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On the Mechanical Interplay Between Intra-
and Inter-Synchronization During Collective Cell
Migration: A Numerical Investigation

R. Allena · D. Aubry · J. Sharpe

Abstract Collective cell migration is a fundamental process that takes place dur-
ing several biological phenomena such as embryogenesis, immunity response, and
tumorogenesis, but the mechanisms that regulate it are still unclear. Similarly to col-
lective animal behavior, cells receive feedbacks in space and time, which control
the direction of the migration and the synergy between the cells of the population,
respectively. While in single cell migration intra-synchronization (i.e. the synchro-
nization between the protrusion-contraction movement of the cell and the adhesion
forces exerted by the cell to move forward) is a sufficient condition for an efficient
migration, in collective cell migration the cells must communicate and coordinate
their movement between each other in order to be as efficient as possible (i.e. inter-
synchronization). Here, we propose a 2D mechanical model of a cell population,
which is described as a continuum with embedded discrete cells with or without
motility phenotype. The decomposition of the deformation gradient is employed to
reproduce the cyclic active strains of each single cell (i.e. protrusion and contraction).
We explore different modes of collective migration to investigate the mechanical in-
terplay between intra- and inter-synchronization. The main objective of the paper is to
evaluate the efficiency of the cell population in terms of covered distance and how the

R. Allena (B) · J. Sharpe
EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF,
Barcelona, Spain
e-mail: rachele.allena@ensam.eu

R. Allena
Arts et Metiers ParisTech, LBM, 151 Bd de l’hopital, 75013 Paris, France

D. Aubry
Laboratoire MSSMat UMR CNRS 8579, Ecole Centrale Paris, 92295 Châtenay-Malabry, France

http://dx.doi.org/10.1007/s11538-013-9908-4
mailto:rachele.allena@ensam.eu


R. Allena et al.

stress distribution inside the cohort and the single cells may in turn provide insights
regarding such efficiency.

Keywords Collective cell migration · Intra- and inter-synchronization · Continuum
mechanics

1 Introduction

Cells can move individually or collectively. The number of migrating cells may vary
from a few cells (i.e. egg chamber development in Drosophila) to hundreds (i.e. lateral
line primordium in Zebrafish) or hundreds of thousands of cells (i.e. slug development
in Dyctyostelium).

Although key aspects of single cell migration such as the control of protrusive ac-
tivity, shape generation and interaction between the cell and the extra cellular matrix
(ECM) are fairly well understood (Friedl and Gilmour 2009), the mechanisms that
regulate collective cell migration are less clear.

As in single cell migration (Allena and Aubry 2012), the movement of the cells
inside the population is triggered by a tight synchronization between shape changes
and adhesion forces inside the cell (intra-synchronization), which results in a cyclic
four (Flaherty et al. 2007) or five (Meili et al. 2010; Sheetz et al. 1999) steps process.

Nevertheless, contrarily to single cell migration, in collective cell migration the
acquirement of a motility behavior by each cell does not guarantee the correct move-
ment of the population and therefore it is not a sufficient condition. In fact, the cells
inside the cohort need to communicate and to coordinate their movement with their
neighbors in order to be as efficient as possible. Thus, as in collective animal behav-
ior (Sumpter 2006), in collective cell migration we may observe positive feedbacks
in space and time. Positive feedback in space builds up a collective pattern by trans-
forming the isolated behavior of a single cell into a mass of similar behaviors. Positive
feedback in time or inter-synchronization consists in small adjustments by individ-
ual cells of their own migration frequency toward that of some local average. The
coupling between positive feedback in space and inter-synchronization results in a
spatio-temporal wave, which regulates the collective movement and, although so far
little explored, it may play a fundamental role in determining the migratory efficiency
of the population.

Actually, individual cells can migrate in large populations by closely interacting
over long distances or migrating as epithelial sheets where neighbor connections do
not change significantly (Weijer 2009). While in the former case cells move together
in a manner similar to that of single cells, in the latter case cells remain linked both
physically and functionally during the movement (Friedl and Gilmour 2009). Cell-
cell junctions are maintained through adherens junctions proteins, desmosomal pro-
teins, and integrins (Friedl and Gilmour 2009; Ilina and Friedl 2009), which prevent
the formation of gaps between the cells (Anand et al. 2007). These interactions limit
the movement of the cells within the layer and restrict any cellular rearrangement.

Finally, it is still unclear whether all the cells or only the leader cells of the pop-
ulation participate to the collective migration. In fact, the distinction between leader
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(located at the free boundary) and follower (located in the cell cohort) cells has been
thought to be the main feature of collective cell migration (Friedl and Gilmour 2009)
with the former exerting larger traction forces than the latter (Trepat et al. 2009).
Nevertheless, further studies have shown that both cells actually generate protrusions
to coordinate the forward movement (Farooqui and Fenteany 2005; Fenteany et al.
2000; Tambe et al. 2011) and that the cell velocity is inversely proportional to the
distance from the free boundary (Farooqui and Fenteany 2005).

1.1 Numerical Models of Collective Cell Migration

Numerical simulations are a powerful approach to test hypotheses about biological
phenomena. For collective cell migration, we can distinguish between two categories
of computational models: (i) the agent-based models (AGMs) and (ii) the continuum
models (CMs). AGMs simulate the activity and the interactions of cells within a pop-
ulation and assess their influence on the global system by taking into account the rate
of cell division, the cell proliferation, the adhesion between the cells and the sub-
strate, the deformation energy, and the stochastic behavior of the cellular collective
(Graner and Glazier 1992; Szabo et al. 2006; Vedel et al. 2013; Vicsek et al. 1995;
Yamao et al. 2011).

CMs may be subdivided into two sub-categories. On the one hand, the model may
be based on conservation equations of the cell density and of a mitosis-regulating
chemical agent (Sherratt and Murray 1990, 1991). On the other hand, the cell layer
may be represented as an incompressible fluid whose configuration is described by
the density of cells and the velocity includes a growth term due to proliferation and
apoptosis. Additionally, the adhesion forces of the layer sheet to the substrate and the
stresses within the population are considered (Arciero et al. 2011).

A few models (McLennan et al. 2012; Yamao et al. 2011) describe the collective
migration focusing on the movement of the neural crest, which occurs in the absence
of extracellular signals.

Further studies have analyzed collective migration during the wound healing pro-
cess. They have considered it as a free boundary problem and have taken into account
the influence of physiological electric field on the wound closure in corneal wound
healing (Gaffney et al. 1999), tumor growth (Chen and Friedman 2000), or ischemic
dermal wounds (Xue et al. 2009).

Finally, we mention the works of Maini et al. (2004) and Serra-Picamal et al.
(2012), which combine numerical and experimental approaches and may be of major
interest for the present paper. Maini et al. (2004) have performed a ‘wound healing’
assay and have validated a model to assess the relationship between cell motility and
proliferation. The authors have found that after a short period of time the frontal edge
of the cell population moves as a traveling wave at constant speed.

