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Abstract
The design of joints is seeing increased interest as one of the ways of controlling damping levels in lighter
and more flexible aeronautic structures. Damping induced by joint dissipation has been studied for more
than a decade, mostly experimentally due to the difficulty of simulating large structures with non-linearities.
Experimentally fitted meta-models were thus used for damping estimation at design stage without a possible
optimization. The aim of this paper is to demonstrate that damping estimation using local friction models is
feasible and that it can be usable for design. The simulation methodology is based on an explicit Newmark
time scheme with model reduction and numerical damping that can be compensated for the modes of interest.
Practical simulation times counted in minutes are achieved for detailed models. The illustration on a lap-
joint shows how simulations can be used to predict the amplitude dependence of modal damping, answer
long standing questions such as “does the modeshape change?” or analyze the evolution of pressure fields
during a cycle.

1 Introduction

Optimization of the performance of aeronautic structures leads to lighter and typically more flexible designs.
Meeting dynamic performance targets thus becomes more difficult and controlling damping is of a clear
interest. Since materials used in aeronautic construction are typically lightly damped, design work must
focus on junctions using either friction or viscoelasticity as the physical damping mechanism. Damping
in jointed structure has been the focus of much research on experimental characterization and meta-model
descriptions of joint behavior (see [10, 12, 13] to cite a few). The present work is part of the global MAIAS
project, which seeks to demonstrate that the damping induced by joint dissipation is measurable and that its
optimization by numerical prototyping is feasible.

Numerical prediction of friction induced damping in joints is considered a challenging computation [5, 12, 9],
so that discussion of the exact procedure is a first objective of this paper.

Several resolution strategies can be found in the literature to study assembled structures with non-linear
joints: non-linear analysis searching for specific solutions (harmonic balance, multiple scales, homotopy),
continuation methods based on the underlying linear analysis (nonlinear normal modes, complex nonlinear
modal analysis), or direct transient simulations. The latter will be retained for its simplicity and generality,
but the need for proper analysis tools is then critical. The second objective of the paper is thus to show
how simulations can be used to predict the amplitude dependence of modal damping, answer long standing
questions such as “does the modeshape change?” or analyze the evolution of pressure fields during a cycle.



The trade-off between simulation time and accuracy is oriented towards speed regarding design in early
design phases. To be usable in this purpose, it is further chosen to use physical models based on a local
description of contact and friction. This specificity allows a finer analysis of the structure evolution over
time and richer information can be exploited.

The explicit Newmark scheme, presented in section 2.1, was retained due to its cheaper cost allowing quick
non-linear simulations with small time steps over relatively long times. Numerical damping is introduced
to improve the behavior with no impact in the bandwidth of interest. The contact and friction modelling
strategy is presented in section 2.2.

Section 2.3 then shows that model reduction preserving global system modes, compatible with the explicit
integration and retaining detailed physical models of contact can be introduced. Reference modal states
are then introduced as they will be used as analysis tools and to compensate for numerical damping when
needed.

As an illustration a lap-joint model is presented in section 3.1. In section 3.2, numerical estimation of
frequency and damping properties as function of bolt pre-stress and amplitude are shown to reproduce classic
experimental observations.

Section 3.3 then seeks to properly characterize the evolution of frequency and modeshape over a cycle. The
effect of local structural deformations is analyzed in section 3.4 and shown to be the reason of damping
saturation and frequency decrease patterns.

2 Explicit transient simulations of structures with local non-linearities

2.1 The explicit Newmark scheme, implementation and properties

Newmark time integration is a classical scheme in the field of structural dynamics for transient simulation
applications [11]. The time space is discretized by finite differences, and the Newmark quadrature under
explicit conditions provides a rule of evolution from a known system state. Knowing the state at time tn−1,
the new state at time tn is for explicit conditions

{qn} = {qn−1}+ h {q̇n−1}+
h2

2
{q̈n−1} (1)

{q̇n} = {q̇n−1}+ h(1− γ) {q̈n−1}+ hγ {q̈n} (2)

where h = tn − tn−1 is the time step, {qn} the system displacement field at time tn, time derivatives are
denoted by dot superscripts. γ is the classical Newmark second quadrature parameter, the first one, usually
noted β is null in explicit configuration.

The quadrature rules can then be combined to the mechanical equilibrium equation

[M ] {q̈n}+ [C] {q̇n}+ [K] {qn} = {fcn}+ {fNLn} (3)

noting respectively [M ], [C] and [K] the mass, damping and stiffness matrices obtained by a finite element
discretization of the system, {fcn} the linear external forces applied to the system, and {fNLn} the internal
and external non-linear forces applied to the system, that are state and time dependent.

