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a b s t r a c t

Sequential sheet metal forming processes can result in the accumulation of work hardening and damage

effects in the workpiece material. The mechanical strength of the final component depends on the ‘‘evo-

lution’’ of these two characteristics in the different production steps. The punching process, which is usu-

ally in the beginning of the production chain, has an important impact on the stress, strain and damage

states in the punched zones. It is essential that the influence of these mechanical fields be taken into

account in the simulation of the forming sequence. In order to evaluate the evolution of each phenome-

non, and in particular damage accumulation in the forming process, it is essential to characterize the

punching process. The objective of this work is to understand and identify the physical damage mecha-

nisms that occur during the punching operation and to establish relevant numerical models to predict the

fracture location. The effect of the punch–die clearance on mechanical fields distribution is also discussed

in this work.

1. Introduction

Punching is one of the most commonly used industrial sheet

metal forming processes. It allows the elaboration of components

using a relative small number of passes. The punching process is

generally followed by other forming processes such as bending,

edge rounding, stamping, and hydro-forming. The performance of

these subsequent operations is thus related to the punching oper-

ation and the strain history in the punched zones. It is therefore

important to identify and characterize the behavior and evolution

of the damage caused by punching in order to take into account

these phenomena in the global formability analysis of the manu-

facturing cycle. Good understanding of the damage mechanisms

involved during shearing can reduce and limit damage, via the

good management of the complete set of forming process

parameters.

In the punching process, damage appears gradually in the sheet

metal following the onset of plastic deformation and corresponds

to a drop of the punching force. In terms of the numerical simula-

tion of punching, there are two principal approaches: (a) empirical

models and (b) models based on the evolution of a damage param-

eter. The first approach does not consider damage variables. A

function of the loading and strain histories is used. This function

is assumed to be capable of indicating the damage level. Hambli

and Potiron [1] and Lemiale et al. [2] have published reviews of

these criteria. Several criteria have been studied, including the

Cockcroft–Latham criterion [3], the Rice and Tracey criterion [4]

and the Oyane criterion [5]. This author has determined the critical

value for each criterion by knowing the punch penetration value at

rupture and by adjusting the effect of the clearance between the

punch and the die. The author proposed a modification of the Rice

and Tracey criterion. This modification was justified by its ability to

predict the penetration at fracture in relation to the influence of

the clearance between the punch and the die.

Other studies have shown that the Cockroft–Latham criterion is

able to realistically predict the penetration at failure [6–11]. Bacha

et al. [10] showed that in the zone between the punch and the die,

large deformations are localized prior to the initiation and propa-

gation of cracks. The crack path is controlled by the stress and

strain fields in this area and the damage parameter is based on

the accumulated plastic strain. These models, in which the damage

is not coupled to the plasticity, have the advantage of being simple

to implement in finite element codes and have a small number of

parameters to identify. However, it has been shown experimen-

tally that they overestimate the punching loads and are not capa-

ble of predicting the damage for complex loading paths and large

plastic strain, which is the case for the punching process ([6,11–

16]).

The second family of models is based on a coupled approach.

In this category two damage models are widely used in metal
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punching. The first was proposed by Lemaitre [17] and is based on

the thermodynamics of irreversible processes. The concepts of

effective stress and strain equivalence are used to makes it possible

to define a damage variable. The second model was proposed by

Gurson, [18] Tvergaard and Needleman GTN [19] and is based on

the analysis of the evolution of micro-cavities (nucleation, growth

and coalescence). This model has the advantage of describing the

physical evolution of the failure mechanisms. However, it is

limited by the fact that shear effects are not taken into account

in its formulation. This makes the model unable to predict damage

localization and fracture under stress states characterized by low

stress triaxiality such as those found in the punching process. For

conditions in which shear loads are dominate the distortion of

ligaments between voids and cavities plays a crucial role in the

evolution of the internal degradation of the material. Therefore,

to improve the predictive ability of GTN model under low levels

of stress triaxiality, Nahshon and Hutchinson [20] and Nielsen

and Tvergaard [21] proposed the introduction of a shear

mechanism in the evolution law of the cavities.

The objective of this work is to experimentally and numerically

characterize the punching process. The study begins with a micro-

scopic analysis to identify the physical damage mechanisms that

occur during punching operations, followed by a description of

the experimentally observed phenomena using an improved

numerical formulation based on a micromechanical approach.

