure 6: Variations of torsional eigenmode for different boundary
conditions.

Table 1: Natural frequencies𝜔 [rd/s] for various mode shapes in the
case of “no-slip-no-slip” boundary conditions.

No. (𝑛,𝑚) Present FEM Mode shape
1 (0, 0) 2.694 2.694 Torsional
2 (0, 1) 2.742 2.742 Torsional
3 (1, 1) 2.755 2.755 Flexural
4 (2, 1) 2.800 2.800 Breathing
5 (3, 1) 2.882 2.882 Breathing
6 (0, 2) 2.885 2.885 Torsional
7 (1, 2) 2.900 2.900 Flexural
8 (2, 2) 2.948 2.948 Breathing
9 (4, 1) 3.000 3.000 Breathing
10 (3, 2) 3.030 3.030 Breathing
11 (0, 3) 3.124 3.124 Torsional
12 (1, 3) 3.140 3.140 Flexural
13 (4, 2) 3.147 3.147 Breathing
14 (5, 1) 3.153 3.153 Breathing
15 (2, 3) 3.189 3.189 Breathing
16 (3, 3) 3.271 3.271 Breathing
17 (5, 2) 3.299 3.299 Breathing
18 (6, 1) 3.341 3.341 Breathing

(24) for torsion vibration. For longitudinal vibration, (28) can
be used to determine the corresponding natural frequencies.

Tables 1 and 2 show the comparison of the first 18
natural frequencies and the corresponding mode shapes of
viscous fluid by FEM and the present method (see (16) and
(20)). For example in the case of “no-slip-normal stress-free”
boundary conditions, in the first 18 natural frequencies, four
correspond to flexural vibration (𝑛 = 1), nine to breathing
vibration (𝑛 ⩾ 2), four to torsional vibration, and one to
longitudinal vibration. The very good agreement is observed
between the results of the present method and those of
FEM and the relative difference ((FEM-Present)/Present) is⩽1%. This shows that the algorithm implemented in Comsol



(a) (𝑛,𝑚) = (0, 1) (b) (𝑛,𝑚) = (0, 2)

Figure 7: The torsional modal shapes of (𝑛,𝑚): streamlines of components of velocity field.

(a) (𝑛,𝑚) = (1, 1) (b) (𝑛,𝑚) = (1, 2)

Figure 8: The flexural modal shapes of (1,𝑚): streamlines of components of velocity field.

Multiphysics [26, 27] software for numerical computation is
highly reliable and accurate. This algorithm is based on the
UMFPACKmethod [28]. Is the attention to use the numerical
formulation in future for more general geometries.

Tables 1 and 2 and Figures 4, 5, and 6 show that natural
frequencies are very sensitive to the nature of the boundary
conditions. It is seen that the effect of the free surface is very
interesting and decrease the frequency of a fluid confined in
a rigid cylinder.

Figures 7, 8, and 9 show, respectively, the two modal
shapes of the torsional, flexural, and breathing vibrations.The
modal shape can be regarded as the mode (𝑛,𝑚), where 𝑛 is

the modal number in the circumferential direction and 𝑚 is
the modal number in the axial direction. The modal shapes
are not in order with the parameters 𝑛 and𝑚. This feature of
cylindrical vibration is different from that of beam vibration
in which the order increases with the modal parameter.
Therefore in the vibration of the cylinder, one should be
careful to find the right mode of the vibration.

In this paper, the effects of boundary conditions and of
cylindrical parameters on the natural frequencies of cylindri-
cal viscous fluid are presented with the present method. In
these studies, investigations are carried out to study the effects
of circumferential mode 𝑛, axial mode𝑚, and fluid thickness



(a) (𝑛,𝑚) = (2, 1) (b) (𝑛,𝑚) = (2, 2)

Figure 9: The breathing modal shapes of (2,𝑚): streamlines of components of velocity field.
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Figure 10:Variations of the natural frequencies𝜔 for different values𝑚 with the mode𝑚 with the mode 𝑛.

𝑒 = 𝑅2 − 𝑅1 on the frequencies. Influence of viscosity on the
natural frequencies of an elastic solid is also investigated.

First, one investigates how the natural frequencies vary
with the axial mode 𝑚. Figure 10 shows that the natural
frequencies increase as the axial mode 𝑚 increases except
when 𝑚 = 0. This value of 𝑚 corresponds to 2D problem of
viscous oscillations.