Serra-Picamal et al. (2012) have discovered a mechanical wave that progressively
spans a micropatterned epithelial monolayer across the cell-cell junctions and creates
differentials of mechanical stress that trigger the migration of the population. Addi-
tionally, they have analyzed such a scenario through a 1D model in which the cells of
the monolayer are represented by springs connected in series and are able to generate
propelling forces that can be transmitted to the neighbor cells (elastic forces) or to
the underneath gel substrate (viscous forces).
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1.2 Objective of This Work

In the present paper, we propose a two-dimensional (2D) finite element model to
simulate the collective migration of a cell population, which is based on the following
hypotheses:

− the cohort is represented as a continuum with embedded discrete cells, which
may have or not a motility phenotype. The cohort includes approximately hundred
cells;

− as in previous works (Borisy and Svitkina 2000; Carlier and Pantaloni 1997; Con-
deelis 1993; Mogilner and Rubinstein 2005; Theriot and Mitchison 1991), the
oscillating protrusion-contraction movement of the motile cells is assumed to be
controlled by the cyclic polymerization-depolymerization process of the actin net-
work inside the cytoskeleton;

− the decomposition of the deformation gradient (Allena et al. 2010; Lubarda 2004)
is employed to take into account the active elementary deformations undergone by
the motile cells (i.e. protrusion and contraction) as well as the elastic deformations
generated by the interaction of the cells with the ECM (Allena 2013; Allena and
Aubry 2012);

− large deformations of the motile cells are considered and the cells are able to form
one pseudopod at a time at their leading edge (Allena and Aubry 2012);

− inside each motile cell the intra-synchronization between the active strains and the
adhesion forces to the ECM is described (Allena 2013; Allena and Aubry 2012);

− finally, different modes of collective migration are investigated. Each one of these
modes is triggered by a specific inter-synchronization between the cells resulting
in different scenarios.

As in previous models of single cell migration (Carlsson and Sept 2008; Flaherty et al.
2007; Rubinstein et al. 2005; Sakamoto et al. 2011; Taber et al. 2011), we have de-
cided here to only focus on the mechanical aspects of the phenomenon. Such a choice
is motivated by the following reasons. First, the molecular, genetic, and chemical en-
vironments may vary according to the biological model one considers. However, the
cell and the population movements are still governed by the Newton’s law of motion
(Murray 2003), which provides insights on the admissibility of given movements.
Second, to unveil the forces and the strains resulting from the collective migration,
we need to simulate the physics of the process, so that we are able to detect those
constraints, which lead (or not) to an efficient migration of the population. In order
to achieve such a goal, different scenarios must be tested to evaluate the mechani-
cal interplay between intra- and inter-synchronization and to conclude whether such
configurations are realistic or not.

2 The Model

In this section we present the general framework of the model. We first describe the
2D geometry of the cell cohort and of its constituent cells. Subsequently, we define
the constitutive law for each of the component of the population, together with the
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Fig. 1 (a) Geometry of the cell population. (b) Representation of the cell network hn(p). Each cell c(i, j)

(green) has a circular shape with radius rc and centre ci,j . (c) The ellipse is divided in cell rows r(i) which
are numbered from the stern to the bow of the ellipse (in red the even rows, in green the odd rows). The
ECM (blue) fills the interstices between the cells. (d) Representation of the initial frontal (red) and rear
(green) adhesion surfaces (Color figure online)

active deformations (protrusion and contraction) that take place during the migration
process. Finally, we describe the intra- and the inter-synchronizations according to
the different modes of migration adopted by the cells aggregate.

2.1 Geometry of the Cell Population

In the orthogonal frame (ix, iy), the cells cohort has been modeled as a continuum
and approximated by an ellipse with semi-axes L and l (Fig. 1a) free at its outer
boundaries. The ellipse includes the cell network Ωn, which is described through a
characteristic function hn(p) (Eq. (9)) and is constituted by 106 cells. The cells are
in contact with each other and embedded in the extracellular matrix (ECM) ΩECM,
identified by the characteristic function hECM(p) (Eq. (10)). Inside the cell net-
work, we can distinguish between the active (Ωa,k) and the quiescent (Ωq,k) cells
domains, which are represented through two characteristic functions ha,k(p) and
hq,k(p) (Sect. 2.3.2). The number of active cells inside the population may vary ac-
cording to the mode of migration adopted by the cohort (the underscript ‘k’ indicates
such a mode (see Sect. 2.3.2)). Consequently, the quiescent cell domain Ωq,k is the
complementary of Ωa,k with respect to Ωn.
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Each cell c(i, j) inside the cohort has an initial circular shape (Fig. 1b, Eq. (12))
with radius rc and centre ci,j (ci,jx , ci,jy ), where the indices i and j indicate the po-
sition of the cell along the major and minor axes of the ellipse, respectively (Fig. 1c,
Eq. (11)). For each cell, a frontal (∂Ωsfi,j

) and a rear (∂Ωsri,j ) adhesion regions are
defined through two characteristic functions hsfi,j

and hsri,j , respectively (Eq. (13)),
which allow the cell to adhere to the ECM. Here, we assume that the motile cells mi-
grate along the horizontal axis ix . Additionally, the ellipse is divided into cell rows
r(i) (Eq. (14)), which are numbered, similarly to the single cells, from the stern (left)
to the bow (right) of the ellipse (Fig. 1b).

2.2 Constitutive Model and Active Deformations

As mentioned in the previous section, three main regions constitute the mechanical
system and each one of them has a specific constitutive behavior.

The first region contains the motile cells (Ωa,k), which actively participate to the
migration process by cyclically protruding and contracting. It has been observed that
a migrating cell is in general stiffer than a quiescent one (Wagh et al. 2008) and
presents a gradual but significant decrease in stiffness from the front to the rear of the
lamellipodia in agreement with the actin density profile (Ilina and Friedl 2009). As in
our previous work (Allena 2013; Allena and Aubry 2012), we use a 2D generalized
viscoelastic Maxwell model to describe the behavior of each cell which is constituted
by two phases: (i) a solid-like phase (the actin filaments) where the active strains take
place and (ii) a fluid-like phase, which includes some particles (the organelles, fluid-
elastic) embedded into a fluid (cytoplasm, fluid-viscous). Thus, the active cells show
a solid Young’s modulus Ea,se larger than the fluid-elastic Young’s modulus Ea,f e

(Appendix A.2).
The second region includes the inactive (or quiescent) cells (Ωq,k) that follow the

movement because of their connection to the active migrating cells. As for the ac-
tive cells, a generalized viscoelastic 2D Maxwell model is used to reproduce their
mechanical behavior. Nevertheless, the active strains (i.e. the actin filaments poly-
merization) do not occur in these cells, which are believed to influence the stiffness
of the cell. Thus, the Young modulus Eq,se of the solid elastic phase is considered to
be much lower than Ea,se (Soofi et al. 2009).

Finally, the third region is the one of the extracellular matrix (ΩECM) that fills
the interstices between the cells (Fig. 1b). The ECM is assumed to be a viscoelastic
material, with Young modulus and viscosity EECM and μECM respectively.

