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a b s t r a c t

A new extension of the Gurson damage model has been proposed recently to predict ductile fracture
under shear dominated loads. The aim of this work is to verify the ability of this approach to simulate,
in an accurate way, the damage evolution in shearing processes. An implicit stress integration algorithm
is then developed to implement the new model in a finite element code. The numerical procedure is
checked through simulations of shear and uniaxial tension tests on a single elements. The extended Gur-
son damage model is tested and applied to the punching process to compare its predictive ability with
the original approach. The obtained numerical results are in good agreement with experimental results
of the punching process, showing better ductile fracture predictions compared to the original Gurson
model.

1. Introduction

High-Strength Low-Alloy steels (HSLA) are widely used materi-
als for the manufacture of automotive components, thanks to their
high strength and good formability. In some forming processes
such as blanking, localization of high level of plastic strain causes
material damage followed by ductile fracture.

Studies have been conducted for the prediction of ductile failure
in cases of high stress triaxiality. The fundamental theory has been
developed by McClintock [1] and Rice and Tracey [2]. They studied
the evolution of the growth of cylindrical and spherical voids in a
ductile matrix. Gurson [3] proposed a model based on a microme-
chanical approach which describes the growth of spherical cavities
and its influence on the material behavior. However, the Gurson
model is inadequate for shear dominated loading conditions. The
latter model was modified by Tvergaard and Needleman (GTN)
[4] by adding a specific formulation for the ductile fracture of the
material due to nucleation, growth and coalescence of spherical
cavities. The GTN model has been improved to take into account
the work hardening [5], the shape of the cavities [6–8] and the plas-
tic anisotropy [9]. The major limitation of the original Gurson mod-
el is its inability to predict correctly the localization of the material
damage and rupture under shear conditions exhibited in the punch-
ing process.

Recent extensions of the Gurson model have been proposed by
Nahshon and Hutchinson [10] to account for the effective damage
accumulation due to the distortion of cavities and inter-cavity
interacting in shear loading. Xue [11] has also developed a consti-
tutive model where the damage accumulated in a solid material
due to shear strain is treated in a phenomenological approach.

In this paper, recent extensions of Gurson model in terms of low
stress triaxiality are detailed. Then the constitutive equations
needed to implement the numerical algorithm of the model are
developed. Numerical tests (uniaxial tensile and simple shear) on
a single element are presented to verify the implemented formula-
tion and to highlight the voids evolution (rotation and growth) due
to shear loading. Finally, the simulation of the punching process of
an axisymmetric component is performed in order to validate and
calibrate the new damage parameter proposed in this modified
model.

2. Constitutive equations

2.1. Gurson model

The Gurson theory [3] was the first physical approach which
introduces a damage model coupled with the behavior of porous
materials. The model is based on the assumption of a material
made up of two main phases: matrix and inclusions. The approxi-
mation of the yield function U (Eq. (1)) depends on the spherical
shape of the cavities in the matrix, in the form of:
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U ¼ q
r0

� �2

þ 2f cosh � 3p
2r0

� �
� 1� f 2 ¼ 0 ð1Þ

where r0 is the flow stress of the material, f represents the voids
volume fraction of the material, q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þs : s

p
is the von Mises

equivalent stress with s is the deviatoric part of the stress tensor
and p = � trace(r)/3 is the hydrostatic stress.

2.2. GTN model

The yield function (Eq. (1)) was modified by Tvergaard and
Needelman [4]. They introduce two constitutive coefficients q1

and q2 characterizing the interaction effects between the voids.
The yield function then becomes:

U ¼ q
r0

� �2

þ 2q1f � cosh �3q2p
2r0

� �
� 1þ q2

1f �2
� �

¼ 0 ð2Þ

If q1 = q2 = 1 the GTN model coincides with the Gurson original
model.

The effective void volume fraction, f� = f�(f), was also introduced
by Tvergaard and Needelman [4] to simulate the coalescence be-
tween voids. It is given by:

f � ¼
f si f 6 fc

fc þ ðf � fcÞ fu�fc
ff�fc

si f > fc

(
ð3Þ

fc is the void volume fraction to trigger coalescence, fu = 1/q1 is the
ultimate volume fraction and ff represents the void volume fraction
at fracture.