Secondly, one investigates how the frequencies vary with
the fluid thickness. Figures 11, 12, and 13 show that the fluid
thickness has a strong influence on the natural frequencies.

Thirdly, one investigates how the dense fluid (added
mass) affects the natural frequencies. Tables 3 and 4 show
the coupled and uncoupled natural frequencies varying with
circumferential and axial mode (𝑛,𝑚). As 𝑛 increases, the

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Axial wavenumber m
e = 0.02

e = 0.015

e = 0.01

e = 0.005

𝜔

Figure 11: Variations of the torsional eigenmode (𝑛 = 0) 𝜔 for
different fluid’s thickness 𝑒 with the mode𝑚.

difference between the coupled and uncoupled natural fre-
quencies increases. Figures 14 and 15 show that the presence
of fluid has no influence on the modal shapes of an elastic
solid.

6. Conclusion

We have presented an analytic solution for the Stokes eigen-
modes of a viscous incompressible cylindrical fluid. Using
the Helmholtz decomposition for the velocity field, we obtain
an eigenvalue problem for 𝜔. The analytical results are in
very good agreement with FEM results.This analytic method
clearly distinguishes between the potential and rotational
components and the contributions of each to various flow
variables can be analyzed if one wishes so. The present
solution is for cylindrical viscous fluid and is not limited to
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Figure 12: Variations of the flexural eigenmode (𝑛 = 1) 𝜔 for
different fluid’s thickness 𝑒 with the mode𝑚.
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Figure 13: Variations of the breathing eigenmode (𝑛 = 2) 𝜔 for
different fluid’s thickness 𝑒 with the mode𝑚.

a cylindrical shape. The same scalar potentials can be used to
obtain stokes eigenmodes in the case of a spherical geometry.
Finally, a knowledge of the stokes eigenmodes of viscous fluid
is likely to be of use in performing a dynamic analysis by
modal projection method.

Appendices

A.

ThematrixM1 in (16) is defined as follows:

M1 =
[[[[[[[
[

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26𝑎31 𝑎32 0 0 𝑎35 𝑎36𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56𝑎61 𝑎62 0 0 𝑎65 𝑎66

]]]]]]]
]
, (A.1)

Table 2: Natural nfrequencies 𝜔 [rd/s] for various mode shapes in
the case of “no-slip-normal stress-free” boundary conditions.

No. (𝑛,𝑚) Present FEM Mode shape
1 (1, 1) 0.889 0.889 Flexural
2 (0, 0) 0.898 0.898 Torsional
3 (2, 1) 0.908 0.908 Breathing
4 (0, 1) 0.946 0.946 Torsional
5 (0, 1) 0.951 0.951 Longitudinal
6 (3, 1) 0.984 0.984 Breathing
7 (1, 0) 0.990 0.990 Flexural
8 (1, 2) 1.087 1.087 Flexural
9 (0, 2) 1.089 1.089 Torsional
10 (2, 2) 1.1070 1.1070 Breathing
11 (4, 1) 1.1073 1.1073 Breathing
12 (1, 1) 1.113 1.113 Flexural
13 (3, 2) 1.171 1.171 Breathing
14 (2, 0) 1.251 1.251 Breathing
15 (5, 1) 1.271 1.271 Breathing
16 (4, 2) 1.281 1.281 Breathing
17 (0, 3) 1.327 1.327 Torsional
18 (1, 3) 1.337 1.337 Flexural

Table 3: Uncoupled natural frequencies 𝜔 [rd/s] for various mode
shapes of elastic solid.

No. (𝑛,𝑚) Present FEM Mode shape
1 (2, 0) 0.952 0.952 Breathing
2 (3, 0) 2.693 2.693 Breathing
3 (4, 0) 5.157 5.157 Breathing
4 (4, 1) 7.145 7.145 Breathing
5 (3, 1) 7.389 7.389 Breathing
6 (5, 0) 8.326 8.326 Breathing
7 (5, 1) 9.431 9.431 Breathing
8 (2, 1) 11.456 11.456 Breathing
9 (6, 0) 12.190 12.190 Breathing
10 (6, 1) 13.035 13.035 Breathing
11 (5, 2) 14.379 14.379 Breathing
12 (4, 2) 14.700 14.700 Breathing
13 (6, 2) 16.504 16.504 Breathing
14 (7, 0) 16.739 16.739 Breathing
15 (7, 1) 17.500 17.500 Breathing
16 (3, 2) 18.005 18.005 Breathing
17 (7, 2) 20.270 20.270 Breathing
18 (1, 1) 20.289 20.289 Flexural

