

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/8590

To cite this version :

Christophe SARRAF, Farid BAKIR, Florent RAVELET - Étude expérimentale de l'influence du blocage aval sur les performances de ventilateurs axiaux - In: 21ème Congrès Français de Mécanique, France, 2013-08 - 21ème Congrès Français de Mécanique - 2013

Any correspondence concerning this service should be sent to the repository Administrator : scienceouverte@ensam.eu

Étude expérimentale de l'influence du blocage aval sur les performances de ventilateurs axiaux

C.SARRAF^a, F. RAVELET^a, F. BAKIR^a

a.DynFluid, Arts et MetiersParisTech, 151, boulevard de l'hôpital, 75013 PARIS

Résumé :

L'étude a pour objet l'aide au développement d'une méthode de pré-dimensionnement des ventilateurs axiaux opérant en champs contraints. L'influence d'un obstacle situé à l'aval d'un ventilateur est étudiée expérimentalement sur quatre rotors de vitesses angulaires spécifiques différentes. Les rotors sont testés sur un banc d'essais normalisé de type caisson aspirant. Les rotors fonctionnent en champ libre et en champs contraints par 15 configurations de blocage. Les blocages sont réalisés par une plaque plane, perpendiculaire à l'axe de rotation du rotor, modélisant par exemple l'obstruction d'un bloc moteur automobile à combustion interne. Les quatre jeux de performances globales (élévation de pression, débit et rendement statique) évoluant avec la distance à l'obstacle sont comparés pour mettre en évidence leurs similarités. On observe des variations d'élévation de pression en fonction du débit quand l'obstacle se rapproche du ventilateur. Les courbes caractéristiques semblent évoluer autour d'un pivot dont la position par rapport au débit nominal du rotor en champ libre pourrait être en relation avec la vitesse angulaire spécifique.

Mots clefs : ventilateurs axiaux, conditions de blocage aval, performances

Introduction

Des ventilateurs axiaux sont utilisés dans les systèmes de refroidissement.Nombreux sont ceux quirefoulent sur des obstacles placés dans leur sillage proche. Pour l'automobile,l'entrée d'air se fait par la calandre avant. L'air aspiré par le ventilateur traverse l'échangeur thermique. La compacité et le design des véhicules modernes conduisent à placer le moteur thermique à proximité immédiate du ventilateur.La problématique est similaire pour les ordinateurs personnels où le ventilateur du processeur souffle généralement surundissipateur thermique. La présence de l'obstacle, perpendiculaire à la direction axiale, impose à l'écoulement une inflexion brusque vers la direction radiale.On dit que ces ventilateurs travaillent en champs contraints.

Les méthodes conventionnelles de conception des ventilateurs axiaux sont rappelées par McKenzie(1997) ou Noguera*et al.*(1993). Elles visent à l'obtention de performances nominales et particulières. Des choix de conception dans le chargement des pales, des lois de vortex ou des coefficients de diffusion peuvent conférer certaines particularités à ces performances. Ces méthodes ne considèrent cependant pasl'environnementdu ventilateur. Dans la littérature accessible, encore peud'études traitent de l'effet du blocage aval. Celle de Gifford *et al.* (2007) étudie deux ventilateurs couplésà un système de refroidissement automobile. Elle souligne qu'un obstacle de type plaque, placé perpendiculairement à l'axe de rotation, provoque une baisse d'élévation de pression quand le débit augmente. La baisse est plus sensible sur le ventilateur basse pression que sur le ventilateur haute pression. Les auteurs complètent l'étude descaractéristiques globales par des mesures LDVdu sillage. Ils soulignent l'importance de la composante radiale dans le cas du blocage. Vad et Bencze (1998) mesurent par LDV les profils de vitesses radiales derrière plusieurs ventilateurs et donnent certaines règles de conception relatives à cette composante.

Pour ce papier, quatre ventilateurs conçus pour l'automobile sont étudiés dans l'optique de prendre en compte l'effet du blocage dès la conception.Il s'agitd'essayer de mettre en évidence des similarités dans l'évolution de leurs performances en fonction de la sévérité du blocage.Le premier paragraphe présente la géométrie des ventilateurs et le dispositif expérimental. Le deuxième paragraphe montre les performances globales des ventilateurs en champ libre et en champs contraints.Le troisième paragraphe propose une interprétation des résultats.