Equation (1) is used to build displacement at the new step. The combination of the mechanical equilib-
rium (3) and velocity expression (1) are used to build acceleration and velocity. The explicit etiquette is
given since there is no correction phase. In the presence of non-linearities, the direct resolution does not
hold due to the dependence of the non-linear forces on velocity. To keep an explicit scheme, one introduces
a velocity predictor based on the expression of the half-step velocity appearing in the expression of {qn},

{q̇∗n} =
{
qn−1/2

}
= {q̇n−1}+

h

2
{q̈n−1} (4)



so that {qn} = {qn−1}+h {q̇∗n}. This velocity predictor allows the computation of the non-linear forces and
the explicit resolution of acceleration assuming {q̇n} ' {q̇∗n}. The velocity field is finally updated using (1)
and the new step acceleration.

The resulting time integration scheme is synthetized in figure 1. It is very compact and does not perform
convergence checks nor internal iterations.

Initial state : {q0} , {q̇0}

System state update : tn = tn−1 + h

{q̇∗n} = {q̇n−1}+ h
2 {q̈n−1}

{qn} = {qn−1}+ h {q̇∗n}
{fNLn} = F ({qn} , {q̇∗n} , [ti]0≤i≤n)

Acceleration resolution

{q̈n} = [M ]−1 ({fcn} − [K] {qn} − [C] {q̇∗n}+ {fNLn})
{q̇n} = {q̇n−1}+ hγ {q̈n}+ h(1− γ) {q̈n−1}

Figure 1: Implementation of an explicit non-linear Newmark time integration scheme.

The resolution approaches the mechanical equilibrium, that is not met in general. In the presence of non-
linear forces, the approximation is function of the discrepancy between {q̇∗n} and {q̇n}. For small time steps
in the scales needed regarding the scheme stability, this approximation is often acceptable.

The explicit quadrature (1) makes the scheme only conditionally stable [11] for time steps verifying for all
system modes of pulsation ωj

ω2
jh

2 ≤ 4

(γ + 1
2)2

and γ ≥ 1

2
(5)

This condition is often adapted into the Courant, Friedrichs and Lewy condition, that proposes to bound
ωmax using the time needed for a dilatational stress wave to traverse the smallest element of the mesh.

The scheme presented in figure 1 features a single linear system resolution based on the mass matrix. Without
internal time step iteration the computational cost of a time step becomes cheap. The use of mass lumping
techniques [17] allows computing mass matrices with diagonal topology thus making trivial the resolution
of the new acceleration.

With a scheme featuring only matrix-vector operations the cost of a time step can take less than 10ms on
recent workstations for systems with 30,000 DOF (using SDT [1] and its non-linear module). The trade-
off between the small time step required for stability and the computational cost of a time step then makes
this methodology attractive for some applications. In particular, for transient contact friction simulations,
implicit formulations already require small time steps to converge so that the choice of an explicit scheme
quickly becomes advantageous.

The lack of mechanical equilibrium tends to generate high frequency waves in the system much above the
frequency range of interest and with wavelengths close to mesh size. A trade-off between time step and
numerical damping must thus be considered. The scheme properties extracted from its expression in terms
of evolution operator in the linear case gives estimates in terms of amplitude and periodicity errors [11]. For
linear models, a direct numerical modal damping ratio ζγj can be computed for a mode at pulsation ωj ,

ζγj =
−1

2hωj
ln

(
1−

(
γ − 1

2

)
ω2
jh

2
)

(6)



Using γ > 1
2 puts more weight on the new step in the evaluation of velocity (1) and generates numerical

damping changes with frequeny and time step. For the explicit Newmark scheme, the higher h or γ, the
higher the damping ratio. Figure 2 illustrates that the frequency at which critical damping is reached can be
controled with the time step while the peak damping depends on the value of γ.
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(a) γ = 0.51
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(b) γ = 0.55

Figure 2: Numerical damping ratio induced by the Newmark scheme as function of the time step h and γ.

For a given application, one should thus choose parameters such that numerical damping does not inter-
act with predictions of interest. Typical targets would be to have equivalent modal damping below 0.01%
for frequencies one or two decade above the last frequency of interest. Using compensation discussed in
section 2.3.2 is an alternative.

2.2 Contact and friction modelling adapted to an explicit scheme

Contact and friction modelling for finite element models is a complex task. The surface topology to account
for contact should be at the scale of asperities responsible for roughness, but this scale is orders of magnitude
smaller than the current computational possibilities using finite elements. One must then approach the surface
behavior using the mean plane of the solid finite element interface.