where

𝑎11 = 𝐼𝑛 (𝑘𝑧𝑅1) , 𝑎12 = 𝐾𝑛 (𝑘𝑧𝑅1) ,
𝑎13 = − 𝑛𝑅1 𝐽𝑛 (𝑘𝜓𝑅1) ,



(a) 𝜔 = 0.952 (b) 𝜔 = 7.389

(c) 𝜔 = 11.456 (d) 𝜔 = 20.289

Figure 14: The modal shapes (𝑛,𝑚) of elastic solid without fluid: the colours pertain to the displacement filed.

𝑎14 = − 𝑛𝑅1𝑌𝑛 (𝑘𝜓𝑅1) ,
𝑎15 = 𝑘𝑧𝐽𝑛 (𝑘𝜓𝑅1) , 𝑎16 = 𝑘𝑧𝑌𝑛 (𝑘𝜓𝑅1) ,
𝑎21 = 𝑛𝑅1 𝐼𝑛 (𝑘𝑧𝑅1) , 𝑎22 = 𝑛𝑅1𝐾𝑛 (𝑘𝑧𝑅1) ,
𝑎23 = −𝐽𝑛 (𝑘𝜓𝑅1) , 𝑎24 = −𝑌𝑛 (𝑘𝜓𝑅1) ,

𝑎25 = 𝑛𝑘𝑧𝑅1 𝐽𝑛 (𝑘𝜓𝑅1) , 𝑎26 = 𝑛𝑘𝑧𝑅1 𝑌𝑛 (𝑘𝜓𝑅1) ,
𝑎31 = −𝑘𝑧𝐼𝑛 (𝑘𝑧𝑅1) , 𝑎32 = −𝑘𝑧𝐾𝑛 (𝑘𝑧𝑅1) ,
𝑎35 = 𝑘2𝜓𝐽𝑛 (𝑘𝜓𝑅1) , 𝑎36 = 𝑘2𝜓𝑌𝑛 (𝑘𝜓𝑅1) ,

𝑎41 = 𝐼𝑛 (𝑘𝑧𝑅2) , 𝑎42 = 𝐾𝑛 (𝑘𝑧𝑅2) ,
𝑎43 = − 𝑛𝑅2 𝐽𝑛 (𝑘𝜓𝑅2) ,
𝑎44 = − 𝑛𝑅2𝑌𝑛 (𝑘𝜓𝑅2) ,

𝑎45 = 𝑘𝑧𝐽𝑛 (𝑘𝜓𝑅2) , 𝑎46 = 𝑘𝑧𝑌𝑛 (𝑘𝜓𝑅2) ,
𝑎51 = 𝑛𝑅2 𝐼𝑛 (𝑘𝑧𝑅2) , 𝑎52 = 𝑛𝑅2𝐾𝑛 (𝑘𝑧𝑅2) ,
𝑎53 = −𝐽𝑛 (𝑘𝜓𝑅2) , 𝑎54 = −𝑌𝑛 (𝑘𝜓𝑅2) ,

𝑎55 = 𝑛𝑘𝑧𝑅2 𝐽𝑛 (𝑘𝜓𝑅2) , 𝑎56 = 𝑛𝑘𝑧𝑅2 𝑌𝑛 (𝑘𝜓𝑅2) ,



Table 4: Coupled natural nfrequencies 𝜔 [rd/s] for various mode
shapes.