The damage predictions using this approach are compared to a

non-coupled criterion based on the accumulation of plastic strain

as a function of the stress state. Four values of the clearance be-

tween the punch and die have been studied in order to validate

the predictive capacity of the models investigated in terms of the

penetration at fracture initiation and the size of the different zones

on the punched profile.

2. Experimental study

2.1. Tooling and operating conditions

Punching tests were carried out using a tool mounted on a

hydraulic press (type: MIB) with a capacity of 100 tons, equipped

with force and displacement transducers. The tooling consists of

a punch and a die with a cylindrical shape (see Fig. 1).

Four punches with four different diameters Dp were used to

vary the clearance between the punch and the die.

The normalized clearance is calculated as a percentage of the

sheet thickness t by the following equation:

J ð%Þ ¼ Dd � Dp

2t
100 ð1Þ

where Dd is the die diameter and Dp is the punch diameter.

The test specimens are square in shape (90 � 90 mm2) and are

all taken from the same batch of material (thickness

t = 3.55 mm). Table 1 summarizes the geometry of the punches

used. The die diameter is held constant at Dd = 40.6 mm. The radii

of the cutting edges of the punch and the die are equal to 0.01 mm.

All of the tooling (punches and die) is heat-treated to obtain an

average hardness of approximately 60 HRC. The hardness of the

sheet is approximately 30 HRC. A load cell of type FGS (Fine Guid-

ance Sensor, reference: FN-2554) with a maximum capacity of 50

tons is embedded in the load train to directly measure the applied

force (F). The punch displacement (d) is measured by a displace-

ment transducer (type: BALLUFF 02F9-BTL). Both transducers are

connected to a data acquisition system. The banking speed is fixed

at 300 mm/min.

2.2. Punched profile characterization

In order to characterize the quality of the profile after punching,

thirty specimens were prepared for micrographic analysis. Fig. 2

shows the geometry of the parts obtained after the punching oper-

ation. The parts were carefully cut at their mid-width (i.e. l/2

width = 45 mm) to analyze the punched profile along the XY plane

(zone 1) and YZ plane (zone 2).

The quality of the punched profile is characterized by the width

of the following zones:

� The rollover zone: DRol.

� The shear zone: DShe.

� The fracture zone: DFra.

� The burr zone: Dbur.

� The fracture angle: bFra.

Figs. 3 and 4 show the different areas on the punched edge

observed for J(%) = 13.

Fig. 1. Punching tools [25].



3. Finite element modeling

3.1. Numerical conditions

The commercial finite element package, ABAQUS/Explicit, was

used to simulate the punching process as a 2D axisymmetric mod-

el. The numerical simulation conditions and the initial mesh are

shown in Fig. 5. The size of the elements in the shear zone is

100 � 100 lm. Axisymmetric 4-node quadratic elements with re-

duced integration (CAX4R) are used. The Coulomb friction model

is used to represent the contact between the sheet and the tools

with a coefficient of friction equal to 0.1. The punch and the die

are considered to be rigid bodies. The ALE option (Arbitrary

Lagrangian Euleurian) [22] is activated to avoid the distortion of

elements in the most solicited area [23]. The following three dam-

age models are investigated to determine their predictive capacity

in terms of the punching process:

� The classical Gurson–Tvergaard–Needleman model (GTN).

� The modified Gurson–Tvergaard–Needleman for shear loading.

� The ductile fracture initiation criterion.

3.2. The constitutive equations

3.2.1. The Gurson–Tvergaard–Needleman model

In 1977, Gurson [18] deduced a flow potential for the growth of

spherical voids. This model is widely-used to describe the evolu-

tion of micromechanical damage in ductile materials. In 1984,

Tvergaard and Needleman [19] extended the Gurson model by

introducing two additional material parameters (q1 and q2) to help

the model agree better with experiments.

Table 1

Conditions of punching process.

Condition Punch diameter Dp (mm) Clearance J (%)

1 40,12 7

2 39,70 13

3 39,34 17

4 38,36 31

Fig. 2. Preparation of specimens for microscopic analyses.

Fig. 3. Experimental punched profile of a component obtained by SEM in zone 1.