The original evolution of the total volume fraction of voids due
to plastic deformation is given by:

_f ¼ _f growth þ _f nucleation ð4Þ

The void growth rate is a function of the plastic strain rate and
can be expressed by:

_f growth ¼ ð1� f Þtrð _epÞ ð5Þ

_ep is the plastic strain rate tensor.
The second quantity accounting for the nucleation of cavities

can be written as:

_f nucleation ¼ A _�ep ð6Þ

Nucleation of new cavities is taken to be governed by a normal
distribution as suggested by Chu and Needleman [13], so that the
coefficient A in Eq. (6) takes the form:

A ¼
fN

SN
ffiffiffiffi
2p
p exp � 1

2
�ep�eN

SN

� �2
	 


for p P 0

0 for p < 0

8<
: ð7Þ

fN is the quantity of voids to be nucleated per unit volume, eN rep-
resents the nucleation strain and SN is corresponding standard
deviation.

For low stress triaxiality g = �p/q, the Gurson model is unable to
predict the growth rate of the voids. This issue is the subject of the
present improvement of the model. Indeed, the modification intro-
duces a phenomenological term that models the distortion and
reorientation of voids dominated by shear stresses. This phenome-
non was observed in previous experimental work performed on
HSLA materials [12].

2.3. Modified GTN model

The new expression introduced by Nahshon and Hutchinson
[10] is written as:

_f shear ¼ kw
fwðrÞ

q
s : _ep ð8Þ

w(r) is a function of the stress state, characterized by the normal-
ized third invariant of the deviatoric stress tensor (n = 27J3/2q3).
kw is a material parameter introducing the magnitude of damage
growth rate in shear loading. The function w(r) is written as
follows:

wðrÞ ¼ 1� ðnÞ2 ð9Þ

J3 = det(s) is the third invariant of the deviatoric stress tensor,
s = r + pI.

I is the unit tensor.
After the addition of a new contribution in shear loading _f shear ,

the evolution of the total void volume fraction becomes:

_f ¼ ð1� f Þtrð _epÞ þ A _�ep þ kw
fwðrÞ

q
s : _ep ð10Þ

3. Numerical implementation of the constitutive equations

This section describes the implementation of the constitutive
equations presented in the previous section. The modified Gurson
model in shear loading is implemented in the finite element code
ABAQUS/Explicit through a subroutine VUMAT [20]. The explicit
time integration scheme is commonly used in strongly non-linear
problems [14] such as the simulation of forming processes, espe-
cially for the treatment of damage and fracture problems in the
punching process. In the developed user’s material subroutine
(VUMAT), the procedure includes two principal steps: an elastic
prediction followed by a plastic correction where stresses are inte-
grated using an implicit method in combination with the return
mapping algorithm [15–17].

The total strain is split into elastic (ee) and plastic (ep) parts:

e ¼ ee þ ep ð11Þ

The plastic strain increment is further divided into spherical
and deviatoric parts:

Dep ¼ 1
3

DepI þ Deqn ð12Þ

Dep ¼ �k@U=@p ð13Þ

Deq ¼ k@U=@q ð14Þ

k is the plastic multiplier and n ¼ 3
2q s is the flow direction normal to

the yield function boundary.
Eliminating k from Eqs. (13) and (14) leads to:

Dep
@U
@q
þ Deq

@U
@p
¼ 0 ð15Þ

The equivalent plastic work principle is assumed, which allows
obtaining the evolution function of matrix equivalent plastic
strain:

D�ep ¼ r : Dep

ð1� f Þr0
ð16Þ

Substituting (Eq. (12)) into (Eq. (16)) gives:

D�ep ¼ �pDep þ qDeq

ð1� f Þr0
ð17Þ

The void volume fraction f and the equivalent plastic strain �ep

are considered as two scalar internal variables.
The main steps of the numerical algorithm are summarized

below:



– Step 1: initialize the variables ðrt ; et; ft ; �ep
t ;DetþDtÞ at time t = 0.