Several modelling strategies exist in the literature, as reviewed by the authors in [16], that can be equivalent
in terms of resulting system dynamic properties. Bograd et al. [4] provide a review of the strategies that have
been used for joint modelling.

Contact enforcement under the Signorini condition is classically written for a finite element model
g(xj) ≥ 0
p(xj) ≥ 0
g(xj) · p(xj) = 0

(7)

where for a given contact integration point xj , g(xj) is the gap or clearance to its matched location to the
surface in regard, and p(xj) is the contact pressure. Under the law (7) the surface non-interpenetration at the
contact points is guaranteed with the existence of the repulsive forces. In practice contact points are chosen
on one of the two surfaces, named master, the second surface being named slave.

The gap is computed as the relative displacement between the contact point considered (master) to the facing
slave surface along the normal considered at that point , namely N(xj),

g(xj) = N(xj).(q(xj/p)− q(xj))− g0 (8)

with xj/p the localization of the contact point projected on the slave surface. The computation of the gap
only involves finite element shape functions interpolations from the displacement field. The gap vector can
thus be expressed using a linear observation operator [CN ]Nc×N with N the number of DOF and Nc the
number of contact points,

{g}Nc×1 = [CN ]Nc×N {q}N×1 (9)



The generalized force resulting from the pressure field p(xj), with the gap defined at each contact point, is
defined as

{q̂}T {fN} =

∫
Γ
û(q̂)NpdS '

∑
e

∑
j

{û(q̂)}T {N} p(xj)w(e)
j J (e)(xj) (10)

where {fN} is the generalized contact force, p the contact pressure, {q̂} a virtual displacement, {q} the
displacement, x(e)

j are the integration points of current element e, J (e)(xj) the Jacobian of the shape trans-

formation (surface associated to each integration point) andw(e)
j the weighting associated with the integration

rule of element e.

The use of observation matrix [CN ] is also possible, so that in practice the generalized contact force is
expressed as function of the local contact pressure as

{fN}N×1 = [CN ]TN×Nc

{
w

(e)
j J (e)(xj) p(xj)

}
Nc×1

(11)

Similar developments can be performed for the relative tangential displacement, sliding velocity and gen-
eralized friction force, noting [CT ]2Nc×N the relative displacement observation matrix. A fully detailed
numerical implementation under the present conventions is provided in [14].

Using an explicit scheme as in figure 1, contact enforcement can be considered as an alteration of the accel-
eration field {q̈n−1} to avoid interpenetration occurrences for {qn}. Assuming interpenetration occurs for
{qn}, one searches {δqn} so that

[CN ] ({qn}+ {δqn}) = 0 (12)

Several solutions exist, one being to repel both slave and master surfaces by half the interpenetration

{δqn} = −1

2
[CN ]T [CN ] {qn} (13)

Using (1), relation (12) can be expressed as a non-linear force applied at step n− 1 function of {qn}

{fNLn−1(qn)} =
2

h2
[M ] {δqn} = − 1

h2
[M ] [CN ]T [CN ] {qn} (14)

Assuming a linear pressure-gap relationship

p(xj) = kc(xj)g(xj) (15)

the expression of the generalized contact force (11) leads to an equivalent contact stiffness kc(xj)

kc(xj) =
1

2wjh2

[
\{CNj} [M ] {CNj}T \

]
(16)

Although not directly applicable to the non-linear Newmark scheme as an acceleration correction should
be computed, the existence of an optimal finite stiffness when exactly enforcing the Signorini condition is
interesting. Using a higher contact stiffness (16) would generate rebounds and make the solution diverge.
This critetion is different from the Courant condition (5) which applies within the mesh.

The choice of a functional (or penalized) unilateral contact law with a linear pressure-penetration law (15) is
then justified as a starting choice regarding this paper scope. In practice one calibrates the contact stiffness
to be under the optimal (16) and in the saturated area regarding the dynamical behavior [16]. The value of
kc = 108MPa/mm was used in practice.

Modelling of friction has the same difficulties as contact, but functional modelling is more complex to ap-
prehend. Friction phenomena at the scale of multibody dynamics generate various and complex effects, such



as hysteresis, dwell, etc. This has led some authors to propose analytical functional friction models imple-
menting all these phenomena at a macroscopic level (or meta-models) using experimental characterization.
The Iwan model [13] is an example.

The strategy retained here involves simpler laws that are based on the expected physical behavior, thus
belonging to the class of heuristic models, as for example detailed in [4]. The main advantage of local
heuristic models is the ability to localize friction dissipation in the joints, which is of critical interest for
design studies.