The flow potential proposed by Gurson–Tvergaard–Needleman

(GTN) can be written as:

U ¼ q

r0

� �2

þ 2q1f
� cosh �3q2p

2r0

� �

� ð1þ q2
1f

�2Þ ¼ 0 ð2Þ

where r0 is flow stress in the fully dense patrix, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3=2Þs : s
p

is

the von Mises equivalent stress, s is the deviatoric stress tensor

and p ¼ �traceðrÞ=3 is the hydrostatic stress.

The damage variable f⁄, which takes into account the final

decrease in load, is a function of the void volume fraction f:

f � ¼
f for f 6 fc

fc þ ðf � fcÞ fu�fc
ff�fc

for f > fc

(

ð3Þ

fc is the critical value of the void volume fraction, fu ¼ 1=q1 is the

ultimate void volume fraction and ff is the void volume fraction at

fracture.

The evolution of the total void volume fraction, due to the

plastic strain, is corresponding to the void growth and the nucle-

ation of new voids:

_f ¼ _f growth þ _f nucleation ð4Þ

The increment of volume fraction caused by the void growth is

controlled by the trace of plastic strain rate, and takes the follow-

ing form:

_f growth ¼ ð1� f Þtrð _epÞ ð5Þ
_ep is the plastic strain rate tensor.

Assuming the plastic strain only controls the nucleation

mechanism as results of inclusions debonding and cracking. The

increment of volume fraction caused by the void nucleation,

which is controlled by the equivalent plastic strain rate _�ep , can

be written as:

_f nucleation ¼ A _�ep ð6Þ

Fig. 4. Punched surface obtained by binocular microscope: (a) in zone 2, (b) in zone 1.

Fig. 5. The boundary conditions and the initial mesh used in the finite element

simulations [25].



The parameter A is defined as a function of the equivalent plas-

tic strain. Chu and Needleman [24] proposed the form of the coef-

ficient A as:

A ¼
fN

SN
ffiffiffiffi

2p
p exp � 1

2

�ep�eN
SN

� �2
� �

for pP 0

0 for p < 0

8

<

:

ð7Þ

where fN is the quantity of voids nucleated per unit volume, eN is the

nucleation strain and SN is corresponding standard deviation.

3.2.2. Modified GTN model in shear loading

For low stress triaxiality (g = �p/q), the Gurson model is unable

to predict the void growth rate. This issue is the subject of a recent

modification of the GTN model, proposed by Nahshon and Hutch-

inson [20]. This modification introduces a phenomenological term

that models the distortion and reorientation of voids dominated by

shear stresses. This phenomenon was observed and discussed in

[25].

The new expression introduced by Nahshon and Hutchinson

[20] is:

_f shear ¼ kw
fw0ðrÞ

q
s : _ep ð8Þ

where w0ðrÞ is a function of the stress state, characterized by the

normalized third invariant of the deviatoric stress tensor

(n ¼ 27J3=2q
3). The function w0ðrÞ is given by:

w0ðrÞ ¼ wðnÞ ¼ 1� ðnÞ2 ð9Þ

where J3 = det(s) is the third invariant of the deviatoric stress tensor,

s ¼ rþ pI, I is the unit tensor.

The parameter kw in Eq. (8) is the magnitude of the damage

growth rate in shear.

The shear extension in Eqs. (8) and (9) has an important effect

in some cases with higher stress triaxiality, like the case of uniaxial

tension in a state of plane strain, where the stress triaxiality is

approximately 0.577. Nielsen and Tvergaard [21] have introduced

a simple extension to improve the damage development prediction

at moderate to high stress triaxiality.

The extension has been proposed by introducing an additional

factor, XðgÞ, in the shear damage evolution term, which depends

on the level of stress triaxiality. For this, w0ðrÞ is expressed in

the following form:

w0ðrÞ ¼ wðnÞXðgÞ; with XðgÞ ¼
1; for g < g1
g�g1
g1�g2

; for g1 6 g 6 g2

0; for g > g2

8

>

<

>

:

ð10Þ

where g1 < g2 and wðnÞ are given by Eq. (9). This implies that the

Hutchinson and Nahshon model is used for g 6 g1, while the GTN

model is used for gP g2.

Finally, after the addition of the new contribution for shear

loads, _f shear , the evolution of the total void volume fraction

becomes:

_f ¼ ð1� f Þtrð _epÞ þ A _�ep þ kw
fwðrÞ

q
s : _ep ð11Þ

This improved Gurson model for shear loading conditions has

been implemented in the ABAQUS/Explicit finite element code,

using a VUMAT subroutine [26].