Let ρ be the cells density, a the acceleration, σ the Cauchy stress, F the defor-
mation gradient and J its determinant, then since we consider the inertial effects
(Gracheva and Othmer 2004), the Newton law applied to the continuum with respect
to the initial configuration p is given by

ρa = Divp

(
JσF−T

) + f adh (1)

with Divp the divergence with respect to the initial position, A−T the inverse trans-
pose of the matrix A (Holzapfel 2000; Taber 2004) and f adh the adhesion forces
between the cell and the substrate, which will be described in the next section
(Sect. 2.3.1).
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The protrusion and contraction active deformations are triggered by the polymer-
ization and depolymerization of the actin filaments and only take place in the solid
phase of the active cells (Sect. 2.1). They are expressed as uniaxial cyclic deforma-
tions through the solid active strain tensor F a,sa (Sect. A.2) as follows:

F a,sa = ea,kix ⊗ ix (2)

where ea,k will be defined more precisely later on for each type of collective migra-
tion adopted by the cell population.

2.3 Synchronization

In addition to intra-synchronization, which is a key aspect in single cell migration
(Allena and Aubry 2012), in collective cell migration cells need to coordinate their
movement (inter-synchronization) in order to be as efficient as possible during the
whole process. These two fundamental aspects are described in more details in the
next sections.

2.3.1 Intra-Synchronization

Single cell migration is usually described as a cyclic process occurring in four (Fla-
herty et al. 2007) or five (Meili et al. 2010; Sheetz et al. 1999) separate steps: (i) pro-
trusion, (ii) frontal adhesion, (iii) contraction, (iv) rear adhesion, and (v) relaxation.
Nevertheless, we have shown in Allena and Aubry (2012) that a minimal rate of ad-
hesion at the rear and at the front of the cell is necessary during the protrusion and
the contraction phases, respectively, otherwise the cell would only deform in place
or slightly sliding over the surface. According to this remark, similarly to Allena and
Aubry (2012), only two phases have been modeled here: (i) simultaneous protrusion
of the frontal edge of the cell and adhesion at its rear edge, and (ii) simultaneous
contraction of the back of the cell and adhesion at its frontal edge. Thus, we need
to synchronize the adhesion forces f adh introduced in Eq. (1) with the active de-
formations that have already been defined in Sect. 2.2. Such forces are assumed to
be viscous (Allena and Aubry 2012; Friedl and Wolf 2010; Phillipson et al. 2006;
Sakamoto et al. 2011) and may be distinguished into a frontal (f f ) and a rear (f r )
force as follows:

f f (n) = −μf he

(
−∂ea,k

∂t

)
hsfi,j

(u)ha,k(p)
∂u

∂t

f r (n) = −μrhe

(
∂ea,k

∂t

)
hsri,j (u)ha,k(p)

∂u

∂t

(3)

where n is the normal vector to the boundary of the cell c(i, j), μf , and μr are the
friction force viscosities and u is the displacement of the cell c(i, j) with respect to
the ECM. The characteristic function he is the key ingredient of the previous equa-
tions since it links the adhesion forces exerted by the cell c(i, j) on the ECM with
the pulsating movement of the cell c(i, j). Thus, we have that: (i) when the cell pro-
trudes (i.e. he(

∂ea,k

∂t
) = 1), it simultaneously adheres at the back (i.e. hsri,j (u)) while
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(ii) when the cell contracts (i.e. he(− ∂ea,k

∂t
) = 1), it simultaneously adheres at the front

(i.e. hsfi,j
(u)).

The characteristic function ha,k(p) defines which cells inside the cells network
hn(p) are active. As described later on (Sect. 2.3.2), according to the mode of col-
lective migration adopted by the cell population, all the cells or only few of them
may be active. Thus, the active cells network ha,k(p) may coincide or not with the
cell network hn(p). Consequently, the frontal (f f (n)) and the rear (f r (n)) adhesion
forces are only applied in those active cells belonging to ha,k(p).

2.3.2 Inter-Synchronization

As mentioned above (Sect. 1.2), it is still unclear whether all the cells actively move
forward or only the leader cells of the population migrate and pull the followers (Wei-
jer 2009). For instance, in the lateral line primordium in Zebrafish as well as in other
biological models such as Dictyostelium and Drosophila (Weijer 2009), the cells are
believed to follow chemoattractant gradients that guide the collective movement. Fur-
thermore, recent observations using epithelial monolayers have pointed out the pres-
ence of a mechanical wave that slowly spans the population and progressively trans-
mits the forces from the leading edge to the centre of the cell sheet (Serra-Picamal
et al. 2012). Accordingly, a cell can migrate only if an adjacent cell creates space,
which leads to local cell unjamming, or if it pulls on the shared cell-cell junctions.

To evaluate the mechanical interplay between intra- and inter-synchronization, five
different modes of collective migration of the cell population have been tested. For
each one of them, the intra-synchronization inside the active cells is triggered off
by a specific signal, which regulates the active strain ea,k inside the cells and the
inter-synchronization between the cells:

(1) strain gradient signal (or chemoattractant migration): the protrusion-contraction
deformations inside the active cells are controlled by a gradient with highest
intensity at the bow of the ellipse and lowest at the stern;

(2) traveling wave with pulse signal (or worm-like migration): the migration is reg-
ulated by a wave which progressively and repeatedly covers the population and
temporarily activates one by one the cell rows r(i);

(3) traveling wave with random unit step signal (or tsunami-like migration): a wave
gradually spans the cell rows r(i) of the ellipse and randomly activates the cells
inside them that permanently acquire the motility phenotype and start migrating
with their own pace which is synchronized with the one of the frontal and the
rear neighbor cells;

(4) traveling wave with gradient random unit step signal (or chemoattractant
tsunami-like migration): this mode of migration is a combination of mode (1)
and (3). In fact, the population movement is simultaneously triggered by a strain
gradient and a traveling wave with a random unit step signal;

(5) random signal (or random migration): the intensity and the period of the
protrusion-contraction deformations inside the active cells randomly vary within
the cohort. The cells migrate in a de-synchronized manner.

Each one of these migration modes requires a specific and complex inter-synchroni-
zation, which will be described in the following sections.
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Strain Gradient Signal (or Chemoattractant Migration) In this mode of collec-
tive movement, all the cells inside the cohort are active so that ha,1(p) = hn(p)

(Eq. (9)) and hq,1(p) = 0. Furthermore, the active cells migrate with the same intra-
synchronization (i.e. they all protrude or contract simultaneously). The active de-
formations (protrusion and contraction) are regulated by a strain gradient. Thus, the
leading cells sense more the signal than the cells in the back of the population and
undergo larger strains during both the protrusion and the contraction phases. Conse-
quently, the active deformation ea,1(p) is defined as follows:

ea,1(p) = ea0
(p − pstern,pbow − pstern)

L
sin

(
2π

t

T

)
ha,1(p) (4)

where ea0 is the amplitude of the active strain, pstern and pbow are the initial posi-
tion of the stern and the bow of the ellipse, respectively, and T is the duration of a
migration cycle.