No. (𝑛,𝑚) Present FEM Mode shape
1 (0, 1) 0.535 0.535 Torsional
2 (1, 1) 0.566 0.566 Flexural
3 (2, 1) 0.645 0.645 Breathing
4 (0, 2) 0.678 7.145 Torsional
5 (1, 2) 0.699 0.699 Flexural
6 (2, 0) 0.702 0.702 Breathing
7 (3, 1) 0.749 0.749 Breathing
8 (2, 2) 0.760 0.760 Breathing
9 (0, 1) 0.780 0.780 Longitudinal
10 (1, 1) 0.813 0.813 Flexural
11 (3, 2) 0.854 0.854 Breathing
12 (4, 1) 0.872 0.872 Breathing
13 (0, 3) 0.917 0.917 Torsional
14 (3, 0) 0.924 0.924 Breathing
15 (1, 3) 0.935 0.935 Flexural
16 (4, 2) 0.978 0.978 Breathing
17 (2, 3) 0.988 0.988 Breathing
18 (5, 1) 1.019 1.019 Breathing

𝑎61 = −𝑘𝑧𝐼𝑛 (𝑘𝑧𝑅2) , 𝑎62 = −𝑘𝑧𝐾𝑛 (𝑘𝑧𝑅2) ,
𝑎65 = 𝑘2𝜓𝐽𝑛 (𝑘𝜓𝑅2) , 𝑎66 = 𝑘2𝜓𝑌𝑛 (𝑘𝜓𝑅2) .

(A.2)

B.

ThematrixM2 in (20) is defined as follows:

M2 =
[[[[[[[
[

𝑏11 𝑏12 𝑏13 𝑏14 𝑏15 𝑏16𝑏21 𝑏22 𝑏23 𝑏24 𝑏25 𝑏26𝑏31 𝑏32 𝑏33 𝑏34 𝑏35 𝑏36𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56𝑎61 𝑎62 0 0 𝑎65 𝑎66

]]]]]]]
]
, (B.1)

where

𝑏11 = 𝜂 [2𝐼𝑛 (𝑘𝑧𝑅1) − 𝛼2𝐼𝑛 (𝑘𝑧𝑅1)] ,
𝑏12 = 𝜂 [2𝐾𝑛 (𝑘𝑧𝑅1) − 𝛼2𝐾𝑛 (𝑘𝑧𝑅1)] ,
𝑏13 = 2𝜂𝑛𝑅21 [𝐽𝑛 (𝑘𝜓𝑅1) − 𝑅1𝐽𝑛 (𝑘𝜓𝑅1)] ,
𝑏14 = 2𝜂𝑛𝑅21 [𝑌𝑛 (𝑘𝜓𝑅1) − 𝑅1𝑌𝑛 (𝑘𝜓𝑅1)] ,

𝑏15 = 2𝜂𝑘𝑧𝐽𝑛 (𝑘𝜓𝑅1) ,
𝑏16 = 2𝜂𝑘𝑧𝑌𝑛 (𝑘𝜓𝑅1) ,

𝑏21 = 2𝜂𝑛𝑅21 [𝑅1𝐼𝑛 (𝑘𝑧𝑅1) − 𝐼𝑛 (𝑘𝑧𝑅1)] ,
𝑏22 = 2𝜂𝑛𝑅21 [𝑅1𝐾𝑛 (𝑘𝑧𝑅1) − 𝐾𝑛 (𝑘𝑧𝑅1)] ,
𝑏23 = −𝜂 [2𝐽𝑛 (𝑘𝜓𝑅1) + 𝑘2𝜓𝐽𝑛 (𝑘𝜓𝑅1)] ,
𝑏24 = −𝜂 [2𝑌𝑛 (𝑘𝜓𝑅1) + 𝑘2𝜓𝑌𝑛 (𝑘𝜓𝑅1)] ,
𝑏25 = 2𝜂𝑛𝑘𝑧𝑅21 [𝑅1𝐼𝑛 (𝑘𝑧𝑅1) − 𝐼𝑛 (𝑘𝑧𝑅1)] ,
𝑏26 = 2𝜂𝑛𝑘𝑧𝑅21 [𝑅1𝐾𝑛 (𝑘𝑧𝑅1) − 𝐾𝑛 (𝑘𝑧𝑅1)] ,

𝑏31 = −2𝜂𝑘𝑧𝐼𝑛 (𝑘𝑧𝑅1) ,
𝑏32 = −2𝜂𝑘𝑧𝐾𝑛 (𝑘𝑧𝑅1) ,
𝑏33 = 𝜂𝑛𝑘𝑧𝑅1 𝐽𝑛 (𝑘𝜓𝑅1) ,
𝑏34 = 𝜂𝑛𝑘𝑧𝑅1 𝑌𝑛 (𝑘𝜓𝑅1) ,

𝑏35 = 𝜂 (𝑘2𝜓 − 𝑘2𝑧) 𝐽𝑛 (𝑘𝜓𝑅1) ,
𝑏36 = 𝜂 (𝑘2𝜓 − 𝑘2𝑧) 𝑌𝑛 (𝑘𝜓𝑅1) .