The material parameters have been calibrated using an identifi-

cation strategy based on an experimental campaign using uniaxial

tensile tests on smooth, notched and shear specimens, that covers

a wide range of stress states. An inverse method is then used to

identify the parameters, via comparison between the experimental

and numerical data. The Ref. [25] presents more details for the

parameters calibration procedure. The material parameters are

summarized in Table 2.

3.2.3. Ductile fracture initiation criterion

Ductile fracture predictions in the manufacturing phase can be

obtained by the use of a ductile fracture initiation criterion [27]:

W ¼
Z er

0

dep

erðgÞ
¼ 1 ð12Þ

where �ep is the equivalent plastic strain, �er is the plastic strain at

fracture and g is the stress triaxiality.

Table 2

Parameters of the shear modified Gurson model [25].

Parameters f0 q1 q2 SN fN eN fc ff kw g1 g2

Values 0.0015 1.2 0.8 0.1 0.02 0.2 0.08 0.13 0.86 0.34 0.7

Fig. 6. Different specimen shapes used to characterize the stress state [25].

Fig. 7. Evolution of the equivalent plastic strain at fracture versus the stress

triaxiality.



Tensile tests using different specimen geometries (see Fig. 6)

were carried out to determine the function �erðgÞ for different stress
states.

The evolution of the stress triaxiality g is calculated numeri-

cally at the integration point of the element in which fracture ini-

tiation is predicted. The equivalent plastic strain at fracture �er
corresponds to the drop in load or stress observed in tensile

curves. It should be noted that the values of the parameter g
are not constant during deformation. Consequently, average val-

ues are used to characterize their influence on ductile fracture.

The average triaxiality gmoy is defined by the following formula

[28–31]:

g ¼ 1
�er

Z er

0

gd�ep ð13Þ

Fig. 7 shows the evolution of the equivalent plastic strain at

fracture as a function of the stress triaxiality which can be ex-

pressed in the following exponential form:

�erðgÞ ¼ 1:48e�0:86g ð14Þ

In manufacturing processes, where ductile rupture is preceded

by a high level of plastic strain, the indicatorW can be used to esti-

mate ductile fracture initiation. It is assumed that the fracture

Fig. 8. Macroscopic crack process a function of the punch penetration for J(%) = 13: (a) 12% penetration, (b) 18% penetration, (c) 26.5% penetration and (d) 27.5% penetration.

Fig. 9. Microscopic mechanisms for crack creation at 26.5% punch penetration.



starts for WP 1. The elements, for which the indicator reaches the

critical value, are deleted (using the ‘‘kill element’’ method).

4. Results and discussion

4.1. Experimental results

4.1.1. The process of crack creation

In order to describe the behavior of the sheet metal during the

punching process, interrupted tests at various levels of punch pen-

etration have been performed with a clearance of 13%. The speci-

mens were analyzed by SEM (Scanning Electron Microscopy) in

order to better understand the mechanisms of deformation and

fracture in zone 1 (see Fig. 2) where the plastic strain and damage

are located. Selected images from these observations are shown in

Fig. 8.

The crack path can be divided into two zones. A smooth area

where a shoulder appears on the sheet surface, represented by

zone A (Fig. 8a–c), which begins to form parallel to the punching

direction. The crack forms under a mode II loading condition (i.e.

shear loads). In the area around the tip of the crack (zone B,

Fig. 8d), the crack propagates in mode I (i.e. under tensile loads)

via deviation from the shear zone to the angle of fracture, brup. Bro-

berg [32] showed that the damage is limited to a small region at

the crack tip. In the next section, the propagation mechanisms in

this region are analyzed in detail.

4.1.2. Microscopic crack propagation mechanisms

Fig. 9 shows images obtained just before crack initiation in the

zone where the cutting tool edges make contact with the sheet

metal for a clearance of 13%. A deformation area is located between

the cutting edges of the punch and the die (Fig. 9a). This area is

associated with the concentration of the stress, strain, and damage

fields. A network of micro-cracks (Fig. 9c and d) with an average

size of 150 lm and micro-cavities around inclusions with an

average size of 60 lm, is propagated along the shear direction

(punching direction). This set of micro-cracks and cavities appears

prior to the initiation of the macroscopic crack (zone B in Fig. 8d)

which begins by forming the crack-tip via coalescence between

multiple defects (voids and micro-cracks). These interactions allow

the propagation of the crack-tip to defects created by the contact of

the sheet with the cutting edge of the punch (Fig. 9b). The propa-

gation of this network between cavities and micro-cracks leads to

the creation of the fracture zone defined by the parameters Dfra

and bfra.