1 Dispositif expérimental

1.1 Géométrie des ventilateurs

Les ventilateurs de l'étude sont 4 prototypes automobiles choisis arbitrairement dans une collection. Ils seront désignés par A, B, C et D. Les 3 derniers ont été commercialisés par des équipementiers. Les rayonsextérieursd'aubage R valent respectivement 179,163, 183 et 183mm.Les rapports R/rvalent quant à eux 0,366, 0,402, 0,370 et 0,424, avec r rayon du moyeu.Le ventilateur A, est décrit dans le détail par Sarraf et al (2011) avec son alter ego dont les pales sont non conventionnellement épaissies pour être rotomoulables. Il est présenté FIG.1 à gauche. Les trois autres sont du même type. Le ventilateur B a des pales distribuées non uniformémentpour des considérations acoustiques. A, Bet D ont des pales de cambrures circulaires. L'empilement avant des profils est uniformément varié. Le chargement des pales est spécifié en suivant la méthode du vortex contrôlé décrite parNoguera*et al.* (1993) ouVad*et al.* (2007). Les pales du ventilateur Cont des cordes qui suivent une loiconfidentielle industriequi lui donneune forme caractéristique en accent circonflexe.Les quatre rotors sont ceinturés par une chicane destinée à limiter les écoulements de retour dans le jeu rotor/stator.

FIG. 1 – Vue du ventilateur A. Représentation du caisson aspirant ISO-5801. Dimensions : $1,3 \times 1,3 \times 1,8$ m.

1.2 Banc d'essai

La FIG.1 montre à droitele dispositif expérimental utilisé pour déterminer les caractéristiques globales des ventilateurs axiaux en configuration ouverte. Le caisson aspirant a été conçu et fabriqué au laboratoire DynFluid d'Arts et Métiers ParisTech selon les spécifications de la norme NF EN ISO5801 (2007). Il forme un cube de $1,3 \times 1,3 \times 1,8$ m. Le moteur (1) entraîne le ventilateur (2) et un système de régulation ABB assure une vitesse de rotation ω constante à $\pm 0,2\%$. Le débit est établi et mesuré selon la norme en ajustant l'impédanceaéraulique du banc grâceà des diaphragmes calibrés (3). Une plaque percée (4) limite la prérotation du fluideque pourrait induire le ventilateur. La plaque (5)simule le blocage d'un bloc moteur. Les distances de blocage L sont mesurées entre l'arrière du ventilateur et la plaque obstacle. Les conditions de blocage sont dans la gamme L/R de 0,15 à 1,5. L'élévation de pression Δ pest mesurée avec une précision absolue de $\pm 0,1Pa$. Un couple-mètreHBM à jauges de contraintes mesure le couple C sur l'arbre moteur. L'incertitude sur la mesure s'élève à 0,1% du couple maximal mesuré. La puissance mécanique absorbée par le ventilateur sont retirées. La précision du système complet conduit à une précision du rendement statique évaluée à $\pm 0,5\%$.Les mesures ont été répétées 4 fois et la répétabilité est la source principale d'incertitude. La puissance mécanique dissipée par les paliers est en cause.

2 Résultats des mesures

2.1 Performances globales en champ libre

Les performances globales des quatre ventilateurs sont présentées en valeurs adimensionnelles FIG.2.L'incertitude de mesure produit des barres d'erreurqui restent très inférieures à la taille des marqueurs. Les courbes résultent de mesures à une vitesse de rotation ω unique de 188,5 rad/s. Les paramètres usuels de coefficient de débit Φ et de coefficient de pression Ψ sont rappelésrespectivement en (1) et (2), le rendement statique η en (3). L'expression de la vitesseangulaire spécifique Ω est rappelée en (4). Le débit volume est

noté q_v et la masse volumique de l'air ρ . L'indice N correspond à la valeur optimale du rendement en champ libre.

$$\Phi = \frac{q_v}{\pi \omega R_{ext}^3} (1), \Psi = \frac{\Delta p/\rho}{\omega^2 R_{ext}^2} (2), \eta = \frac{\Delta p q_v}{C \omega} (3), \Omega = \frac{\omega \sqrt{q_{vN}}}{(\Delta p_N/\rho)^3} (4)$$

On note que les quatre courbes de chargement $\Psi = f(\Phi)$ sont assez différentes. Cellesde A etD sont quasiment similaires. Celle de Best la plus raide.B et C présentent des inflexions sensibles aux débits partiels ($\Phi < 0,08$). Les courbes de B et D sont quasiment confondues aux forts débits. Concernant $\eta = f(\Phi)$, C a un excellent rendement sur une plage de débit très courte. B a le rendement maximal le plus faible mais sa distribution est la plus arrondie autour de η_N . On pourra retenir que les performances globales sont assez différentes. TAB.2 présente quantitativement les principauxrésultats.

FIG. 2 –Performances globales des quatre ventilateurs. Marqueurs : A \bigcirc , B \square , C \diamondsuit , D \triangle .

