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Kinematic Alpha Tensors and dynamo mechanisms in a von Kármán swirling flow
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2CEA, IRAMIS, SPEC, CNRS URA 2464, Groupe Instabilités & Turbulence, 91191 Gif-sur-Yvette, France

(Dated: March 26, 2012)

We provide experimental and numerical evidence of in-blades vortices in the von Kármán swirling
flow. We estimate the associated kinematic α-effect tensor and show that it is compatible with
recent models of the von Karman Sodium (VKS) dynamo. We further show that depending on the
relative frequency of the two impellers, the dominant dynamo mechanism may switch from α2 to
α− Ω dynamo. We discuss some implications of these results for VKS experiments.

PACS numbers: 47.20.Ky, 47.27.-i, 47.27.Cn

The dynamo effect is the conversion from mechani-
cal energy to magnetic energy. It is at the origin of
most magnetic fields in the Universe (Earth, stars, galax-
ies,..) and therefore deserves special attention. The von
Kármán sodium experiment (VKS) is at present time one
of the three succesfull liquid metal dynamo experiments.
In this experiment, the mechanical energy is provided by
two iron counter-rotating impellers in a cylindrical ves-
sel, and the spontaneous conversion into magnetic energy
is obtained as soon as one of the impellers rotates faster
than 16 Hz [1–3]. The process of how this conversion oc-
curs is however still a matter of debate. Indeed, a quasi
axial axisymmetric mean magnetic dynamo field is ob-
served in VKS experiment, while an equatorial dipole is
expected if the dynamo process only involves the time
averaged axisymmetric mean flow [4]. Several models
have recently been suggested to explain this observation,
based upon the now-classical α-effect in mean field theory
of dynamo [5, 6]: in the presence of a non-axisymmetric
fluctuating velocity field, the mean VKS magnetic field
satisfies:

∂t 〈B〉 = ∇×
(
〈u〉 × 〈B〉+ α 〈B〉 − β∇× 〈B〉

)
, (1)

where ui and Bi are the velocity and magnetic field, 〈〉
denotes time-azimuthal average and α and β are second-
order tensors depending on 〈u〉 and u′ = u− < u >.
Specifically, it was suggested that vortical coherent struc-
tures in between the impeller blades such as pictured
in Fig. 1c generate higly-correlated non-axisymmetric
velocity-vorticity fluctuations that would result in a non-
negligible α-tensor able to produce an axial dipole [7, 8].
Kinematic simulations using a numerical model of such
vortices indeed reproduce the growth of an axisymmetric
axial field as observed in VKS experiments [9]. Numerical
simulations [8, 10] using ad-hoc α tensors in the induction
equation and different boundary conditions satisfactorily
reproduce the large scale structure of the dynamo mag-
netic field, provided the non dimensional α parameter
is of the order of 2 (ferromagnetic boundary conditions,
[8]) or 0.02 if variations of the permeability due to soft
iron are taken into account [10]. However, no measure-

ments of the velocity structure in between the blades has
been avalaible so far, preventing check of the plausibil-
ity of these estimates, and, thus, the soundness of these
α-models. In the present Letter, we first provide some ex-
perimental evidence of these in-blades vortical structures
and give more quantitative information on their aver-
aged properties using Reynolds Averaged Navier-Stokes
(RANS) Computational Fluid Dynamics (CFD) calcula-
tions. We then use these results to compute the resulting
kinematical α effect. Some implications of these results
for VKS experiments are finally discussed. Depending
on the relative frequency of the two impellers, the dom-
inant dynamo mechanism may switch from α2 to α − Ω
dynamo, resulting in onset of dynamical regimes.

To observe the vortices potentially responsible for the
α-effect, we use a von Kármán water experiment which
is a 1/2 scale reproduction of the first sucessful VKS dy-
namo experiment described in [1]. Its geometry is sum-
marized in Fig. 1: the fluid contained in a Plexiglas cylin-
der of radius R = 100 mm is stirred by a pair of coaxial
impellers that can be rotated independently at rotation
frequencies f1 and f2 ranging from 1 to 12 Hz. The im-
pellers are flat disks of diameter 2Rp = 150 mm fitted
with either straight blades or radial blades of constant
height hb = 20 mm and curvature radius 92.5 mm. The
inner faces of the discs are H = 180 mm apart. Velocity
measurements are performed with a LDV and a stereo-
scopic PIV system provided by DANTEC Dynamics. In
the sequel, we use R and T = 1/π(f1 + f2) as units of
length and time.