The principal observed results from micrographic analysis are:

� The crack propagates in a deformation zone where the material

is completely plastically deformed.

� The damage is limited to the crack-tip which is formed on the

cutting edge side of the die to form the fracture zone and that

represents fracture initiation.

� The crack propagation mechanisms are defined by the

interaction between the cavities and/or micro-cracks. These

mechanisms affect locally the crack path.

Also, the crack path is not controlled by the local microstructure

of the material, but by the plastic strain field close to the crack-tip.

4.1.3. Impact of the process on the hardness in the vicinity of the

punched edge

A series of micro-hardness tests (200 g) were performed on

punched specimens for the conditions J(%) = 13 and J(%) = 31. The

punched profiles of the specimens used to measure the micro-

hardness are similar to those shown in Fig. 3. The aim of these

measures is to estimate the evolution of work hardening along

the shear zone. Fig. 10 shows that the hardness decreases from

the edge of the specimen to its heard. The material hardness is

affected by the punching operation over a distance which depends

of the punch–die clearance (i.e. about 950 lm for J(%) = 13 and

greater than 1 mm for J(%) = 31). For a fixed distance from the edge,

the hardness, which reflects the hardening, is higher for a larger

clearance.

4.2. Analysis of load–penetration curves

In this section, the experimentally determined load curves, ob-

tained during punching tests, are compared to numerical results.

4.2.1. Press stiffness

Fig. 11 shows a significant difference between the slope of the

elastic part of the experimental1 and numerical curves, for the

J = 13% condition. This difference is related to the stiffness of

the press Kpress, which must be taken into account by correcting

the experimental curve. This correction is discussed below and is

similar to the method used in Refs. [33,34].

The corrected displacement is given by:

DXcorrected ¼ DXmeasured � DXpress ð15Þ

where:

DXpress ¼
F

Kpress

ð16Þ

Fig. 10. Micro-hardness profile near the shear zone of the punched surface.

Fig. 11. Correction of the press stiffness.

1 For interpretation of color in Figs. 11 and 16, the reader is referred to the web

version of this article.



where Kpress = 31 KN/mm. This value is determined by minimizing

the squared error between the experimental and numerical loads

for values varying within the elastic range of the material

(0–120 kN). Fig. 11 shows an example of a load–penetration curve,

corrected using this method.

4.2.2. Prediction of load–penetration curves

Several numerical simulations have been performed, with the

different clearance values tested experimentally, in order to study

the influence of the clearance and to validate the fracture models

investigated in this study. This is done by comparing the predicted

maximum punching load and the penetration associated with frac-

ture initiation, with the experimentally determined values. Fig. 12

shows a comparison between the experimental load–penetration

curves and those predicted by the classical GTN model, the modi-

fied GTN model and the fracture initiation criterion. These results

are analyzed in detail in the following section.

4.3. The influence of the punch–die clearance

The punch–die clearance is a process parameter that has a strong

influence on the quality of the components produced by punching.

4.3.1. Influence of the punch–die clearance on the maximum load

Fig. 13 shows the evolution of the maximum load versus the

punch–die clearance for both the experimental and numerical

Fig. 12. Prediction of load–penetration curves: (a) J(%) = 7, (b) J(%) = 13, (c) J(%) = 17 and (d) J(%) = 31.

Fig. 13. Effect of clearance variation on the maximum punching load. Fig. 14. Effect of clearance variation on the punch penetration at fracture initiation.

Table 3

Prediction errors (%) for the penetration at fracture initiation.

Clearance (%) 7 13 17 31

Classical GTN model 54,07 57,45 66,66 131,25

Modified GTN model 8,51 3,27 19,85 65,31

Fracture initiation criterion 37,10 35,63 21,98 3,12



results. It can be observed that there is a decrease in the maximum

punching load when the clearance is increased (i.e. a 204 kN for

J(%) = 7 to 174 kN for J(%) = 31). The numerical curves have a simi-

lar shape to the experimental curves, for all clearance values. It is

observed that the fracture initiation criterion provides an accept-

able overall prediction of the maximum load compared to the

other damage models. The prediction by the modified GTN model

is an improvement compared to the conventional GTN model.