Traveling Wave with Pulse Signal (or Worm-Like Migration) This mode of col-
lective migration is very similar to the one used by worms in which locomotion
is triggered by waves of contraction and relaxation of alternate muscles. Here, the
wave progressively and repeatedly (traveling wave) spans the cell population and
temporarily (pulse signal) activates one by one the cell rows r(i) (Eq. (12)), which
are promptly deactivated as soon as the wave has passed by. Therefore, only one row
is active at the time and the active deformation ea,2(p, t) is expressed as

ea,2(p, t) = ea0 sin

(
2π

t

T

)
ha,2(p, t) (5)

with ha,2(p, t) defined in Eq. (20).

Traveling Wave with Random Unit Step Signal (or Tsunami-Like Migration) In the
third mode of collective migration, a wave gradually (traveling wave) covers the cell
population like a tsunami and permanently (unit step signal) ‘turns on’ one by one
the rows of cells that acquire the motile phenotype and start migrating at their own
pace. Three fundamental aspects have to be considered.

First, contrarily to the previous case (Sect. Traveling Wave with Pulse Signal (or
Worm-Like Migration)), more than one row is active at the time now and the wave
spans only once the ellipse.

Second, not all the cells inside the activated rows may acquire the motile pheno-
type (random unit step signal). However, some of them may remain quiescent, which
leads to a random distribution of the active cells inside the population. The number
of active cells in a row may vary from 1 to nc, which is the total number of cells
in a row. Such a configuration is determined by a parameter τi,j , proper to each cell
c(i, j), which can be equal to 0 (quiescent cell) or 1 (active cell) and changes every
6 hours (Fig. 3).

Third, according to the experimental observations (Serra-Picamal et al. 2012), a
cell can only move if the adjacent cell creates space or pulls on the shared cell-cell
junctions. Thus, a perfect inter-synchronization between the cell c(i, j) and its two
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Fig. 2 Trend of the traveling wave, which defines the spatial coordinate ci,jx (t) of the temporary active
row for the worm-like migration (only 1 h is represented)

Fig. 3 Random distribution of
the active cells network
ha,3(p, t) between 0–6 h (a),
6 h–12 h (b), 12 h–18 h (c) and
18 h–24 h (d) for the
tsunami-like migration. In red
the active cells (τi,j = 1) and in
blue the quiescent cells
(τi,j = 0) (Color figure online)

adjacent cells on the same transversal coordinate j in the front (c(i + 1, j)) and
in the back (c(i − 1, j)) is required. Specifically, the intra-synchronization inside
the cell c(i, j) must be out of phase with respect to the intra-synchronization of the



On the Mechanical Interplay Between Intra- and Inter-Synchronization

cells c(i + 1, j) and c(i − 1, j). Thus, when the cell c(i + 1, j) protrudes, the cell
c(i, j) contracts and the cell c(i − 1, j) protrudes; when the cell c(i + 1, j) con-
tracts, the cell c(i, j) protrudes and the cell c(i − 1, j) contracts. Furthermore, the
inter-synchronization has to be coordinated with the wave that covers the ellipse and
activates the cell rows (Eq. (23)). Therefore, a particular form of the active deforma-
tion ea,3(p, t) is implemented as follows:

ea,3(p, t) = ea0 sin

(
2π

t − T
2 (imax − i)

T

)
ha,3(p, t) (6)

with ha,3(p, t) the characteristic function describing the active cells network and
defined in Eq. (22).

According to Eq. (6), the first cells to be ‘turned on’ and to deform are the ones
inside the leading row of the ellipse (i = imax), while the other cells are gradually
stimulated by the wave. After a period of T

2 (imax − i) the wave has spanned the entire
length of the ellipse, thus each active cell is able to migrate at its proper pace.

Traveling Wave with Gradient Unit Step Signal (or Chemoattractant Tsunami-Like
Migration) The fourth mode of collective migration combines the strain gradi-
ent migration and the traveling wave migration. The active cells are randomly dis-
tributed inside the cohort as in the third mode of migration (Sect. Traveling Wave with
Random Unit Step Signal (or Tsunami-Like Migration)), so that ha,4(p) = ha,3(p)

(Eq. (22)), and change their configuration every 6 hours (Fig. 3). A wave progres-
sively covers the ellipse and permanently ‘turns on’ the active cells. Therefore, the
intra-synchronization proper to each cell c(i, j) is out of phase with respect to the
intra-synchronization of the cell c(i + 1, j) and the cell c(i − 1, j) on the same
transversal coordinate j , as described in Sect. Traveling Wave with Random Unit
Step Signal (or Tsunami-Like Migration). Furthermore, the active deformations (pro-
trusion and contraction) are regulated by a gradient as in the first mode of mi-
gration (Sect. Strain Gradient Signal (or Chemoattractant Migration)). Accordingly,
ea,4(p, t) reads

ea,4(p, t) = ea0
(p − pstern,pbow − pstern)

L
sin

(
2π

t − T
2 (imax − i)

T

)
ha,4(p) (7)

Random Signal In this mode of collective migration, all the cells inside the popula-
tion are active (ha,5(p) = hn(p), Eq. (9) and hq,5(p) = 0). Nevertheless, contrarily
to the first mode of migration (Sect. Strain Gradient Signal (or Chemoattractant Mi-
gration)), the cells migrate out of phase since each one of them has its own migration
period Tij , which ranges between 40 s and 180 s (Fig. 4b), and amplitude of the active
strain ea0ij

, which may be comprised between 0.1 and 0.6 (Fig. 4a). Thus, ea,5(p, t)

is expressed as

ea,5(p, t) = ea0ij
sin

(
2π

t

Tij

)
ha,5(p) (8)
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Fig. 4 Random values of the
cyclic component ea0,ij of the
active strain ea0 (a) and of the
migration period Tij (b) for the
random migration

3 Results

The simulations were run using the finite element software COMSOL Multiphysics®

3.5a and reproduced an interval time of 1 day. The cell population has an initial ge-
ometry with semi-axes L and l equal to 90 µm and 30 µm, respectively (Fig. 1a).
The cell network represented by hn(p) includes 18 cell rows (Nc = imax = 18, Ap-
pendix A.1) and each cell c(i, j) has a radius rc = 5 µm (Allena 2013; Allena and
Aubry 2012). The distances lf and lr have been fixed to 2 µm (Allena 2013; Al-
lena and Aubry 2012), which leads to an area of 25 µm2 covered by the adhesion
surfaces ∂Ωsfi,j