(B.2)

C.

The operator matrixM in (41) is defined as follows:

M = [A B

C D
] ,

A =
[[[[[[[[[[[
[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑏11 𝑏12 𝑏13 𝑏14 𝑏15 𝑏16𝑏21 𝑏22 𝑏23 𝑏24 𝑏25 𝑏26𝑏31 𝑏32 𝑏33 𝑏34 𝑏35 𝑏36

]]]]]]]]]]]
]

,

B =
[[[[[[[[[[[
[

𝑐17 𝑐18 𝑐19 𝑐1 10 𝑐1 11 𝑐1 12𝑐27 𝑐28 𝑐29 𝑐2 10 𝑐2 11 𝑐2 12𝑐37 𝑐38 𝑐39 𝑐3 10 𝑐3 11 𝑐3 12𝑐47 𝑐48 𝑐49 𝑐4 10 𝑐4 11 𝑐4 12𝑐57 𝑐58 𝑐59 𝑐5 10 𝑐5 11 𝑐5 12𝑐67 𝑐68 𝑐69 𝑐6 10 𝑐6 11 𝑐6 12

]]]]]]]]]]]
]

,



(a) 𝜔 = 0.702 (b) 𝜔 = 0.749 (c) 𝜔 = 0.645

(d) 𝜔 = 0.813

Figure 15: The modal shapes (𝑛,𝑚) of elastic solid with fluid: the colours pertain to the displacement filed.

C =
[[[[[[[
[

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26𝑎31 𝑎32 0 0 𝑎35 𝑎36𝑐10 1 𝑐10 2 𝑐10 3 𝑐10 4 𝑐10 5 𝑐10 6𝑐11 1 𝑐11 2 𝑐11 3 𝑐11 4 𝑐11 5 𝑐11 6𝑐12 1 𝑐12 2 𝑐12 3 𝑐12 4 𝑐12 5 𝑐12 6

]]]]]]]
]
,

D =
[[[[[[[
[

𝑐77 𝑐78 𝑐79 𝑐7 10 𝑐7 11 𝑐7 12𝑐87 𝑐88 𝑐89 𝑐8 10 𝑐8 11 𝑐8 12𝑐97 𝑐98 0 0 𝑐9 11 𝑐9 120 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

]]]]]]]
]
,

(C.1)

where

𝑐17 = 2𝜇[𝐼𝑛 (𝑘Φ𝑅0) + 𝜆]2𝑓𝛼42𝜇𝑐2𝐿 𝐼𝑛 (𝑘Φ𝑅0)] ,

𝑐18 = 2𝜇[𝐾𝑛 (𝑘Φ𝑅0) + 𝜆]2𝑓𝛼42𝜇𝑐2𝐿 𝐾𝑛 (𝑘Φ𝑅0)] ,
𝑐19 = 2𝜇𝑛𝑅20 [𝐼𝑛 (𝑘Ψ𝑅0) − 𝑅0𝐼𝑛 (𝑘Ψ𝑅0)] ,

𝑐1 10 = 2𝜇𝑛𝑅20 [𝐾𝑛 (𝑘Ψ𝑅0) − 𝑅0𝐾𝑛 (𝑘Ψ𝑅0)] ,



𝑐1 11 = 2𝜇𝑘𝑧𝐼𝑛 (𝑘Ψ𝑅0) ,
𝑐1 12 = 2𝜇𝑘𝑧𝐾𝑛 (𝑘Ψ𝑅0) ,

𝑐27 = 2𝜇𝑛𝑅20 [𝑅0𝐼𝑛 (𝑘Φ𝑅0) − 𝐼𝑛 (𝑘Φ𝑅0)] ,
𝑐28 = 2𝜇𝑛𝑅20 [𝑅0𝐾𝑛 (𝑘Φ𝑅0) − 𝐾𝑛 (𝑘Φ𝑅0)] ,
𝑐29 = 𝜇 [𝑘2Ψ𝐼𝑛 (𝑘Ψ𝑅0) − 2𝐼𝑛 (𝑘Ψ𝑅0)] ,