The frictional memory is represented by an internal state z(xj , t) that can be identified as the tangential
displacement induced by the sliding velocity when non-zero, and a constant otherwise. If non-sliding, an
elastic force fTS(xj , t+ h) of stiffness kt is opposed to the relative tangential displacement.

fTS(xj , t+ h) = kt
(
{CTj}T {q(t+ h)} − z(xj , t)

)
(17)

At a given contact point xj , the friction constraint for a sticking point is thus expressed as
|fTS(xj , t+ h)| ≤ µp(xj , t+ h)
fT (xj , t+ h) = fTS(xj , t+ h)
z(xj , t+ h) = z(xj , t)

(18)

The friction force is bounded by the friction coefficient µ, so that once the sliding force limit µp(xj , t + h)
is hit, sliding is initiated and directed opposite to the sliding velocity ws(xj , t) = [CT ] {q̇(t)}. The internal
state z(xj , t) is displaced with the relative sliding velocity,

|fTS(xj , t+ h)| > µp(xj , t+ h)

fT (xj , t+ h) = −µp(xj , t+ h)
ws(xj ,t+h)
‖ws(xj ,t+h)‖

z(xj , t+ h) = z(xj , t) + hws(xj , t+ h)

(19)

The set of equations (18)-(19) define a friction law with sticking capability. Great similitudes exist with meta-
models, as each contact point could be considered as a cell of the macroscopic models usually developed.
Values of kt = 108MPa/mm and µ = 0.3 were chosen for the study.

2.3 Using system modes in transient simulations: reduction and modal damping

2.3.1 Reduction strategy

In this paper application the model size is not an issue, the reduction however allows controlling the maxi-
mum system frequency and confining the spurious high frequency waves in the contact area.

Base reduction techniques have been assessed in the literature [6, 7] for linear models. Model reduction
in the presence of non-linearities raises some issues as modal decoupling is not possible in general. Meth-
ods for non-linear simulations exist since the 70’s using the classical concepts of mode superposition and
substructuring [2], with a specific need for restitution at each step to compute the non-linear forces.

For structures with local non-linearities, one can build a hybrid model coupling a non-reduced part supporting
the localization of the non-linearity and a reduced part behaving linearly. The reduction method chosen for
the present work is based on the Component Mode Tuning method (CMT) [15] that ensures the convergence
of the system dynamics of interest, and the generation of very compact systems while keeping a sparsity
independent from the interface size.

One here considers two elastically coupled disjoint components 1 (N1 DOF) and 2 (N2 DOF), Rayleigh-Ritz
bases non zero for a single component

{q}(N1+N2)×1 = [TR] {qR}(n1+n2)×1 =

[
T1 0
0 T2

] [
qR1

qR2

]
(20)



and the dynamic stiffness that can be decomposed as the sum of independent component contributions Zi
and an interface coupling matrix ZI

[Z](N1+N2)×(N1+N2) = [Zel] + [ZI ] =

[
Z1 0
0 Z2

]
+

[
ZI11 ZI12

ZI21 ZI22

]
(21)

In the general case, component decoupling can be performed by selecting a layer of elements representing
the coupling interface [14], thus cutting a system apart, as considered in this paper. If no internal nodes are
contained in the element layer, the formalism of equation (21) is still valid.

In this formulation, continuity is always verified since (20) expresses motion using the full model FEM
coordinates. The reduced dynamic stiffness matrix [ZR] is written

[ZR](n1+n2)×(n1+n2) =

[
T T1 Z1T1 0

0 T T2 Z2T2

]
+

[
T T1 ZI11T1 T T1 ZI12T2

T T2 ZI21T1 T T2 ZI22T2

]
(22)

Unlike the Craig-Bampton method which needs complete interface description to enforce continuity, the
CMT method only needs to focus on selecting retained shapes relevant for other objectives. Reduction bases
[Tk]Nk×nk

can be generated using the restriction of the assembled system modes on each component,
[
Φ|k
]
.

In such case, the reduced system will give the exact result [15]. The subspaces generated for each component
are effectively coherent with the assembled system subspace and all interface motion is well described since
by definition all the desired motion is retained in the basis.

In the general case where a layer of elements was extracted to decouple the components, mass coupling terms
exist in (22) and mass lumpiness is lost, altering the performance of the explicit Newmark scheme.

This issue is resolved by locally redistributing the mass coupling terms between components. To explain this
operation one has to consider the interface DOF i that contains the coupling terms between components 1
and 2. In practice these DOF are reduced and are here considered belonging to the component 1 DOF. This
formalism is then compatible in the case where a component is not reduced. One then splits the DOF vector
noting q1c and q2c the complementary (or internal) DOF of both components and qi their common interface
DOF,

{q} =


q1c

qi
q2c

 (23)

The interface DOF bear the mass coupling between components, so that the mass matrix can be written

[M ] =

 M1cc M1ci 0
M1ic M1ii +M2ii 0

0 M2ci M2cc

 (24)

where each component mass matrix is split between the interface DOF i and complementary DOF c.