and ∂Ωsri,j (Fig. 1d) and the friction force viscosities μf and μr

have been set to 108 Pa s/m (Allena 2013; Allena and Aubry 2012). For the active
cells (Sect. 2.2), the Young moduli of the solid elastic (Ea,se) and the fluid elastic
(Ea,f e) phases have been chosen equal to 104 Pa (Allena 2013; Allena and Aubry
2012; Laurent et al. 2005) and 100 Pa (Allena 2013; Allena and Aubry 2012), re-
spectively. The Poisson ratios νa,se and νa,f e have been set to 0.3 and 0.4, while the
viscosity μa,f v of the fluid viscous phase has been set to 3 × 105 Pa s (Bausch et al.
1999; Drury and Dembo 2001). For the quiescent cells (Sect. 2.2), the Young mod-
uli Eq,se and Eq,f e of the solid elastic and fluid elastic phases are equal to 400 Pa
(Soofi et al. 2009) and 100 Pa (Allena 2013; Allena and Aubry 2012), respectively.
The Poisson ratios νq,se and νq,f e are equal to 0.3 and 0.4, respectively, while the
viscosity μq,f v of the fluid viscous phase has been set to 3 × 105 Pa s (Bausch et al.
1999; Drury and Dembo 2001). It has to be remembered that for the worm-like (Sect.
Traveling Wave with Pulse Signal (or Worm-Like Migration)), the tsunami-like (Sect.
Traveling Wave with Random Unit Step Signal (or Tsunami-Like Migration)) and the
chemoattractant tsunami-like (Sect. Traveling Wave with Gradient Unit Step Signal
(or Chemoattractant Tsunami-Like Migration)) modes of migration, the cells may
switch from an active to a quiescent state or vice versa. Therefore, in these cases the
Young modulus of the cells is described as a function of their state with respect to
time.

Furthermore, the Young modulus EECM and the viscosity μECM of the ECM have
been fixed to 10 Pa and 3 × 105 Pa s (Bausch et al. 1999; Drury and Dembo 2001),
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respectively, and the density of the cells is equal to 1000 kg/m3 (Fukui et al. 2000).
Finally, the intensity of the cyclic active strain ea0 and the duration of a migration
cycle T have been set to 0.5 (Allena 2013; Allena and Aubry 2012) and 60 s (Allena
2013; Allena and Aubry 2012; Dong et al. 2002) respectively (except for the fifth
mode of migration as described in Sect. Random Signal). ea0 is the same during
both the protrusion and the contraction phase, although in single cell migration the
contraction strain is usually smaller than the protrusion deformation (Giannone et al.
2007). The main geometrical, mechanical, and material parameters of the model are
listed in Table 1.

3.1 Efficiency

As pointed out in Allena and Aubry (2012), the intra-synchronization (i.e. the syn-
chronization between active strains and the adhesion forces) is a key factor in single
cell migration. Nevertheless, it is not a sufficient condition in collective cell migra-
tion during which inter-synchronization (i.e. synchronization between the cells) is
even more important. In fact, a tight synergy between the active deformations (pro-
trusion and contraction) and the adhesion forces in each cell does not guarantee an
efficient movement of the population (i.e. the cells may move in wrong directions and
out of phase with respect to their neighbours). The cells need to communicate and
adapt themselves in order to coordinate their movement and properly move forward
together. In order to evaluate the interdependence between the intra- and the inter-
synchronization, we have tested five different types of collective migration, which
may reproduce realistic or unrealistic behaviors. In this section, we will analyse the
efficiency (i.e. covered distance over 1 day) and discuss the reliability of each mode
of migration.

In the first type of collective migration, the cell active strains are regulated by a
gradient (Eq. (4)), so that the cells at the bow of the ellipse undergo larger deforma-
tions than the cells at the stern of the ellipse. Since all the cells are active and have the
same intra-synchronization, they all protrude and contract simultaneously, but such a
configuration induces a wrong movement of the population (Movie 1) (ESM). Dur-
ing protrusion, the leading cells freely and correctly deform, while the follower cells
show two different behaviors. In the central region of the cohort, they are completely
inhibited since their elongating leading edge hits the adhering rear edge of the cells
in front of them. In the back of the cohort instead, they incorrectly deform because,
due to the constriction imposed by the rear edge of the frontal neighbours, the de-
formation interferes with the back of the cell, which is free and, therefore, the cell
elongates in the opposite direction. During contraction, the follower cells correctly
move forward. However, the leading cells unsuccessfully pull their back, which is
linked through the cell-cell junctions to the adhering frontal edge of the cells behind
them. Thus, a contraction of the frontal edge of these cells occurs. Such a microscopic
behavior leads to a global movement of the cell population very similar to the one of
an accordion, which is overall poorly efficient. The cell population in fact only covers
a distance of about 520 µm after 1 day (Fig. 5, blue ellipse), with a steady state speed
of about 0.006 µm/s.

The second type of collective migration reproduces the locomotion mode of
worms in which alternate muscles elongate and contract. To describe such behavior,
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Table 1 Geometrical, mechanical and material parameters of the model

Parameter Description Value Unit Reference

L Major axis of the ellipse 90 µm

l Minor axis of the ellipse 30 µm

Nc Number of cells along the axis L of the
ellipse

18

nc,max Maximal number of cells along the axis
l of the ellipse

6

rc Cell radius 5 µm (Allena 2013; Allena and
Aubry 2012)

lf Distance of the boundary of the frontal
adhesion surface from the cell centre

2 µm (Allena 2013; Allena and
Aubry 2012)

lr Distance of the boundary of the rear
adhesion surface from the cell centre

2 µm (Allena 2013; Allena and
Aubry 2012)

∂Ωsfi,j
Area of frontal adhesion region 25 µm2

∂Ωsri,j Area of rear adhesion region 25 µm2

μf Friction force viscosity of the frontal
adhesion surface ∂Ωsfi,j

108 Pa s/m (Allena 2013; Allena and
Aubry 2012)

μr Friction force viscosity of the rear
adhesion surface ∂Ωsri,j

108 Pa s/m (Allena 2013; Allena and
Aubry 2012)

ρ Cells density 1000 kg/m3 (Fukui et al. 2000)

Ea,se Young modulus of the solid elastic
phase of the active cells

104 Pa (Allena 2013; Allena and
Aubry 2012; Ilina and
Friedl 2009)

νa,se Poisson ratio of the solid elastic phase
of the active cells

0.3

Ea,f e Young modulus of the fluid elastic
phase of the active cells

100 Pa (Allena 2013; Allena and
Aubry 2012)

νa,f e Poisson ratio of the fluid elastic phase
of the active cells

0.4

μa,f v Viscosity of the fluid viscous phase
of the active cells

3 × 105 Pa s (Bausch et al. 1999; Drury
and Dembo 2001)

Eq,se Young modulus of the solid elastic
phase of the quiescent cells

400 Pa (Sherratt and Murray
1991)

νq,se Poisson ratio of the solid elastic phase
of the active cells

0.3

Eq,f e Young modulus of the fluid elastic
phase of the active cells

100 Pa (Allena 2013; Allena and
Aubry 2012)

νq,f e Poisson ratio of the fluid elastic phase
of the active cells

0.4

μq,f v Viscosity of the fluid viscous phase of
the active cells

3 × 105 Pa s (Bausch et al. 1999; Drury
and Dembo 2001)

EECM Young modulus of the ECM 10 Pa

μECM Viscosity of the ECM 3 × 105 Pa s (Bausch et al. 1999; Drury
and Dembo 2001)



On the Mechanical Interplay Between Intra- and Inter-Synchronization

Table 1 (Continued)

Parameter Description Value Unit Reference

ea0 Intensity of the cyclic active strain
(for modes of migration 1, 2, 3 and 4)

0.5 (Allena 2013; Allena and
Aubry 2012)