In the VKS experiment, dynamo regimes have been
observed for a wide variety of rotating frequencies
(f1, f2)[2]. For simplification, we focus here on the sim-
plest case where the top disk is fixed and the bottom disk
is rotating, with the convex face of the blades pushing the
fluid forward: (f1, f2) = (1/(πT ), 0). In such a case, dy-
namo action is observed for f1 > 16 Hz through a nearly
axisymmetric dipolar dynamo field, with azimutal com-
ponent localized at each impeller ([3, 11] and Fig. 1b).
Fig. 2a shows the mean time-averaged non-dimensional
velocity on a half meridional plane measured by PIV in
the experiment. It consists in a fully non-symmetric flow,
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FIG. 1: a) Geometry of the experiment. The shaded blue
zone denote the rotating fluid volume used in the numerical
simulation. b) Reconstruction of the dynamo magnetic field
in a meridional plane in a VKS experiment with rotating bot-
tom disk and stationary upper disk (after[3]). The poloidal
(resp. toroidal) component is coded with arrows (resp. color).
Measuring probes are in white. c) Putative in-blades vortice
creating the α-effect.

with the outside radial part rotating as a block almost
at the impeller’s velocity. Due to the observing angle,
this representation does not allow for velocity measure-
ments inside the blades. Additional measurements using
a LDV system and impellers with straight blades allow
the measurement of the instantaneous azimutal velocity
component at one point located inside a blade (Fig. 2b).
In this measurement, one observes a modulation of the
azimutal velocity, over a period of 1/8f1 sec correspond-
ing to one blade crossing. During a period, the azimu-
tal velocity first drops, and then catches again with the
velocity of the blade. This drop results in a smaller av-
eraged velocity (black curve) than the impeller velocity
(blue curve) and is an experimental evidence of the pres-
ence of in-blades vortical movements.

To characterize further these motions, we now per-
form numerical experiments with the CFD finite-volume
solver code FLUENT 6.3. The model that has been used
is the stationary realizable k − ε RANS model [12]. We
ran several different mesh configurations before reaching
a satisfactory converged solution. It corresponds to a
case where the fluid volume is divided into three parts:
one central part with a typical element size of 3 mm
and two volumes surrounding the impellers 15 mm
and 15 mm apart from the blade tips in resp. the
axial and radial direction, with conformal interfaces.
The mesh is refined to 1 mm close to the blades. The
equations are solved in a Moving Reference Frame in
one of these volumes to simulate the impeller’s rotation.
A grid convergence check has been performed and a
stable converged solution with one rotating disk was
found, with torques at both impellers equal to those
measured in the experimental flow within 10 percent.
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FIG. 2: a) Non-dimensional experimental mean velocity in
a meridional plane. b) non-dimensional azimuthal velocity
in the blades synchronized on the blade crossing vs non di-
mensional time. Green: LDV measurements; red: running
average; black: time average; blue: blade velocity. c) Non-
dimensional numerical mean velocity. d) Radial vortices as
observed with streamlines in the CFD simulation.

The result is presented in Fig.2c for the azimutally
averaged flow. One observes a one cell circulation close
to the experimental one. To quantify this, we present
in Fig. 3 a comparison between the numerical and the
experimental velocity radial profiles at three locations:
z = ±0.53; z = 0. The agreement is within 5% in most
of the flow. The CFD solution enables the description
of the in-blades velocity. On Fig. 2c, one observes an
intensification of the azimutal velocity at the edge of the
rotating impeller, as well as some edge vortices near the
top and the bottom edge. In the stationary impeller,
the azimutal velocity is slightly negative, so there is a
huge differential rotation at the blades shrouds and tips.
The streamlines displayed in Fig. 2d enables the clear
visualization of in-blades radial trailing vortices, that
are located behind the blades. Such vortices can be
responsible for a deceleration of the azimutal velocity
observed in Fig. 2b.