The mass redistribution consists in assuming that one of the components bears all the mass contained in the
interface, thus considering matrices M̂1 and M̂2 instead of M1 and M2, defined as

M̂1 =

[
M1cc M1ci

M1ic M1ii +M2ii

]
and M̂2 =

[
0 M2ic

M2ci M2cc

]
(25)

Noting M̃2ic and M̃2ci the expansion of respectively matrices M2ic and M2ci from the DOF set i to the DOF
set (1c, i), the mass matrix can be written

[M ] =

[
M̂1 0
0 M2cc

]
+

[
0 M̃2ic

M̃2ci 0

]
(26)



If the initial mass was lumped, terms M̃2ic and M̃2ci are null so that the expression of the mass matrix does
not contain coupling terms between components 1 and 2. An orthonormalization procedure operated for
each component will thus yield a diagonal mass matrix in the general case.

No approximation is performed when using the representation of the mass matrix (26). The only change is
that in the basis T1 used in (20) which is made orthogonal to M̂1 to obtain a diagonal mass for fast explicit
integration. This however does not alter the corresponding subspace and thus has no impact on the solution.

2.3.2 Using modal damping and sensing in transient simulations

The application of modal damping in transient simulations has been presented by the authors in [3]. It
consists in an implicit expression of the identified full damping matrix in the physical space by the inversion
of the projection of the damping matrix [C] in the modal subspace [Φ]

[C] =
[
\2ζmjωj\

]
= [Φ]T [CM ] [Φ] (27)

noting that a pseudo inverse of a mass normalized modal basis can be directly obtained as [Φ]+ = [M ] [Φ].
The application of the physical modal damping matrix to a velocity field can then be expressed as a series of
matrix-vector product compatible with a numerical implementation

[CM ] {q̇n} =
(
[M ] [Φ]

([
\2ζmjωj\

] (
[Φ]T [M ] {q̇n}

)))
(28)

Using the identified numerical modal damping coefficients (6), one can then cancel the effect on the modes
of interest by using ζmj = −ζγj in (28). The cancellation is exact for linear models and an approximation is
made for non-linear models.

The use of numerical damping is thus possible with a control on the dynamics of interest. In the same
manner, use of mass scaling techniques, that are common for quasi-static simulations, could also be used
along with a compensation to control the modal inertias of the modes of interest.

Using the same relation (27), one sees that the real mode contribution to the mechanical energy can be
recovered [14]. Noting the response as a linear combination of the system real modes

{q(t)} =
∑
j

αj(t) {φj}+ {qR(t)} (29)

one identifies the coefficients of modal contribution coefficients αj(t) as{
αj(t) = {φj}T [M ] {q(t)}
α̇j(t) = {φj}T [M ] {q̇(t)}

(30)

The mechanical energy Emj(t) associated to mode j contribution can then be computed as

2Emj(t) = 2Estrainj + 2Ekinj
= ω2

jα
2
j (t) + α̇2

j (t) (31)

This indicator provides the transient modal mechanical energies that can be summed to obtain the total
mechanical energy expressed in the direction of the system modes.

3 Estimation and analysis of the time varying modal properties of a
lap-joint model

3.1 Presentation of the lap-joint model

The lap-joint model considered is presented in figure 3. It is a classical benchmark in the literature due to its
simplicity [4]. The short flange has a length of 86mm with an overlapping length of 50mm with the long
flange of 270mm. The flanges have a width of 24.8mm and a thickness of 4.7mm.



The bolt is modelled using rigid rings representing the bolt head of diameter 10.5mm and a beam represent-
ing the bolt member of core diameter of 7mm. A quadratic mesh with hexahedron elements was chosen to
improve convergence of contact fields.

Figure 3: A simple lap-joint model with its first two bending modes at 41.61Hz and 247.2 Hz.

The resolution of non-linear static states is generally difficult and requires ad-hoc treatment for large struc-
tures with multiple contacts. The strategy chosen is to perform quasi-static transient loading of the structure
using the method presented in section 2, with a control of the global structural deformation. Bolt tightening
is performed by applying a compression force on one beam element with released compression DOF.

The tightening operation from a zero deformation state is possible using short pseudo time steps (or large
force increments) by overly damping the structure. The transient simulation span is kept long enough so that
contact fields stabilize. Once contact fields are stabilized, one here performs a direct static linear resolution
based on the system tangent state.