4.3.2. Influence of the clearance on the penetration associated with

fracture initiation

The penetration value Uf associated with fracture initiation is

calculated by the following formula [35]:

Uf ¼ Drol: þ Dshe: þ rp ð17Þ

where rp is the radius of the cutting edge of the punch.

Fig. 14 shows an increase in the value of Ur as a function of the

clearance (i.e. 27% of the thickness for J(%) = 7 to 32% of the thick-

ness for J(%) = 31). Table 3 summarizes the prediction errors for the

penetration at fracture initiation, with respect to the experimental

results. It is noted that the modified GTN model results in good

predictions for the penetration at fracture initiation for J(%) = 7

and J(%) = 13, but is less accurate for J(%) = 17 and the prediction

for J(%) = 31 is far from the experimental result. This can be ex-

plained by the fact that the domain of validity of the parameter

kw of the modified GTN model is limited by the range of stress tri-

axiality used for its identification. The classical GTN model is un-

able to predict the correct penetration at fracture initiation for all

clearance values. The errors are 54% for J(%) = 7 and approximately

131% for J(%) = 31. This is due to the inadequacy of the model to

capture the damage accumulation for shear dominated loads. The

prediction errors for fracture initiation criterion decrease with

increasing clearance. This criterion gives good predictions for

clearances of J(%) = 17 and J(%) = 31, and is less accurate for the

other two clearances (7% and 13%).

4.3.3. Influence of the clearance on the evolution of the punched profile

zone sizes

Fig. 15 shows some examples of the numerically determined

punched profiles obtained after the fracture. Note that the burr

zone is absent for a clearance of 13% and that it is present for a

clearance 31%. The fracture zone and the fracture angle are absent

for the clearance of 31% for the prediction using the fracture initi-

ation criterion. In the last image (Fig. 15d) the existence of two sur-

faces on the punched zone can be observed (i.e. a concave surface

at the top of this area and a convex surface at the bottom before the

burr formation).

Fig. 16 shows the evolution of the size of the various zones on

the punched profile as a function of the clearance value. For each

clearance, the size of the zones shown in Fig. 3 is measured by

SEM. Each experimental value is represents an average of five mea-

sured specimens.

The rollover zone (Fig. 16a) increases with increasing clearance.

This is related to the fact that the sheet is subject to greater bend

loads when the clearance is increased. It can be observed that

the predicted evolutions of the size of this zone show the same

trend, for all of the damage models, as the experimental evolution

(i.e. the size of the zone increase with the clearance). The modified

GTN model gives good predictions for the size of the rollover area

for the first two clearance values, as does the fracture initiation cri-

terion. However, the predictions are less accurate for the two larg-

est clearances.

The sheared zone and the fracture zone (Fig. 16b and c) are the

largest surfaces of the punched profile. With increasing clearance,

it can be observed experimentally (i.e. the blue curve) that the

shear zone decreases and the fracture zone increases. For small

clearances, the hydrostatic pressure in the shear zone is the highest

which retards the crack initiation necessary to create the fracture

zone. These results confirm the results from the literature de-

scribed in Ref. [11].

The modified GTN model is in good agreement with the exper-

imental results for the first three clearances but is not predictive

Fig. 15. Examples of numerical profiles after fracture by punching: (a) J(%) = 13 (modified GTN model), (b) J(%) = 13 (fracture ignition criterion), (c) J(%) = 31 (modified GTN

model) and (d) J(%) = 31 (fracture initiation criterion).



Fig. 16. Evolution of punched profile as a function of the clearance variation: (a) rollover zone, (b) shear zone, (c) fracture zone, (d) burr zone and (e) fracture angle.

Fig. 17. Evolution of stress triaxiality versus punch penetration for different clearances.



for the most important clearance (J(%) = 31) where the evolution is

reversed. The prediction of these two parts with the fracture initi-

ation criterion is fairly remote to experimental results.