TAB. 2 – Performances nominales des ventilateurs en champ libre

Désignation,	А,	В,	С,	D,
Marqueurs	-0-	□	\$	 ∆
ω (rad/s)	188,5	188,5	188,5	188,5
qv _N (m^3/s)	0,57	0,36	0,40	0,48
$\Delta \mathbf{p}_{\mathbf{N}}(\mathbf{Pa})$	112	77	91	107
$\Phi_{\rm N}$	0,169	0,140	0,112	0,132
Ψ_{N}	0,161	0,134	0,125	0,147
η_N	52%	50%	59%	57%
Ω	4,82	5,05	4,74	4,55

2.2 Performances globales en champ contraint

La distance de blocage L est mesurée entre le bord de fuite des pales et la plaque. La FIG.3 présente les évolutions de $\Psi = f(\Phi)$ obtenues pour les différentes distances à la plaque.Pour alléger la figure, une seule légende dimensionnelle est présentée pour les quatre ventilateurs. Le label Infdésigne la caractéristique en champ libre. On remarque préalablement sur D que pour les distances à l'obstacle très faibles, 40 et 50mm, les caractéristiques s'effondrent. Pour chaque ventilateur, on note que les faisceaux des courbes se croisent dans une région (Φ,Ψ) assez étroite. Les croisements sont moins francs pour le ventilateur B qui a une caractéristique en champ libre déjà très raide. On appelle le centre de la zone de croisement le pivot. On la repère par son coefficient de débit qu'on note Φ_{piv} .

FIG.3– : Influence de l'obstacle sur $\Psi = f(\Phi)$. Encarts : position relative du pivotet du débit nominal en champ libre ; lacourbe moyenne ;les courbes $\pm \sigma$ servant à la détermination systématique du pivot

On peut estimer assez précisément la position de ce pivot graphiquement. Toutefois, pour réduire les sources de subjectivité, on détermine Φ_{piv} à partir de l'écart-type minimal des chargements Ψ sur les faisceaux de courbe ré-échantillonnées. Pour chacun des ventilateurs, les encarts de la FIG.3 pointent d'une pastille grise la position du pivot relativement au coefficient de débit nominal en champ libre ;lui-même pointé en noir. Les 3 courbes des encarts ont servi à la détermination systématique du pivot. La courbe en trait plein correspond à la moyenne des caractéristiques. Les courbes en traits interrompus correspondent à \pm un écart type σ selon Ψ .

La FIG.4 montre l'influence de l'obstacle sur les caractéristiques de rendement statique. Les distances à la plaque sont repérées suivant la légende de la figure 3. Les courbes obtenues en champ libre sont marquées d'un rond noir(\bullet). Les rendements optimaux, η_{opt} , relevés en présence de la plaque sont pointés d'un rond gris (\bullet). On note un décalage du point optimal vers les faibles débits quand la plaque se rapproche du ventilateur. Quand la plaque est placée en champ lointain, on note une baisse du rendement optimal par rapport au rendement optimal de champ libre.suivie systématiquement d'une ré-augmentation quand la plaque se rapproche. Le rendement en présence d'obstacle peut être supérieur au rendement en champ libre (cas ventilateur B). Aux très faibles distances les rendements s'effondrent. Pour D l'effondrement est très perceptible dans les distances étudiées (courbes grisées).

 $\label{eq:FIG.4-:Influence} FIG.4-: Influence de l'obstacle sur lerendement statique \etaen fonctiondu coefficient de débit \Phi. Légendes :c.f. FIG.3. La pastille grise pointe le rendementoptimal \eta_{opt}$

3 Discussion

Les paramètres Φ_{opt} , Ψ_{opt} et η_{opt} sont déterminés à partir des points de rendement maximum de la FIG.4. La FIG.5 montre leur évolution en fonction de la distance à la plaque L/R. On note que quand la plaque se rapproche, les Φ_{opt} diminuent, les Ψ_{opt} augmentent avant de s'effondrer. Les η_{opt} ont tendance à ré-augmenter après une baisse sensible par rapport auchamp libre (environ 3%de baisse pour A, B et Det7% pour C). Les augmentations de η_{opt} sont faiblespour L/R > 0,8 et fortes pour 0,8 > L/R > 0,2. Pour L/R < 0,2, toutes les courbes s'effondrent (non représenté). On ne discutera pas de cet effondrent.