A control is performed on the contact point statuses to check that the tangent state did not vary. If contact
statuses varied a loop is performed so that a new transient quasi-static simulation is launched with the new
structural deformation. The static response of the linear part of the structure due to the bolt loading is then
obtained very efficiently. The resulting loading is presented in figure 4.

.

Figure 4: Static bolt pre-stress, deformation field, gap (max 0.4µm) and pressure fields (max 15MPa))

For dynamic computations, the lap-joint model is reduced using the methodology of section 2.3. The chosen
reduced and kept areas for the lap-joint model are presented in figure 5left. The kept area has to be large
enough to allow a clean response of the structure to the wave propagations generated by the contact impacts.
The complete area containing the contact part had to be kept, since the structure is rather simple.

.

Figure 5: Left: the kept area chosen for the lap-joint model (in red), reduced part (in blue) and reduced
coupling element layer (in green). Middle: Effect of numerical damping on the mechanical energy evolution
(linear case). Right: Mechanical energy with scheme compensation (linear case)

The numerical damping compensation procedure developed in section 2.3 has been tested for the linear case
(fixed contact surface) along with the use of a global Rayleigh damping in stiffness ([CR] = βR [K]) set



to damp higher frequencies. Scheme and Rayleigh damping generate a dissipation, figure 5middle. The
damping cancellation strategy allows recovering the undamped energy patterns, seen in figure 5right. A
slight difference occurs for the case of Rayleigh damping, a possible cause being the numerical round-off
errors due to the use of the stiffness matrix on the velocity signals.

3.2 Estimation of modal properties as function of bolt pre-stress and amplitude

For a non-linear system submitted to varying apparent stiffness (plasticity, geometric stiffness, contact), the
system modes vary over time, as they are defined as tangent to a certain state of the system. Frequency
evolution tracking is usually performed in tests by the use of filtering techniques, and possibly based on
signal processing techniques, like the Hilbert transform [8].

The apparent frequency of a non-linear cycle can also be seen as a synthesis of a system instantaneous states
with possibly significant state variation. The measurement method presented by Heller et al. [12] performs
modal identification by taking into account amplitude dependence of frequency and damping of the poles.
In general the assumption is made that the mode shape does not vary.

Based on single cycle simulations of free decay, a detailed analysis of the system evolution over time is
possible. Initialization is here performed using an initial velocity in the direction of the first mode shape.

The extraction of modal properties has been kept very simple in the study presented. Frequency has been
estimated using direct cycle durations based on the interpolated tops of the kinetic energy signal. Damping
ratios have been estimated by direct decrement method using the mechanical energy values at the cycle
starting point Em0, and ending point Emj ,

ζj =
1

4π
ln

(
Em0

Emj

)
(32)

A sample design of experiment study has been performed as function of bolt pre-stress and amplitude to
quantify the interesting parameter ranges and test the capability of the simulation strategy. The trends ob-
served presented in figure 6 are rather similar to experimentally observed behavior [12].

Figure 6: Frequency and damping evolution as function of bolt pre-stress (colored curves) and vibration
amplitude dMax for the first bending mode of the lap-joint model.

The modal damping ratio first shows an increase with a local maximum as function of the amplitude, with
different values and location as function of the pre-stress.

The frequency shows a decreasing trend as function of amplitude. An initial increase from the static state is
observed that is not common experimentally. As it occurs for low amplitudes, it may be difficult to attain in
testing and may yield an updating bias in correlation. An investigation of the frequency evolution causes is
presented in section 3.3 for the case with a pre-stress of 4kN and the maximum amplitude, here 6.5mm.

3.3 Instant frequency. Is the modeshape constant ?

This section seeks to answer a recurrent question in joint damping studies as to whether the modeshapes are
changing or not.



A basic criterion is given by the Rayleigh quotient which as proposed in [9] can be used to estimate instan-
taneous frequencies

ω2
j (t) =

{q(t)}T [K] {q(t)}
{q(t)}T [M ] {q(t)}

(33)

It must be noted that the transient deformation fields are expressed as the sum of a static state and a vibra-
tion field {q(t)} = {q0} + {q̃(t)}. The Rayleigh quotient estimation is based on the vibration part of the
displacement, so that the static contribution should not be taken into account. Cross product terms subsist
nevertheless in the Rayleigh quotient,

ω2
j (t) =

{q̃(t)}T [K] {q̃(t)}+ 2 {q̃(t)}T [K] {q0}
{q̃(t)}T [M ] {q̃(t)}+ 2 {q̃(t)}T [M ] {q0}

(34)

Figure 7left presents the result of this evaluation over time. For low displacement (starting point, half and full
cycle), the denominator becomes very small and it is unclear that the value can be used. For sufficient deflec-
tion (1/4 and 3/4 cycles shown as dotted lines) two distinct frequencies clearly appear. This dissymmetry
seems to indicate that the system behavior depends on the deflection direction.