– Step 2: determine the elastic predictor by assuming that the
strain increment is purely elastic:

rtrial
tþDt ¼ rt þ C : DetþDt ð18Þ

where C is the fourth rank elastic tensor.
– Step 3: calculate the hydrostatic stress (Eq. (19)) and the equiv-

alent von Mises stress (Eq. (20)):

ptrial
tþDt ¼

1
3
rtrial

tþDt : I ð19Þ

qtrial
tþDt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

strial
tþDt : strial

tþDt

r
ð20Þ

– Step 4: calculate the yield function:

Utrial
tþDt ¼ ptrial

tþDt; q
trial
tþDt ; �e

p
t ; ft

� �
ð21Þ

� If Utrial
tþDt 6 0, hence the current state is elastic and rtþDt ¼ rtrial

tþDt ,
then go to step 6.
� If Utrial

tþDt > 0, the current state is plastic, then go to step 5 to
calculate the plastic correction.

– Step 5: use the Newton–Raphson iterative method to perform a
plastic correction. This algorithm allows the subroutine VUMAT
to solve the following non-linear set of Eqs. (22) and (23).

W1 ¼ Deðsþ1Þ
p

@U
@q
þ Deðsþ1Þ

q
@U
@p
¼ 0 ð22Þ

W2 ¼ U pðsþ1Þ; qðsþ1Þ; �epðsþ1Þ; f ðsþ1Þ� �
¼ 0 ð23Þ

The flow rule and the consistency condition must be satisfied at
the same time with the equivalent plastic work principle (Eq. (24)).

D�epðsþ1Þ ¼ �pðsþ1ÞDeðsþ1Þ
p þ qðsþ1ÞDeðsþ1Þ

q

ð1� f ðsþ1ÞÞr0
ð24Þ

Note that the upper index s is the iterative step counter value.
The algorithm stops iterations when the values of |W1| and |W2|

are less than a specified tolerance lt = 10E�07.

– Step 6: update of variables:

p ¼ ptrial þ KDep ð25Þ

q ¼ qtrial � 3GDeq ð26Þ

r ¼ �pI þ s ð27Þ

D�ep ¼ �pDep þ qDeq

ð1� f Þr0
ð28Þ

Df ¼ ð1� f ÞDep þ AD�ep þ kwwðrÞDeq ð29Þ

K = E/3(1 � 2m) is the bulk modulus and G = E/2(1 + m) is the shear
modulus. E and m are Young’s modulus and Poisson’s ratio,
respectively.

Finally, the state variables are actualized in the form of:

�ep ¼ �ep
ðtÞ þ D�ep ð30Þ

f ¼ fðtÞ þ Df ð31Þ

– Step 7: end of the calculation step.
The numerical procedure goes on with a new time increment.
Now, the proposed procedure is applied to simple examples in

order to test its validity and its predictive accuracy.

4. Benchmark tests on single elements

In this section, the model is checked using a series of numerical
simulation. A single 8-node brick element with one integration
point (C3D8R of ABAQUS) is used to simulate uniaxial tension
and simple shear tests. The boundary conditions for each case
are shown in Fig. 1. The initial size of each element edge is
1 mm. The loading velocity u3 for tension and u2 for shearing are
set to 0.01 m/s.

The material parameters chosen to simulate the test cases are:

– Material hardening low:

r0 ¼ ry þ Kð�epÞn ð32Þ

In Eq. (32), the yield stress ry = 200 MPa, the material consistency
K = 500 MPa and the hardening exponent n = 0.1.
– Damage parameters:

q1 = 1.5, q2 = 1, f0 = 0.005, eN = 0.3, SN = 0.1, fN = 0.04 and kw takes
three values: 0, 1 and 3.

f0 is the initial void volume fraction in the material.

4.1. Uniaxial tension test

The Fig. 2 shows the results for the uniaxial tensile test. The
curves show the evolutions of the normalized axial stress r33/ry

and the void volume fraction f as a function of axial strain e33.
For a parameter value kw = 0, which coincides with the classical
model GTN, the results provided by the implemented algorithm
are perfectly superposed with the results given by the original
GTN model included in the ABAQUS/Explicit code. This ABAQUS
model is taken as reference for validating the test of the developed
algorithm. It can be viewed that a variation of the value of kw has
no influence on the evolution of the damage neither on the stress
carrying capacity. In fact, in the case of the uniaxial tension n = 1,
then the parameter w(r) = 1 � (n)2 = 0.

4.2. Simple shear test

In the case of simple shear w(r) = 1. In order to simplify the
analytical calculations, we assume that the nucleation of cavities
is neglected and f� is taken to be equal to f [10]. Hence, the material
fracture is only due to voids growth.