Using the CFD velocity field, one can compute the
(non-dimensional) azimutally averaged helicity tensor

hij = εikn 〈u′k∂ju′n〉 , (2)

where u′ = u − 〈u〉 is the fluctuating velocity field,
hii = Tr(h) = −〈u′iω′i〉 is minus the helicity of the fluc-
tuations, ω is the vorticity and the symbol 〈〉 denotes az-
imuthal average. The result is displayed in Fig. 4. One
sees that the helicity is mainly concentrated in the im-
pellers, with a maximum absolute non-dimensional value
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FIG. 3: Comparison between numerical (line) and experi-
mental (symbols) profiles at z = −0.53 (red), z = 0 (green)
and z = 0.53 (blue). Errors bars are of the order of the size
of the symbols.

around 1 (corresponding to 100 ms−2 for impeller rotat-
ing at 10 Hz). In the rotating impeller, the largest helic-
ity component is hφφ with a value of the order of −0.5.
Its value in the stationary impeller is of opposite sign
and slightly larger, 1. This difference may be explained
by the existence of a very large vertical differential ro-
tation at the stationary impeller, which can generate a
large toroidal vorticity. In the rotating impeller, other
non-negligible helicity components are found as hφr and
hrz. In the stationary impeller, other fairly large helicity
components are hrr, hrφ, hrz,hzφ and hzr (of the order
of ±1). We also computed the (non-dimensional) azimu-
tally averaged Reynolds tensor rij =

〈
u′iu
′
j

〉
(not shown).

We observed a similar localization of the tensor in the im-
pellers, with a much smaller value, of the order of 5×10−2

(corresponding to 0.5 m2s−2 for impeller rotating at 10
Hz). The exact dynamo properties of such a velocity
field would require solving the full kinematic problem,
like in [9]. To get an order of magnitude estimates of
the dynamo efficiency, we may however approximate the
fluctuations by a short in time field. In such a case, one
use the computation of [13] equation (29), see also [14]
to link the helicity and Reynolds tensor to α and β as:

αij = τhij , βij = τrij , (3)

where τ is the correlation time of the non-axisymmetric
velocity perturbations. The CFD simulation provides a
time-independent solution and cannot be used to com-
pute this correlation time. However, we can use the
LDV measurements in water (see Fig. 2) to estimate
that this time is at most of the order of 1/8f1. There-
fore, in non-dimensional units, τ ≤ π/8. This estimate
leads to maximal non-dimensional α tensors of the order
of ±0.4 (resp. −0.2) in the stationary (resp. rotating)
impeller, and maximal non-dimensional β tensors of the
order of 2 × 10−2. Our estimate of α using CFD simu-

FIG. 4: Components of the (non-dimensional) azimutally av-
eraged helicity tensor hij in numerics. The figure in between
parenthesis is the volume averaged value.

lations and experiments can be compared with existing
models of the VKS dynamo. First, we observe that the
largest component of the tensor in the rotating impeller is
αφφ, as assumed in [8, 10]. It is negative, as required for
instability [8]. However, its maximal value is an order
of magnitude smaller than the value |αc| = 2.1 needed
to obtain dynamo action with ferromagnetic boundary
conditions at magnetic Reynolds number reached in the
VKS experiment [8]. On the other hand, it is one or-
der of magnitudes larger than the value needed to obtain
a dynamo action in VKS according to the model with
localized permeability distribution [10]. Given the un-
certainty in evaluation of the correlation time, we may
say that our findings clearly validates the hypothese of
model of [10], but not rule those of the model of [8]. Dy-
namo action may be impeded by a large enough turbu-
lent resistivity, parametrized by β. This effect has been
discarded in the numerical models so far [8, 10]. Our
estimate shows that this approximation is marginally le-
gitimate in VKS, where the critical magnetic Reynolds
number Rmc ∼ 50 in our time and length units, result-
ing in a non-dimensional molecular magnetic diffusivity
of the order of 1/Rmc ∼ 0.02, i.e. of the order of the
maximal value for the turbulent magnetic diffusivity, re-
sulting in a 100 percent increase of the total magnetic
diffusivity at Rm = 50. Our finding is in agreement
with a recent estimate of [15] who observed a 50 percent
increase of magnetic diffusivity at Rm = 30, in a non-
stationary turbulent flow of liquid sodium, generated in
a closed toroidal channel.