Figure 7: Left: Rayleigh quotient evaluation as function of time, over a cycle. Right: comparison with the
instant frequencies considering either sticking coupling or not. Marks correspond to the 4 cycle quarters.

A second strategy to estimate instant frequencies is the use of the tangent modes based on the transient trajec-
tory [14]. Figure 7right presents the frequency estimation for different tangent state formulations either using
sticking conditions or not. The definition of the sticking condition is here biased by the lack of equilibrium
between the velocity and the non-linear forces and does not seem to be easily exploitable.

The evaluation of the instant frequencies with the free sliding condition is smoother and the mean instant
frequency is very close (0.02Hz) to the full cycle frequency based on its duration and represented by the
black dashed line in figure 7right. The Rayleigh quotient estimation (34) is also close to the instant sliding
frequencies.

The observed frequency variations indicate that the system properties evolve over time. This pattern can
indeed be related to the fact that the system does not vibrate on the exact initial mode shape. The use
of the modal sensors presented in section 2.3 allows the computation of the first mode mechanical energy
contribution, using equation (31). The ratio of the total mechanical energy to the modal mechanical energy
is thus an indicator of the mode shape variation over time.

Figure 8a first presents the evolution of the total mechanical energy. The dissipation rate is not constant,
for low velocity states (at large amplitudes) no dissipation occurs. A global stuck state is generated at the
velocity sign reversal and explains the plateaus on the mechanical energy evolution.



(a) Total mechainical energy (b) Total and modal mechanical ener-
gies

(c) Modal strain and kinetic energy
ratios versus total

Figure 8: Mechanical energy indicators computed over a cycle of the first flexion of the lap-joint model.

The mechanical energy associated to the first mode in figure 8b shows a clear decrease as function of the
deflection amplitude, and seems to be close to the global energy at low deflections. This behavior can thus
be related to a contact area variation at high deflection.

It is interesting to note that the discrepancies between the modal mechanical energy and total mechanical
energy only occur when the strain energy is high. Figure 8c illustrates this pattern by plotting the kinetic and
strain energy ratio of the modal participation versus the total energies. It can thus be seen that the kinetic
energy ratio (when defined, outside very low ranges of values) is constantly close to 1. The strain energy
ratio (when defined) however decreases with time and shows a 3% variation.

The fact that the kinetic energy ratio keeps close to 1 tells that the velocity field remains close to the original
mode shape, although the local contact configuration alters the displacement field and thus locally the mode
shape. The modeshape is thus invariant for kinetic energy, or experiments which typically use a related norm,
and variable for strain energy. Hence the long standing debate on the variation of modeshapes.

3.4 Localizing the shape variations

Shape differences are localized in the areas with contact state variation, since the shape cannot change in the
reduced area due to the reduction. The base Modal Assurance Criterion (MAC) should then not detect the
shape variations. The use of a K-MAC would be more relevant.

Modeshape discrepancies are plotted for the non-reduced area in figure 9. Figures 9a-g present the first
mode shape when contact is closed at the clamped side (left of the figure). The differential displacement thus
mainly consists in a correction to the tip of the upper joint member to avoid interpenetration.

The opening between the members at the free side also varies with time as the iso-values used for displace-
ments of lower amplitudes move, indicating a strain of the bore. Figures 9h-o present the first mode shape
when contact is closed at the free side (right of the figure). Identical observations can be done.

The root cause of the shape variation can only be in this case the variation of the contact and friction forces.
The fact that instant frequencies with free sliding conditions provide similar evolutions to the instant Rayleigh
quotient as seen in section 3.3 indicates that the contact forces play a major role.

The contact field variation is illustrated in figure 10, that dipslays iso-values of contact pressures over time.
The effective contact surfaces can then be visually observed in a coarse manner.

It can be observed for large deflection instants, figures 10d-e and 10h-n, that the contact pressure field
varies at the bore, with an ovalization of the contact field, increasing contact in the transverse direction and
decreasing contact in the longitudinal direction. The contact area thus also varies outside the joint extreme
sides that come into contact quickly due to bending.