T Duration of a migration cycle 60 s (Allena 2013; Allena and
Aubry 2012; Dong et al.
2002)

Fig. 5 The distance covered by the cell population after 24 h for the different modes of migration:
chemoattractant migration (blue), worm-like migration (red), tsunami-like migration (green), chemoat-
tractant tsunami-like migration (purple), random migration (pink) (Color figure online)

a traveling wave has been used to temporarily activate one by one the cell rows inside
the ellipse. Each row remains active for one migration cycle T and it is promptly
deactivated has soon as the wave has passed by. The cells inside the active row
have the same intra-synchronization, thus they protrude and contract simultaneously
(Movie 2) (ESM). Their movement correctly takes place since the cells in front and
behind them during protrusion and contraction respectively, are momentarily quies-
cent and, therefore, easily deformable (see Sect. Traveling Wave with Pulse Signal
(or Worm-Like Migration)). Nevertheless, the leading and the following cells appear
to be more efficient than the cells in the central region of the ellipse. In this case, the
cell population covers a total distance of 5430 µm during 1 day (Fig. 5, red ellipse),
with a steady state speed of 0.06 µm/s.

The third mode of collective migration is based on a complex inter-synchronization
according to which a perfect coordination between the cell c(i, j) and its frontal
(c(i + 1, j)) and rear (c(i − 1, j)) neighbor cells is required. As experimentally ob-
served (Serra-Picamal et al. 2012), a traveling wave progressively covers the cells
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population and permanently ‘turns on’ one by one the cell rows in the ellipse. How-
ever, not all the cells in each row may be activated, thus a random distribution of
the active cells is obtained. In our model, such an aspect has been taken into account
by introducing a specific parameter, which allows defining the active (τi,j = 1) or
the quiescent (τi,j = 0) cells in each row. The random configuration changes every
6 hours (Fig. 3). In Movie 3 (ESM), it is possible to observe the successive phases
of the collective migration over a period of 1 hour. The inter-synchronization allows
the cell c(i, j) to move out of phase with respect to its frontal c(i + 1, j) and rear
c(i − 1, j) neighbours. Thus, the active cells in the leading row (r(18), Fig. 1c) are
the first to be activated and to elongate. As soon as their contraction phase starts
(t = 30 s), the active cells in the follower row (r(17), Fig. 1c) elongate and so on. In
this way, the accordion movement observed in the first mode of migration does not
occur anymore, but all the cells belonging to the active cells network (Sect. Traveling
Wave with Random Unit Step Signal (or Tsunami-Like Migration)) actively partici-
pate to the movement with their proper intra-synchronization. After 1 day, the cohort
has covered a distance of 4340 µm (Fig. 5, green ellipse) at a steady state speed of
0.05 µm/s.

As mentioned above, the cyclic component ea0 of the active deformation is the
same during both the protrusion and the contraction phase. Nevertheless, a smaller
contraction with respect to the protrusion could have been considered, as it is the case
in single cell migration (Giannone et al. 2007). In this case, the cell c(i, j) would
elongate with the same intensity of the contraction of the cell c(i + 1, j), the cell
c(i −1, j) would elongate with the same intensity of the contraction of the cell c(i, j)

and so on. Thus, the cells would adapt themselves and we would observe a ‘natural’
gradient of the active deformation.

The fourth type of migration combines the modes of movement described for the
first and the third types of migration. Thus, a coupling between the chemoattractant
gradient (Sect. Strain Gradient Signal (or Chemoattractant Migration)) and the trav-
eling wave (Sect. Traveling Wave with Random Unit Step Signal (or Tsunami-Like
Migration)) is implemented (Movie 4) (ESM). In this case, the population covers a
distance of 2850 µm in 1 day (Fig. 5, purple ellipse; steady state speed of 0.03 µm/s).

Considering the covered distance, the modes of migration explored so far are very
efficient, with the worm-like and the chemoattractant migration being the most and
the least powerful respectively (Fig. 5). Nevertheless, one may wonder if such types
of collective migration can be in some way related to the experimental observations.
In fact, despite their efficiency, each one of the modes of migration presents ‘ob-
served’ and ‘not observed’ features:

− in the chemoattractant migration all the cells are active (observed), but they mi-
grate perfectly in phase (not observed);

− in the worm-like migration a wave successively activates and deactivates the rows
of cells (not observed), but then only one row at the time is active (not observed)
within which the cells show a behavior similar to the one of single cell migration
(observed);

− in the tsunami-like migration, a wave spans the entire population and permanently
activates the cells (observed) which then perfectly migrate out of phase (not ob-
served);
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− in the chemoattractant tsunami-like migration, a wave progressively activates the
cells (observed) which then acquire a motility phenotype and start to migrate per-
fectly out of phase (not observed), but with different intensities as they felt a chem-
ical gradient from the bow to the stern of the ellipse (observed).

Therefore, as a common feature, each mode of migration shows a perfect inter-
synchronization within the population, which is regulated using specific analytical
approaches. Although such a synchronization seems to be very simple to achieve
from a theoretical point of view, it is much more complex to acquire in reality. In
fact, cells within a population naturally tend to de-synchronize with respect to their
neighbours, which leads to a random behavior of the cells inside the cohort. Given
these remarks, a fifth mode of migration has been tested in which all the cells are
active and the protrusion-contraction deformations are regulated by specific values
of the intensity ea0ij

and the period Taij
that randomly vary within the cell cohort

(Figs. 4a and b). In Movie 5 (ESM) it is possible to observe the successive phases of
the collective migration over 1 h. Each cell migrates at its own pace, which results
in a not necessarily coordinated movement with the neighbor cells. Thus, the overall
efficiency of the population is compromised since the de-synchronization between
the cells may inhibit their correct protrusion-contraction movement. Actually, the
cell population only covers a distance of about 210 µm (Fig. 5, pink ellipse; steady
state speed of 0.002 µm/s), which is then the smallest covered distance compared
to the previous cases. Despite this apparent limitation, the random behavior repre-
sents a realistic feature of the model. Nevertheless, it is evident that, for the popu-
lation to be efficient, randomness has to be coupled with a certain minimal level of
inter-synchronization. This actually corresponds to what has been observed by Serra-
Picamal et al. (2012) according to which a mechanical wave spans the layer of cells
that successively start to migrate. In practice, the cells adjust their movement accord-
ing to the local stress state that is gradually developed by the migration of the nearby
cells. From a theoretical point of view, this can be described by linking the active
deformation ea of each cell to the stress state of its neighbor cells. Thus, the first cells
to migrate would be the ones at the leading and free edge of the ellipse and then the
followers would naturally be activated because stimulated by the stresses generated
around them. Therefore, a mechanotactic signal would be transmitted within the pop-
ulation. We are currently considering such an aspect in order to improve the present
model.