4.2.1. Analytical developments
For this loading condition, the equivalent plastic strain and

equivalent plastic strain rate are defined by Eqs. (33) and (34),
respectively:

Fig. 1. Single element and boundary conditions for tests: (a) uniaxial tension and
(b) simple shear.



�ep ¼ 2ep
23ffiffiffi
3
p ð33Þ

_�ep ¼ 2 _ep
23ffiffiffi
3
p ð34Þ

For f < fc, the expression for the void evolution is:

_f � ¼ _f ¼ kwf _�ep ð35Þ

With these assumptions, an analytical formulation for the rela-
tive equivalent stress q/ry can be obtained in view of comparing
numerical and analytical results. For this purpose, integrating
(Eq. (35)) leads to the void volume fraction expression:

f ¼ f0 expðkw�epÞ ð36Þ

When q1 = q2 = 1, the yield function equation (Eq. (2)) is simpli-
fied to:

q ¼ ð1� f Þr0 ð37Þ

Dividing the material hardening law by ry, the relationship be-
tween the normalized equivalent stress q/ry and the effective
strain �ep is obtained in the final form by:

q
ry
¼ ð1� f0 expðkw�epÞ 1þ K

ry
ð�epÞn

� �
ð38Þ

4.2.2. Numerical applications
It is now possible to compare numerical results to analytical

ones in case of a simple shear test. The results are shown in
Fig. 3 where the variation of the normalized equivalent stress
and the void volume fraction are plotted as a function of the equiv-
alent plastic strain for different values of kw. The good correlation
between numerical predictions and analytical calculations con-
firms the validity of the modified model. An increase of kw value in-
duces the reduction of the strain in the zone corresponding to
damage localization. Fig. 3b illustrates the rapid growth of the

voids in case of shear dominated loading conditions (kw = 1 and
kw = 3). If kw = 0, the voids growth rate is equal to zero which coin-
cides with the original GTN model.

5. Application to the punching process

Studies concerning material damage during the blanking pro-
cess have been performed by many authors [19,22–24]. They have
concluded that the GTN model cannot correctly predict the ductile
fracture of the material during the blanking process. Indeed, the
original approach does not take into account the damage growth
under shear loading conditions. In order to validate the perfor-
mance of the proposed implementation, numerical simulations of
the punching process of sheet metal have been performed.

In order to determine the mechanical properties of the material,
uniaxial tensile tests were carried out [18] on specimens of High
Strength Low Alloy steel (see Table 1).

Fig. 2. Uniaxial tension test as a function of the axial strain: (a) normalized axial
stress and (b) void volume fraction. Fig. 3. Simple shear test as a function of the equivalent plastic strain: (a)

normalized axial stress and (b) void volume fraction.

Table 1
Mechanical properties and damage parameters.

Notations Parameters Value

E Young’s modulus 210 GPa
m Poisson ratio 0.3
ry Yield stress 570 MPa
n Strain hardening exponent 0.51
f0 Initial voids volume fraction 0.0
K Strength index 508 MPa
q1 Gurson constant 1.5
q2 Gurson constant 1
fN Void volume fraction to be nucleated 0.04
eN Mean nucleation strain 0.3
SN Standard deviation on void nucleation 0.1
fc Critical void volume fraction at coalescence 10%
ff Final void volume fraction at failure 15%
kw Shear coefficient 0–3



The numerical results plotted in Fig. 5 corresponding to series of
punching process, were compared to the experimental results.
Experiments were carried out on strips of sheet metal with a thick-
ness of t = 3.25 mm. The punching device was mounted on a hydro-
static press with a capacity of 1000 kN. The punching force (F) is
measured by a Fine Guidance Sensor (reference: FN-2554) and
the punching displacement (d) is measured by a position sensor
(BALLUFF-BTL 02F9), both connected to an acquisition system.
The geometric parameters of the punching tools are shown in
Fig. 4.