To quantify the bore strain effect, one computes the effective (or closed) contact surface Sc(t),

Sc(t) =
∑

xj∈C(t)
w

(e)
j J (e)(xj) (35)



(a) t=1.5ms-42.53Hz (b) t=3ms-42.5Hz (c) t=4.5ms-42.47Hz (d) t=6ms-42.46Hz (e) t=7.5ms-42.47Hz

(f) t=9ms-42.5Hz (g) t=10.5ms-
42.55Hz

(h) t=12ms-42.3Hz (i) t=13.5ms-
42.19Hz

(j) t=15ms-42.17Hz

(k) t=16.5ms-
42.15Hz

(l) t=18ms-42.15Hz (m) t=19.5ms-
42.15Hz

(n) t=21ms-42.18Hz (o) t=22.5ms-
42.25Hz

Figure 9: Instant mode #1 shape variation over a cycle, equally subsampled points over a cycle.

(a) Pn @ t=1.5ms (b) Pn @ t=3ms (c) Pn @ t=4.5ms (d) Pn @ 6ms (e) Pn @ 7.5ms

(f) Pn @ 9ms (g) Pn @ 10.5ms (h) Pn @ 12ms (i) Pn @ 13.5ms (j) Pn @ 15ms

(k) Pn @ 16.5ms (l) Pn @ 18ms (m) Pn @ 19.5ms (n) Pn @ 21ms (o) Pn @ 22.5ms

Figure 10: Iso-contact pressure distribution over a cycle based on the first mode.

where notations of (10) are used and C(t) = {xj/p(xj , t) > 0}, the ensemble of Gauss contact points in
closed contact a instant t, detected by a strictly positive pressure.

Figure 11 presents the effective contact area as function of time. It can be seen that although the side closing
pattern increases the total surface (seen at the very first and last instants), the contact field ovalization pattern
tends to decrease the surface. As a consequence, it can be understood that although the instant frequency
increases at the begining of the quarter cycles, the ovalization occurring for higher vibration amplitudes
limits the phenomenon..

Figure 11: Effective (or closed) contact area as function of time for the cycle of maximal amplitude.



The saturation patterns observed in figure 6 are here explained by the ovalization of the contact field linked
to the bore strain. This deformation is limited for low amplitudes where the contact closing at the lap joint
sides is predominant, yielding an increase of the cycle frequency. The associated damping caused by local
sliding in the bore vicinity also increases with the amplitude and the increasing sliding velocities.

For a given amplitude threshold, the bolt applies loads opposed to the beam bending in the bore area that
generate local deformations. This causes a decrease of the effective contact surface and saturates the fre-
quency increase with amplitude. As contact opens in the local sliding areas dissipation gets saturated despite
the increasing global velocity.

4 Conclusion

The paper demonstrated the ability to combine model reduction, explicit integration and compensated nu-
merical damping to produce efficient transient computations of detailed models.

The use of local contact and friction models allows for a fine representation of the structure evolution in the
dissipative areas, that can provide relevant design information. Modal sensing and instant modal properties
evolution become available and provide good insight in the expression and root cause of the modal properties
evolution over time.

For the lap-joint test case used as illustration, modal frequencies and damping vary significantly with ampli-
tude. These were shown to be strongly linked to variations of the effective contact surface. In particular, the
frequency decrease and damping saturation patterns were due to deformations that generate contact openings
in dissipative areas. Modal energy indicators also showed that the modeshape variation is not visible in the
kinetic energy while clearly seen in the strain energy.

The dependence on local deformation leads to think that dissipation will be strongly dependent on loading
seen by the joint. Design work should thus insist on accurately reproducing the joint solicitation. This is
compatible with the very general time integration strategy that was presented. Further work thus focuses on
handling multiple joints and excited modes.
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[5] A. Caignot, P. Ladevèze, D. Néron, and J.-F. Durand, Virtual testing for the prediction of damping in
joints, Engineering Computations 27 (2010), no. 5, 621–644.

[6] R. Jr. Craig, A review of time-domain and frequency domain component mode synthesis methods, Int.
J. Anal. and Exp. Modal Analysis 2 (1987), no. 2, 59–72.

[7] D. de Klerk, D.J. Rixen, and S. N. Voormeeren, General framework for dynamic substructuring :
History, review and classification of techniques, AIAA Journal 46 (2008), no. 5, 1169–1181.

[8] M. Feldman, Hilbert transform in vibration analysis, Mechanical Systems and Signal Processing 25
(2011), no. 3, 735–802.

[9] H. Festjens, G. Chevallier, and J.-L. Dion, A numerical tool for the design of assembled structures
under dynamic loads, International Journal of Mechanical Sciences 75 (2013), no. 0, 170 – 177.

[10] L Gaul and J Lenz, Nonlinear dynamics of structures assembled by bolted joints, Acta Mechanica 125
(1997), no. 1-4, 169–181.
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