The evolution of the burr zone, shown in Fig. 16d, shows the in-

crease of this zone with increasing clearance values. The numerical

prediction of the size of this area does not correspond to the exper-

imental values. Indeed, the prediction of burr formation is absent

for clearances less than 31%. Damaged elements are completely re-

moved for the clearances 7%, 13% and 17%. For a clearance 31%,

there is sufficient space for the elements to be deformed more

freely and form a burr of significant size.

Fig. 16e shows the evolution of the fracture angle as a function

of the clearance for the experimental and numerical results. The

experimental curve as well as those predicted by the classical

GTN and the modified GTN models show that increasing the clear-

ance leads to a significant increase in the fracture angle and there-

fore reduces the quality of the punched profile. Note that the

numerical prediction obtained by the modified GTN model is in

good agreement with the experimental results for the first three

clearance values. It is observed that the formation of the fracture

angle is absent from the numerical predictions for a clearance of

31% (Figs. 15d and 16e).

4.3.4. Discussion

After having studied the influence of the clearance on (a) the

maximum punching load, (b) the penetration at fracture initiation

and (c) the evolution of the different zones forming the punched

profile, it can be concluded that the choice of a relatively small

clearance results in a smoother surface quality by reducing the

fracture zone, the fracture angle and burr formation. A small clear-

ance value limits geometrical defects and crack initiation. How-

ever, this choice leads to a high stress concentration at the

cutting edges of the tools (die and punch) [14], which may result

in higher damage and wear and requires greater punching loads.

Therefore, an optimal clearance value must be identified on the

one hand, to obtain a good surface quality with an acceptable shear

zone, and secondly to minimize the stress concentration at the tool

cutting edges.

4.4. Prediction of the stress, strain and damage fields

4.4.1. Evolution of stress state

The analysis of the stress state produced in the clearance zone,

during the penetration of the punch into the material (Fig. 17),

shows that the stress triaxiality varies within a range of �0.2 to

0.6 depending on the level of punch penetration and the clearance

value. The normalized third invariant stress remains constant in

this zone (n � 0).

For a given value of the clearance, the stress state associated

with a punch penetration of 15% is similar to shear mode where

the average stress triaxiality in this area does not exceed a value

of approximately 0.1. When the punch penetration increases to

20%, the stress state evolves to a state of uniaxial tension. This

trend continues up to a punch penetration up about 40% of the

thickness of the sheet. The increase in the stress triaxiality is more

localized near the cutting edge of the die, and is less pronounced

near the cutting edge of the punch. The evolution of the stress tri-

axiality on both cutting edges, as a function of the punch penetra-

tion, results in the formation of a deformation zone that is home to

high stresses which promote the initiation and propagation of

cracks.

4.4.2. Evolution of the equivalent plastic strain

Fig. 18 shows the distribution of the equivalent plastic strain for

various stages of punch penetration and for each clearance value.

For each condition, the appearance of a band of localized plastic

Fig. 18. Evolution of equivalent plastic strain versus punch penetration for different clearances.

Fig. 19. Evolution of equivalent plastic strain in the most affected region of the

shear zone.



strain can be seen at the contact between the tool cutting edges

(punch and die) and the sheet. With increasing punch penetration,

this band propagates on both sides, into the thickness of the sheet,

to form a zone of plastic strain, the size of which depends on the

clearance. The highest values of equivalent plastic strain are ob-

tained for the highest values of punch penetration and smallest

clearance value. This region is characterized by a very high level

of work hardening prior to the damage phase.

In order to study the impact of the punching process on the

punched edge after complete fracture, the hardened zone has been

analyzed numerically in terms of its size and degree of hardening.

Fig. 19 shows that the equivalent plastic strain decreases from the

surface of the punched profile to the center of the heard, which

confirms the micro-hardness values shown in Fig. 10. A compari-

son between the results for two clearance values shows that the

clearance affects the hardened depth. That is, an increase in clear-

ance of 13–31% leads to an affected depth, which is 29% larger. The

reduction of the clearance results in the high material hardening

being localized near the punched profile. The equivalent plastic

strain is reduced by 70% at 0.7 mm from the edge. This reduces

the probability of cracking.

4.4.3. Damage and fracture predictions

Fig. 20 shows the distribution of the damage parameters (i.e.

WF for GTN model, SDV13 for modified GTN model, and DUCTCRT

for the fracture initiation criterion) as a function of the punch pen-

etration for the J(%) = 13 condition. As discussed in the previous

section, the finite elements models have shown that the plastic

strain is localized in the shear zone. During this localization, the

displacement of the punch causes damage localization in this area.