5.1. Finite element model

The finite element code ABAQUS/Explicit was used to simulate
the punching operation in 2D using an axisymmetric assumption.
The finite element mesh is illustrated in Fig. 4. The element size
in the sheared region is set to 50 � 50 lm. 4-node axisymmetric
brick elements with reduced integration (C4X4R) and hourglass
section control were used. A Coulomb friction model is used to rep-
resent the contact between the sheet and the tools with a friction
coefficient value equal to 0.1 which approximately corresponds to
an industrial operation. The punch and the die are considered to be
rigid bodies. The ALE (Arbitrary Lagrangian Euleurian [20]) tech-
nique is used to avoid element distortion in the sheared section.
The material parameters given in Table 1 characterize the mechan-
ical properties of the sheet metal under punching operation.

5.2. Results and discussion

5.2.1. Identification of kw value
A series of punching simulation were performed with several

values of kw in order to calibrate the model in terms of the

experimental data. Fig. 5 shows the evolution of the nominal shear
stress defined by sn = F/(2pRpd), as a function of the normalized
punch displacement d/t. The comparison between the experimen-
tal data and the numerical simulation results, allows the calibra-
tion of the kw value associated to the material fracture. It is
commonly assumed that the fracture initiation starts with the de-
cay of the nominal shear stress in the graph sn = f(d/t). Examining
Fig. 5, it is found that the value kw = 1.52 gives a good agreement
between the experimental and numerical results. On the other
hand, the results obtained for the value of kw = 0 confirms that
the original GTN model is unable to capture shear damage initia-
tion. However, the level of crack propagation rate is lower in the
experimental case than in the numerical study with kw = 1.52. This
is due to the contribution of the added damage term in the modi-
fied model which appears when the values kw – 0.

5.2.2. Damage evolution
When values kw – 0, it can be observed in Fig. 6 that the damage

parameter f� grows sharply when the equivalent plastic strain
reaches a value of about 1. In other hand, a value kw = 0 is obviously
inadequate to predict the material fracture initiation.

The microscopic analysis of the experimental shearing profile
(Fig. 7) shows the three zones usually observed in the blanking
operation: (a) rollover; (b) burnish and (c) fracture. The punch dis-
placement associated with fracture initiation is calculated by the
sum of rollover and burnish zone lengths [21]. In Fig. 7, the mea-
sured sum is equal to 1.19 mm corresponding to a normalized dis-
placement of 33% which is in good agreement with the value of
30% measured on the experimental and the predicted curves (with
kw = 1.52) in Fig. 5.

Fig. 4. Punching process: geometrical parameters of the tools and axisymmetric
mesh.

Fig. 5. Evolution of nominal shear stress versus normalized punch displacement.

Fig. 6. Damage evolution at the fracture initiation point.

Fig. 7. Experimental shearing profile.



The Fig. 8 illustrates the damage distribution predicted by the
numerical analysis. It presents two phases: (i) fracture initiation
(Fig. 8a and c); (ii) and full fracture of the material (Fig. 8 b and
d). The fracture started at 42% of the punch penetration for kw = 0
and 26% for kw = 1.52. The value of penetration (26%) at crack ini-
tiation for kw = 1.52 is slightly equal to the measured value on
the associated numerical curve (beginning of the curve drop in
Fig. 5). This can be explained by the new formulation of the model
which accelerates the development of the void volume fraction va-
lue which models the material damage occurring during shearing
processes, as shown in Fig. 6.

6. Conclusion

The aim of this paper was to implement and validate the new
extended Gurson model proposed by Nahshon and Hutchinson,
which addresses the problem of ductile shear fracture.

A new term was added to the original GTN model accounting for
shear influence on the void evolution rate. The implementation of
this new model is achieved using the finite element code ABA-
QUS/Explicit via the development of a user material subroutine VU-
MAT. An implicit algorithm procedure was proposed to integrate
the above constitutive equations. Under simple shear loading condi-
tions the new GTN model improvement is able to capture the shear
damage localization. Finally, the punching process has been simu-
lated to verify and study the influence of this improvement of the
Gurson model. It is shown that the evolution of the normal shear
stress versus the normalized displacement is well predicted
compared to the classical Gurson model. The addition of a term
responsible for the development of shear damage, results in the
acceleration of the evolution of the void volume fraction which in-
duces the early initiation and propagation of cracks in the shear
zone between the die and the punch. Future works, will include
the material anisotropy behavior and the influence of process
parameters (clearance, punch and die radii...). In view of industrial
applications, the calibration of the shear parameter kw will be done
for different materials and several process configurations.
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