3.2 Principal Stresses

Looking at principal stresses magnitudes and directions is a useful way to understand
how the mechanical forces are transmitted inside and between the cells. In Table 2,
we have reported the values of the average principal stresses during both protrusion
and contraction for each mode of migration. Additionally, we have calculated them
over the whole active cells network Ωa,k and inside a leading (c(18, 4) in Fig. 1c),
a central (c(10, 4) in Fig. 1c), and a rear (c (1, 4) in Fig. 1c) cell. As expected, we
observe a compression during the protrusion and a traction during the contraction.
Although the stress regime may vary according to the mode of migration adopted by
the cohort, few general remarks may be pointed out.
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Table 2 Average principal stress calculated within the active cells network and inside a leading (c(18, 4)),
a central (c(10, 4)), and a rear (c(1, 4)) cell during both protrusion and contraction for each mode of
migration

Average
principal
stress

Active domain Leading cell
c(18, 4)

Central cell
c(10, 4)

Follower cell
c(1, 4)

Protrusion Contraction Protru-
sion

Contrac-
tion

Protru-
sion

Contrac-
tion

Protru-
sion

Contrac-
tion

Mode 1 −1700 Pa 2000 Pa −1100 Pa 3300 Pa −1600 Pa 2000 Pa −30 Pa 40 Pa

Mode 2 −230 Pa −230 Pa −200 Pa 200 Pa −600 Pa 600 Pa −200 Pa 200 Pa

Mode 3 Even
rows

Odd
rows

Even
rows

Odd
rows

−200 Pa 200 Pa −500 Pa 500 Pa −200 Pa 200 Pa

−650 Pa −700 Pa 650 Pa 700 Pa

Mode 4 Even
rows

Odd
rows

Even
rows

Odd
rows

−180 Pa 190 Pa −720 Pa 700 Pa −16 Pa 16 Pa

−380 Pa −400 Pa 380 Pa 400 Pa

Mode 5 −1200 Pa 1500 Pa −1050 Pa 890 Pa −3250 Pa 3210 Pa −2900 Pa 3130 Pa

First, the first and the fifth modes of migration are the ones showing the highest
concentration of stress within the active domain Ωa,k . Such values are too high com-
pared to the experimental data (Serra-Picamal et al. 2012; Tambe et al. 2011; Trepat
et al. 2009), which confirms the inefficiency of these migration modes (Sect. 3.1).
However, values are consistent with the experimental observations (Serra-Picamal
et al. 2012; Tambe et al. 2011; Trepat et al. 2009) for the second, the third and the
fourth modes of migration, which are also the most efficient modes of collective
movement (Sect. 3.1).

Second, in the first, second, and fifth modes of migration the principal stresses
are mostly orientated along the direction of migration since all the cells inside the
cohort or inside the temporarily active row migrate in phase. This is not the case
in the third and fourth modes of migration, for which the active cells are randomly
distributed within the cohort, and thus the mechanical stresses are transmitted within
the population following such configuration (Fig. 3). Nevertheless, in the third mode
of migration, few stress concentrations may be noticed at the frontal or at the rear
adhesion surfaces in contact with neighbor cells.

Third, the leading (c(18, 4)) and the rear (c(1, 4)) cells show a behavior very
similar to the one observed in 2D single cell migration during which the cell is only
constrained by the contact with the underneath substrate, and it is free at the front
and at the back. Actually, the leading cells can freely elongate during the protrusion
phase since they do not have any frontal neighbor cell, while the follower cells can
freely contract because they do not have to pull any further cells behind them.

As a consequence of the previous remarks, the cells inside the population (c(10, 4))
generate larger stresses during both protrusion and contraction compared to the lead-
ing and the follower cells. This is mostly due to the fact that, with respect to the ‘bow’
and the ‘stern’ cells, the central cells have frontal and rear neighbours, which prevent
them to freely deform.

Finally and most important, whether all the cells or only few of them actively
participate to the migration process, the most efficient are the ones located at the
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bow of the ellipse. In fact, if we consider each cell as a propulsion-traction system,
the propulsion phase is the most important since it determines the direction and the
intensity of the migration. Thus, the more a cell is free to elongate during the pro-
trusion phase, the more it will move forward during the contraction phase. This is
actually the case of the leading cells, which do not have any frontal neighbours and
can therefore protrude as much as they need without any constraint. Therefore, the
leading cells may play a fundamental role in collective migration by providing posi-
tive feedbacks both in space (direction and intensity of the deformation) and in time
(inter-synchronization) (Sect. 1.1) (Sumpter 2006).

4 Conclusions

We have proposed here a 2D mechanical model to simulate the collective movement
of a cell population, which is represented as a continuum with discrete embedded
cells with potential motility behavior (Sect. 2.1). The active strains (i.e. protrusion
and contraction) undergone by the single cells during the migration are described
through the decomposition of the deformation gradient (Sect. 2.2). Such active de-
formations are tightly coupled with the adhesion forces necessary to the single cells
to move forward (intra-synchronization) (Sect. 2.3.1). Furthermore, the cells must
communicate and coordinate their movement in order to be as efficient as possi-
ble. Therefore, inter-synchronization between the cells is required (Sect. 2.3.2). The
main objective of the paper has been to evaluate the efficiency of the cell popula-
tion in terms of covered distance and how the stress distribution inside the cohort
and the single cells may in turn provide insights regarding such efficiency. In or-
der to achieve this goal, we have explored five different modes of collective migra-
tion: (i) chemoattractant migration (Sect. Strain Gradient Signal (or Chemoattractant
Migration)), (ii) worm-like migration (Sect. Traveling Wave with Pulse Signal (or
Worm-Like Migration)), (iii) tsunami-like migration (Sect. Traveling Wave with Ran-
dom Unit Step Signal (or Tsunami-Like Migration)), (iv) chemoattractant tsunami-
like migration (Sect. Traveling Wave with Gradient Unit Step Signal (or Chemoat-
tractant Tsunami-Like Migration)) and (v) random migration (Sect. Random Signal).
Such an analysis has allowed us to investigate the mechanical interplay between the
intra- and the inter-synchronization within the cell population (Sect. 3.1) to detect
those constraints and forces leading (or not) to an efficient migration.

We have found that the most efficient modes of migration (worm-like migra-
tion, tsunami-like migration and chemoattractant tsunami-like migration) are also the
ones showing the lowest stresses within the population (Sect. 3.2). Therefore, inter-
synchronization and randomness are not stand-alone factors of collective cell migra-
tion, but they must be coupled. In fact, as also pointed out by Serra-Picamal et al.
(2012), cells need to adjust their movement according to the local stress state, which
is developed by the movement of their neighbor cells. This results in a mechanotactic
signal, which progressively spans the population and stimulates the follower cells.
Nevertheless, beside such a mechanotactic signal and in order to have a complete
framework of the biological process, one has also to consider the complex molecular
signal pathways that may control the acquirement of a motile phenotype of (at least)
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the leading cells. Although here we have only focused on the mechanical aspects of
the problem, we are working to improve the present model to take into account these
two fundamental aspects.

Appendix

A.1 Geometry of the cell population

The cells network Ωn is described through a characteristic function hn(p), which
reads

hn(p) =
{

1 if ‖p − 2 · rc · round(px)ix − 2 · rc · round(py)iy‖ < r2
c

0 otherwise
(9)

with round being the classical integer function and p(px,py) the initial position of
any particle of the system.