The damage increases locally to a sufficiently large magnitude to

cause internal failure of the material and consequently induce frac-

ture along the thickness.

Fig. 20. Damage distribution for different stages of punch penetration (J(%) = 13): (a) classical GTN model; (b) modified GTN model and (c) fracture initiation criterion.



The prediction of the location in which crack initiation occurs

depends on the used model. Indeed, the classical GTN model,

which overestimated the penetration associated with fracture ini-

tiation, shows that the crack initiates at the die side cutting edge

and propagates in the direction of the contact between the sheet

and the punch cutting edge (Fig. 20a).

The predictions obtained by the modified GTN model are shown

in Figs. 20b and 21. The damage accumulates and starts to grow at

the die cutting edge (at 5% punch penetration) and at the punch

cutting edge (at 10% of punch penetration). When the void volume

fraction reaches its critical value (8%), fracture initiates at the die

side cutting edge at 28.5% punch penetration. It propagates to-

wards another crack created at the punch cutting edge at 33%

punch penetration. Both cracks propagate toward the center of

the thickness, which leads to total fracture of the material. The

numerically predicted fracture location is in good agreement with

the experimental observations shown in Fig. 8d.

The evolution of the void volume fraction is more rapid for the

modified GTN model when compared to the classical GTN model

(Fig. 22). This significant acceleration in the growth rate of the void

volume fraction is due to the accumulation of damage induced by

the shear term in the modified GTN model which is neglected by

the classical GTN model.

Concerning the fracture initiation criterion (Fig. 20c and Fig. 23),

the fracture is controlled by the DUCTCRT parameter, which is

equivalent to the parameterW in Eq. (12). This parameter increases

in the region between the cutting tool edges, due to the increase in

plastic strain in this zone (Fig. 18), when the punch penetrates the

material. The highest values are observed in the vicinity of the cut-

ting edges of the tools. For a punch penetration of 17.7% of the

thickness, the indicatorW reaches its maximum value ofW = 1 near

the cutting edge of the punch, causing fracture in this location. This

is in contradiction with the experimental observations. At 30%

punch penetration, a crack appears in the side of the cutting edge

of the die. The fracture process develops on both sides until com-

plete fracture at 34% of punch penetration (Fig. 20 IV).

5. Conclusions

Experimental and numerical investigations of the axisymmetric

punching process were conducted in this work and lead to the fol-

lowing conclusions:

� Concerning the microscopic observations for a clearance value

of J(%) = 13:

– The formation of a deformation zone in the clearance zone

between the punch and the die is characterized by the complete

plastic behavior of the material in this band.

– The damage is located near the die cutting edge, where crack

initiation and propagation occurs.

– The mechanisms of crack propagation are defined by the inter-

action between the cavities and/or micro-cracks. These mecha-

nisms locally affect the crack path.

� The plastic strain and the degree of work hardening decrease

with the distance from the punched edge to the heard of the

part.

� Increasing the clearance between the punch and die results:

– An increase in the width of the hardened zone on the punched

edge.

– A decrease in the size of shear zone and an increase in the size

of the fracture zone and the fracture angle. This favors the pres-

ence of geometrical defects and the risk of crack initiation.

– A decrease in the stress concentration at the cutting edge of the

tools, and therefore improves their operational lives.

– The variation of the plastic strain field and the stress triaxiality

in the shear zone.

� The predictions obtained by the modified GTNmodel, show good

agreement with the experimental results when compared to the

classical GTN model for clearances in the range of (7–13%). For

the clearance range of (13–17%) the predictions are less accurate.

For J(%) = 31 the predictions are far from the experimental results.

Fig. 21. Evolution of the void volume fraction of three elements in the shear zone

obtained by the modified GTN model for J(%) = 13.

Fig. 22. Evolution of the void volume fraction at fracture initiation for J(%) = 13.

Fig. 23. Evolution of the damage indicator W in three elements of the shear zone

obtained by the fracture initiation criterion for J(%) = 13.



� The fracture initiation criterion results in good predictions for

the maximum punching load and the punch penetration at

fracture initiation, for clearances in the range of (17–31%). The

predictions of punched profile using this criterion do not

correspond well with the experimental observations.

� The fracture angle, which is a function of the clearance, affects

the crack propagation path.
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