𝑐2 10 = 𝜇 [𝑘2Ψ𝐾𝑛 (𝑘Ψ𝑅0) − 2𝐾𝑛 (𝑘Ψ𝑅0)] ,
𝑐2 11 = 2𝜇𝑛𝑘𝑧𝑅20 [𝑅0𝐼𝑛 (𝑘Ψ𝑅0) − 𝐼𝑛 (𝑘Ψ𝑅0)] ,
𝑐2 12 = 2𝜇𝑛𝑘𝑧𝑅20 [𝑅0𝐾𝑛 (𝑘Ψ𝑅0) − 𝐾𝑛 (𝑘Ψ𝑅0)] ,

𝑐37 = −2𝜇𝑘𝑧𝐼𝑛 (𝑘Φ𝑅0) ,
𝑐38 = −2𝜇𝑘𝑧𝐾𝑛 (𝑘Φ𝑅0) ,
𝑐39 = 𝜇𝑛𝑘𝑧𝑅0 𝐼𝑛 (𝑘Ψ𝑅0) ,
𝑐3 10 = 𝜇𝑛𝑘𝑧𝑅0 𝐾𝑛 (𝑘Ψ𝑅0) ,

𝑐3 11 = −𝜇 (𝑘2Ψ + 𝑘2𝑧) 𝐼𝑛 (𝑘Ψ𝑅0) ,
𝑐3 12 = −𝜇 (𝑘2Ψ + 𝑘2𝑧)𝐾𝑛 (𝑘Ψ𝑅0) ,

𝑐47 = 2𝜇[𝐼𝑛 (𝑘Φ𝑅1) + 𝜆]2𝑓𝛼42𝜇𝑐2𝐿 𝐼𝑛 (𝑘Φ𝑅1)] ,

𝑐48 = 2𝜇[𝐾𝑛 (𝑘Φ𝑅1) + 𝜆]2𝑓𝛼42𝜇𝑐2𝐿 𝐾𝑛 (𝑘Φ𝑅1)] ,
𝑐49 = 2𝜇𝑛𝑅21 [𝐼𝑛 (𝑘Ψ𝑅1) − 𝑅1𝐼𝑛 (𝑘Ψ𝑅1)] ,

𝑐4 10 = 2𝜇𝑛𝑅21 [𝐾𝑛 (𝑘Ψ𝑅1) − 𝑅1𝐾𝑛 (𝑘Ψ𝑅1)] ,
𝑐4 11 = 2𝜇𝑘𝑧𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐4 12 = 2𝜇𝑘𝑧𝐾𝑛 (𝑘Ψ𝑅1) ,

𝑐57 = 2𝜇𝑛𝑅21 [𝑅1𝐼𝑛 (𝑘Φ𝑅1) − 𝐼𝑛 (𝑘Φ𝑅1)] ,
𝑐58 = 2𝜇𝑛𝑅21 [𝑅1𝐾𝑛 (𝑘Φ𝑅1) − 𝐾𝑛 (𝑘Φ𝑅1)] ,
𝑐59 = 𝜇 [𝑘2Ψ𝐼𝑛 (𝑘Ψ𝑅1) − 2𝐼𝑛 (𝑘Ψ𝑅1)] ,

𝑐5 10 = 𝜇 [𝑘2Ψ𝐾𝑛 (𝑘Ψ𝑅1) − 2𝐾𝑛 (𝑘Ψ𝑅1)] ,

𝑐5 11 = 2𝜇𝑛𝑘𝑧𝑅21 [𝑅1𝐼𝑛 (𝑘Ψ𝑅1) − 𝐼𝑛 (𝑘Ψ𝑅1)] ,
𝑐5 12 = 2𝜇𝑛𝑘𝑧𝑅21 [𝑅1𝐾𝑛 (𝑘Ψ𝑅1) − 𝐾𝑛 (𝑘Ψ𝑅1)] ,

𝑐67 = −2𝜇𝑘𝑧𝐼𝑛 (𝑘Φ𝑅1) ,
𝑐68 = −2𝜇𝑘𝑧𝐾𝑛 (𝑘Φ𝑅1) ,
𝑐69 = 𝜇𝑛𝑘𝑧𝑅1 𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐6 10 = 𝜇𝑛𝑘𝑧𝑅1 𝐾𝑛 (𝑘Ψ𝑅1) ,