The present computation shows that the in-blade ve-
locity is the VKS impellers is able to generate sufficient
α-effect to produce a dynamo mechanism, provided ad-
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equate boundary conditions [8] or localized permeability
distributions [10] are taken into account. The special
localization of this α-effect found in the present study
how calls for further discussion about a qualitative pic-
ture of the VKS one disk dynamo. Indeed, using Eq.
1, one can show that the poloidal field (r, z compo-
nent) is generated from the toroidal field (φcomponent)
through the α-effect. In contrast, there are two possi-
bilities (possibly concomitant) to generate toroidal field
from poloidal field: either through the mean differential
rotation Ω′ = (1/r)d 〈uφ〉 /dz (Ω-effect) -possibly rein-
forced by the jump of permeability or conductivity at
the impellers [17] and/or through α effect. The first case
corresponds to a α − Ω dynamo, while the second cor-
responds to an α2 dynamo. Since the α tensor varies
over a region of size hb, the crossover in between the two
mechanism lies at the critical value RpΩ′ ∼ αrr/hb. This
induces a dissymetry in between the two impellers: at
the rotating one, the differential rotation is almost zero
Ω′ ∼ 0 while at the stationary one, the differential ro-
tation occurs over the height of the blades, so that in
non-dimensional shape RpΩ′ ∼ Rp/hb ∼ 4, i.e. is of the
order of αrrR/hb ∼ 4. Therefore, the dynamo gener-
ation is α2 at the rotating impeller, while it can be a
combination of an α2 and an α−Ω at the stationary one
(an α2 − Ω) dynamo). Such a dissymetry may explain
generically the field dissymetry observed in the VKS con-
figuration with one rotating disk, where the field is much
more intense near the rotating impeller, than near the
stationary impeller cf Fig. 1.

If the α-effect computed in the present case is not
strongly modified when the two impellers are rotating,
we may draw interesting implications about the VKS
dynamo in more general rotating regimes. Indeed, the
location of the azimuthal velocity shear layer strongly
depends on the relative velocity of the two impellers
θ = (f1 − f2)/(f1 + f2) [16]: as long as |θ| ≤ θc, the
azimuthal velocity shear layer is in-between the two im-
pellers, and there is a constant shear at the two impellers,
of the order of Ω′ ≈ π(f1 − f2)/H. Once |θ| ≥ θc, the
shear layer is at the slowest impeller, like in the one ro-
tating disk case explored in the present paper: the differ-
ential rotation is almost zero at the fastest impeller, and
very strong at the slowest one[21]. This peculiar property
however offers possible very different generic dynamo be-
havior under and above θc. For |θ| < θc, the Ω-effect is
of the order O(1/H), so that it is too weak to superseed
the α effect, of the order 1/hb (since hb/H � 1). In
such case, the dominant dynamo mecanisl is α2 at each
impellers. For |θ| > θc, the differential rotation switches
to O(1/hb) at the slowest impeller, and the Ω effect be-
comes comparable to the α effect. There is therefore
the possibility of an α2 − Ω mechanism at the slowliest
impeller, with an α2 dynamo mechanism at the fastest
impeller. This natural switch, induced by the behavior of
the shear layer, opens interesting perspectives in terms of

possible dynamical regimes in the VKS experiments. In-
deed, an homogeneous α2 dynamo is generically steady,
with dynamo threshold Rmc = O(k/α), while an home-
geneous α−Ω dynamo is generically oscillatory with dy-
namo threshold Rmc = O(k2

√
(2/αkRpΩ′)), with a ro-

tating frequency bifurcating from a finite value at the
dynamo onset ωosc =

√
(αkRpΩ′/2)[18]. (Meridional

circulation and/or parity properties with respect to the
equator of α can steady α−Ω dynamos.) In our setting,
this translates in Rmc = O(R/hb) for α2 dynamos, and
Rmc = O(R/hb)/

√
θc/θ and ωosc = O(R/hb)

√
θc/θ for

the α−Ω dynamo. Due to inhomogeneities and possible
non-linear coupling in between the two dynamo mecan-
ism at each impeller [3], it is not garanteed that these
generic features will persist. However, we observe that
for θ < θc, dynamos observed in VKS are indeed steady,
while both steady and dynamical regimes with oscilla-
tions appear for θ ≥ θc [19], with oscillation frequency
bifurcating from finite value [2]. The scale separation in
the VKS experiment, with α and Ω-effect occuring in re-
gion of size hb << R is in any case a very interesting
result, since it validates the main hypotheses underlin-
ing the α-effect and opens the way to homogenization
techniques [20]. It would also be interesting in the VKS
experiment to vary the blade’s height to see how it af-
fects both the threshold and the oscillation frequencies
and check their potential R/hb scaling.

We thank A. Chiffaudel and F. Bakir for fruitful dis-
cussions, P-P. Cortet for PIV measurements of Fig. 2
and the VKS team for magnetic field measurements used
for Fig. 1.
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