FIG.5 – : Influence de l'obstacle sur Φ_{opt} , Ψ_{opt} et η_{opt} en fonction de L/R

Les pivots se situent respectivement à $\Phi_{piv}/\Phi_N = 83, 93, 82$ et 79% et à $\Psi_{piv}/\Psi_N = 119, 107, 112$ et 126%. Gifford*et al.* (2007) remarquent que les modifications des performances en champ contraint sont moindres sur un ventilateur haute pression que sur un ventilateur basse pression. Un paramètre pour classer les ventilateurs suivant le critère élévation de pression est la vitesse angulaire spécifique Ω . La prise en compte de Ω suggère le paramètre χ défini en (6). Les χ valent respectivement 0,172, 0,180, 0,173 et 0,174 pour A, B, C, et D, soit 0,175±5%. Les 5% sont de l'ordre de la composition rectangulaire des incertitudes estimées.Ce qui change en présence de la plaque, c'est la relation entre le chargement Ψ et le coefficient de débit Φ . On peut réécrire χ selon (7) en développant Ω_N pour faire apparaître cette relation dans le radical de droite. On nomme λ ceradical, construit à partir des paramètres optimauxdes configurations de blocage et défini en (8).

$$\chi = \frac{\Phi_{piv}}{\Phi_N \Omega} (6), \quad \chi = \Phi_{piv} / \frac{\pi^2 \Phi_N^{\frac{3}{2}}}{\Psi_N^{\frac{3}{4}}} (7), \quad \lambda = \frac{\pi^2 \Phi_{opt}^{\frac{3}{2}}}{\Psi_{opt}^{\frac{3}{4}}} (8)$$

La FIG.6 montre l'évolution de λ en fonction de la distance L/R. On remarque que les quatre courbes ont des variations semblables. On pourrait les représenter par deux zones limitées par L/R=0,8. Dans la première on

propose de considérer que λ reste constant ; la plaque a peu d'influence. Ensuite λ diminue linéairement jusqu'àL/R=0,2 ; l'influence de la plaque est beaucoup plus sensible.

FIG.6 – : Evolution de λ en fonction de L/R

En présence de l'obstacle de type plaque, à la différence d'un vannage, le point de fonctionnement du ventilateur ne se déplace pas sur une courbe caractéristique $\Psi = f(\Phi)$ unique.Il existe une caractéristique par configuration de blocage. Chacune d'elles a un point de fonctionnement optimal situé à un débit plus faible que l'optimal champ libre.Le chargement en ce point est plus important que sans la plaque. Quand le débit est supérieur au nominal champ libre, le chargement est quasiment toujours plus faible et le rendement courant fortement inférieur au rendement nominal. Les courbes $\Psi = f(\Phi)$ se croisent dans une zone (Φ, Ψ) assez étroite. Sans qu'on puisse encore expliquer pourquoi, on peut situer la position moyenne de ce croisement en prenant en compte Φ_N , Ω et un coefficient de corrélation χ .Aux vues des caractéristiques en champ contraint, on s'attend à ce que l'obstacle qui oriente l'écoulement radialement ait un effet positif à faible débit sur les composantes de vitesses tangentielles Cu, donc sur l'élévation de pression.A fort débit l'éffet potentiel de la plaque pourrait être au contraire défavorable.On souhaite maintenant étudier l'influence de la plaque sur les composantes tangentielles Cu et radiales Cr des sillages à partir de mesures LDV et de simulations numériques pour accéder aux champs de vitesses au plus près de l'aubage.

Références

[1] N. L.Gifford, E.Savory, and R. J.Martinuzzi,(2007). "Experimental Study of Automotive Cooling Fan Aerodynamics". SAE Paper No. 2007-01-1525.

[2] A.B.McKenzie(1997). Axial flow fans and compressors: "Aerodynamic design and performance". Ashgate, Aldershot.

[3] R. Noguera, R. Rey, F. Massouh, F. Bakir, and S. Kouidri (1993)."Design and analysis of axial pumps". ASME Fluids Engineering, Second Pumping Machinery Symposium, Washington, USA., pages 95–111

[4] C.Sarraf, H.Nouri, F.Ravelet and F.Bakir, (2011). "Experimental Study of Blade Thickness Effects on the Overall and Local Performances of a ControlledVortex Designed Axial-Flow Fan". Exp. Therm. Fluid Sci., 35, pp. 684–693.

[5] J. Vad, A. R. A. Kwedikha, Cs. Horvath, M. Balczo, M. M.Lohasz, and T. Regert (2007). "Aerodynamic effects of forward bladeskew in axial flow rotors of controlled vortex design". Proceedingsof the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221:1011–1023.

[6] J. Vad, F.Bencze(1998). "Three-dimensional flow in axial flow fansof non-free vortex design". International Journal of Heat and Fluid Flow 19(1998) 601-607.

[7]NF EN ISO 5801 (2007), "Ventilateurs industriels – Essais aérauliques sur circuit normalisés".