𝑐6 11 = −𝜇 (𝑘2Ψ + 𝑘2𝑧) 𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐6 12 = −𝜇 (𝑘2Ψ + 𝑘2𝑧)𝐾𝑛 (𝑘Ψ𝑅1) ,

𝑐77 = ]𝛼2𝐼𝑛 (𝑘Φ𝑅1) ,
𝑐78 = ]𝛼2𝐾𝑛 (𝑘Φ𝑅1) ,

𝑐79 = −]𝛼2𝑛𝑅1 𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐7 10 = −]𝛼2𝑛𝑅1 𝐾𝑛 (𝑘Ψ𝑅1) ,
𝑐7 11 = ]𝛼2𝑘𝑧𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐7 12 = ]𝛼2𝑘𝑧𝐾𝑛 (𝑘Ψ𝑅1) ,
𝑐87 = ]𝛼2 𝑛𝑅1 𝐼𝑛 (𝑘Φ𝑅1) ,
𝑐88 = ]𝛼2 𝑛𝑅1𝐾𝑛 (𝑘Φ𝑅1) ,
𝑐89 = −]𝛼2𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐8 10 = −]𝛼2𝐾𝑛 (𝑘Ψ𝑅1) ,
𝑐8 11 = ]𝛼2 𝑛𝑘𝑧𝑅1 𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐8 12 = ]𝛼2 𝑛𝑘𝑧𝑅1 𝐾𝑛 (𝑘Ψ𝑅1) ,
𝑐97 = −]𝛼2𝑘𝑧𝐼𝑛 (𝑘Φ𝑅1) ,
𝑐98 = −]𝛼2𝑘𝑧𝐾𝑛 (𝑘Φ𝑅1) ,
𝑐9 11 = −]𝛼2𝑘2Ψ𝐼𝑛 (𝑘Ψ𝑅1) ,
𝑐9 12 = −]𝛼2𝑘2Ψ𝐾𝑛 (𝑘Ψ𝑅1) ,

𝑐10 1 = 𝜂 [2𝐼𝑛 (𝑘𝑧𝑅2) − 𝛼2𝐼𝑛 (𝑘𝑧𝑅2)] ,
𝑐10 2 = 𝜂 [2𝐾𝑛 (𝑘𝑧𝑅2) − 𝛼2𝐾𝑛 (𝑘𝑧𝑅2)] ,



𝛼

20015010050

First order value 𝛼 = 159.205

det[M1] for (n, m) = (1, 1)

Figure 16: Analytical calculation of eigenvalues 𝛼.

𝑐10 3 = 2𝜂 𝑛𝑅22 [𝐽𝑛 (𝑘𝜓𝑅2) − 𝑅2𝐽𝑛 (𝑘𝜓𝑅2)] ,
𝑐10 4 = 2𝜂 𝑛𝑅22 [𝑌𝑛 (𝑘𝜓𝑅2) − 𝑅2𝑌𝑛 (𝑘𝜓𝑅2)] ,

𝑐10 5 = 2𝜂𝑘𝑧𝐽𝑛 (𝑘𝜓𝑅2) ,
𝑐10 6 = 2𝜂𝑘𝑧𝑌𝑛 (𝑘𝜓𝑅2) ,

𝑐11 1 = 2𝜂 𝑛𝑅22 [𝑅2𝐼

𝑛 (𝑘𝑧𝑅2) − 𝐼𝑛 (𝑘𝑧𝑅2)] ,

𝑐11 2 = 2𝜂 𝑛𝑅22 [𝑅2𝐾

𝑛 (𝑘𝑧𝑅2) − 𝐾𝑛 (𝑘𝑧𝑅2)] ,

𝑐11 3 = −𝜂 [2𝐽𝑛 (𝑘𝜓𝑅2) + 𝑘2𝜓𝐽𝑛 (𝑘𝜓𝑅2)] ,
𝑐11 4 = −𝜂 [2𝑌𝑛 (𝑘𝜓𝑅2) + 𝑘2𝜓𝑌𝑛 (𝑘𝜓𝑅2)] ,
𝑐11 5 = 2𝜂𝑛𝑘𝑧𝑅22 [𝑅2𝐼𝑛 (𝑘𝑧𝑅2) − 𝐼𝑛 (𝑘𝑧𝑅2)] ,
𝑐11 6 = 2𝜂𝑛𝑘𝑧𝑅22 [𝑅2𝐾𝑛 (𝑘𝑧𝑅2) − 𝐾𝑛 (𝑘𝑧𝑅2)] ,