Consequently, the ECM domain ΩECM is defined by a characteristic function as
follows:

hECM(p) = 1 − hn(p) (10)

Each cell inside the population is indicated as c(i, j) where the indices i and j vary
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

1 ≤ i ≤ Nc = imax

1 ≤ j ≤ nc(i) = nc,max

√

1 −
(

2i − 1

Nc

)2 (11)

with Nc = L
rc

and nc,max = l
rc

being the number of cells along the two axes of the
ellipse (Fig. 1c).

The domain Ωci,j
of each cell c(i, j) is defined through a characteristic function

as follows:

hci,j
(p) =

{
1 if ‖p − ci,j‖ < r2

c

0 otherwise
(12)

Each cell is equipped with a frontal ∂Ωsfi,j
and a rear ∂Ωsri,j adhesion region

(Fig. 1d) described by two characteristic functions as

hsfi,j
(p) =

{
1 if (p − ci,j , ix) > lf
0 otherwise

hsri,j (p) =
{

1 if (p − ci,j , ix) < lr
0 otherwise

(13)

where (a,b) defines the scalar product between two vectors, lf and lr are the dis-
tances of ci,j from the frontal and rear adhesion surfaces, respectively.
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The ellipse is divided into cell rows r(i) (Fig. 1b), which are numbered, similarly
to the single cells, from the stern (left) to the bow (right) of the ellipse (1 ≤ i ≤ Nc =
imax) (Fig. 1c) and are defined through a characteristic function as

hri (p) = hn(p)

{
1 if (px − ci,jx ) < rc
0 otherwise

(14)

A.2 Constitutive Model of the Cells

As mentioned in Sect. 2.2, the behavior of the active and quiescent cells is described
through a generalized viscoelastic 2D Maxwell model (Allena 2013; Allena and
Aubry 2012). Since the cells within the cohort may undergo large rotations and de-
formations during their locomotion, a fully non-linear tensorial approach is required.

For the active cells, the Cauchy stress σa is assumed to be the sum of the solid
(σa,s ) and the fluid (σa,f ) Cauchy stresses, while the deformation gradient F a is
equal to the solid (F a,s ) and the fluid (F a,f ) deformation gradients.

The decomposition of the deformation gradient (Allena et al. 2010; Lubarda 2004)
is used to describe the solid deformation tensor F a,s which is then equal to

F a,s = F a,seF a,sa (15)

where F a,se is the elastic strain tensor responsible for the stress generation and
F a,sa is the active strain tensor responsible for the pulsating movement (protrusion-
contraction) of each cell. Similarly, the fluid deformation tensor F a,f is the multi-
plicative decomposition of the fluid-elastic (F a,f e) and the fluid-viscoelastic (F a,f v)
gradients.

Both the solid σa,se and the fluid-elastic σa,f e Cauchy’s stresses are given by
isotropic hyperelastic models σ̄a,se and σ̄a,f e , respectively, as

σa,se = σ̄a,se(ea,se)

σa,f e = σ̄a,f e(ea,f e)
(16)

with ea,se and ea,f e the Euler–Almansi strain tensors for the solid-elastic and the
fluid-elastic phases respectively. Additionally, σa,f e has to be expressed in the actual
configuration according to the multiplicative decomposition described above. Finally,
the strain rate ėa,f v is related to the deviator part of the fluid-viscous stress σD

a,f v as
follows:

ėa,f v = σD
a,f v

μa,f v

(17)

where μa,f v is the viscosity.
For the quiescent cells, the same equations can be applied but one has to notice

that the solid deformation gradient can now be written as

F q,s = F q,seF q,sa = F q,seI (18)

since no active strains take place in these cells (Sect. 2.2).
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A.3 Numerical Implementation of the Constitutive Law

In this section, we provide the general framework of the numerical approach. For
further details, we refer the reader to similar works and applications proposed by
Glowinski and Pan (1992) and Vennat et al. (2010).

The cell population is modeled as a continuum (the ellipse). Each one of the three
internal regions (active cells Ωa,k , quiescent cells Ωq,k , and ECM ΩECM) is repre-
sented by a level-set function (ha,k, hq,k , and hECM, respectively). The constitutive
behavior of the active and the quiescent cells is described through a 2D generalized
Maxwell model, while the ECM is described by a viscoelastic material. In the finite
element formulation, the Cauchy stress σ and the viscous strain rate ėf v are com-
puted at each point p of the continuum taking into account the contributions of the
three regions as follows:

σ(p) = hECM(p)σECM(p) +
∑

ha,k(p)σa,k(p) +
∑

hq,k(p)σq,k(p)

ėf v(p) = hECM(p)ėECMf v
(p) +

∑
ha,k(p)ėa,kf v

(p) +
∑

hq,k(p)ėq,kf v
(p)

(19)
where ėECMf v

(p), ėa,kf v
(p), and ėq,kf v

(p) are the viscous strain rates for the corre-
spondent domains. Thus, the finite element mesh is not adapted to each sub-region
of the continuum, but everything is handled via the level set functions, which allow
localizing the mechanical behavior.

Then such a constitutive behavior is implemented in the dynamics equation
(Eq. (1)), which involves the aforementioned stress, the displacement acceleration
a and the adhesion forces f adh. This equation is first transformed into the weak form
of the problem (i.e. principle of the virtual works) and it is then discretized by fi-
nite elements. Accordingly, cells/ECM or cells/cells mutual forces are automatically
equilibrated in a weak sense although in general, the cell boundaries intersect the fi-
nite elements edges. In fact, the level set functions describing the sub-regions of the
system are defined independently from the finite element mesh.

A.4 Traveling Wave with Pulse Signal (or Worm-Like Migration)

In this mode of migration, a traveling wave spans the cell population and successively
activate and de-activate the cell rows r(i). Thus, only one row is active at the time
and the spatial coordinate ci,jx defining its position changes every migration cycle T

(Fig. 2), so that the active cell network ha,2(p, t) is defined as

ha,2(p, t) = hn(p) ·
{

1 if (|px − ci,jx (t)| < rc)

0 otherwise
(20)

where ci,jx (t) reads

ci,jt (t) = (2L − rc) − 2rc · round

(
t

T
− 0.5

)
+ 2L · round

(
t

T · Nc

− 0.5

)
(21)

In this case, also the quiescent domain hq,2 varies in space and time as hq,2(p, t) =
hn(p) − ha,2(p, t).
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A.5 Traveling Wave with Random Unit Step Signal (or Tsunami-Like Migration)

The characteristic function ha,3(p, t) defining the active cells network for this mode
of migration reads

ha,3(p, t) = τi,j · hri (p) · hsw(p, t) (22)

where hsw(p, t) describes the progressive wave, which gradually covers the popula-
tion with a velocity equal to 2t

T
and is expressed as

hsw(p, t) =
{

1 if (2L − rc) − px − 2rc
2t
T

< 0
0 otherwise

(23)

Similarly to the previous case, the quiescent cells domain hq,3 reads hq,3(p, t) =
hn(p) − ha,3(p, t).
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