𝑐12 1 = −2𝜂𝑘𝑧𝐼𝑛 (𝑘𝑧𝑅2) ,
𝑐12 2 = −2𝜂𝑘𝑧𝐾𝑛 (𝑘𝑧𝑅2) ,
𝑐12 3 = 𝜂𝑛𝑘𝑧𝑅2 𝐽𝑛 (𝑘𝜓𝑅2) ,
𝑐12 4 = 𝜂𝑛𝑘𝑧𝑅2 𝑌𝑛 (𝑘𝜓𝑅2) ,

𝑐12 5 = 𝜂 (𝑘2𝜓 − 𝑘2𝑧) 𝐽𝑛 (𝑘𝜓𝑅2) ,
𝑐12 6 = 𝜂 (𝑘2𝜓 − 𝑘2𝑧) 𝑌𝑛 (𝑘𝜓𝑅2) .

(C.2)

D.

See Figure 16.
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[12] A. Bermúdez and R. Rodŕıguez, “Modelling an numerical
solution of elastoacoustic vibrations with interface damping,”
International Journal for Numerical Methods in Engineering, vol.
46, no. 10, pp. 1763–1779, 1999.

[13] G. G. Stokes, “On the effect of the internal friction of fluids on
themotion of pendulums,”Transactions of the Cambridge Philo-
sophical Society, vol. 9, pp. 8–106, 1851.

[14] H. Lamb, Hydrodynamics, Cambridge University Press, 1932.
[15] D. D. Joseph, “Potential flow of viscous fluids: historical notes,”

International Journal of Multiphase Flow, vol. 32, no. 3, pp. 285–
310, 2006.

[16] R. Kidambi, “Oscillatory stokes flow in a cylindrical container,”
Fluid Dynamics Research, vol. 38, no. 4, pp. 274–294, 2006.

[17] P. N. Shankar, “Three-dimensional eddy structure in a cylindri-
cal container,” Journal of Fluid Mechanics, vol. 342, pp. 97–118,
1997.

[18] G. Pontrelli and A. Tatone, “Wave propagation in a fluid
flowing through a curved thin-walled elastic tube,” Journal of
FluidMechanics, vol. 5, pp. 113–133, 1971.

[19] B. Sweetman, M. Xenos, L. Zitella, and A. A. Linninger, “Three-
dimensional computational prediction of cerebrospinal fluid
flow in the human brain,” Computers in Biology and Medicine,
vol. 41, no. 2, pp. 67–75, 2011.



[20] S. Gupta, M. Soellinger, P. Boesiger, D. Poulikakos, and V.
Kurtcuoglu, “Three-dimensional computational modeling of
subject-specific cerebrospinal fluid flow in the subarachnoid
space,” Journal of Biomechanical Engineering, vol. 131, no. 2, 11
pages, 2009.

[21] V. V. Mokeyev, “On a method for vibration analysis of viscous
compressible fluid-structure systems,” International Journal for
NumericalMethods in Engineering, vol. 59, no. 13, pp. 1703–1723,
2004.

[22] M. Morse and H. Feshbach, Methods of Theoretical Physics,
McGraw-Hill, New York, NY, USA, 1946.

[23] R. Ohayon and C. Soize, Structural Acoustics and Vibration,
Academic Press, 1997.

[24] M. P. Paidoussis, Fluid-Structure Interactions Slender Structures
and Axial Flow, vol. 1, London Academic Press, 1997.

[25] M. P. Paidoussis, Fluid-Structure Interactions Slender Structures
and Axial Flow, vol. 2, Elsevier Academic Press, London, UK,
2004.

[26] “Comsol Multiphysics 3.5a,” User’s Guide, 2008.
[27] “Comsol Multiphysics 3.5a,” Reference Guide, 2008.
[28] T. A. Davis, “Algorithm 832: UMFPACKV4.3: an unsymmetric-

patternmultifrontal method,”ACMTransactions onMathemat-
ical Software, vol. 30, no. 2, pp. 196–199, 2004.


