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On the use of a penalized least squares method to
process kinematic full-field measurements

Raphaël Moulart1 and René Rotinat1

1 Mechanics, Surfaces and Materials Processing (MSMP), Arts et Métiers ParisTech,
Rue Saint-Dominique B.P. 508, 51006 Châlons-en-Champagne, FRANCE

Abstract. This work is aimed at exploring the performances of an alternative
procedure to smooth and differentiate full-field displacement measurements. After
recalling the strategies currently used by the experimental mechanics community, a
short overview of the available smoothing algorithms is drawn up and the requirements
that such an algorithm has to fulfil to be applicable to process kinematic measurements
are listed. A comparative study of the chosen algorithm is performed including the
2D penalized least squares method and two other commonly implemented strategies.
The results obtained by penalized least squares are comparable in terms of quality to
those produced by the two other algorithms, while the penalized least squares method
appears to be the fastest and the most flexible. Unlike both other considered methods,
it is possible with penalized least squares to automatically choose the parameter
governing the amount of smoothing to apply. Unfortunately, it appears that this
automation is not suitable for the proposed application since it does not lead to optimal
strain maps. Finally, it is possible with this technique to perform the derivation to
obtain strain maps before smoothing them (while the smoothing is normally applied to
displacement maps before the differentiation) which can lead in some cases to a more
effective reconstruction of the strain fields.

Keywords : Full-field displacements maps; smoothing algorithms; penalized least
squares; 2D differentiation; generalized cross-validation.

1. Introduction

Most of the full-field kinematic measurement methods (digital image correlation,
electronic speckle pattern interferometry, grid method, . . . ) provide displacement maps.
However, in solid mechanics, the useful information is normally given by strain fields (for
identification of mechanical properties for instance). Consequently, the raw displacement
data usually have to be numerically differentiated. In dynamics, acceleration and strain
rate maps can also be significant but they need derivations of the displacements maps
as well (respectively temporal derivation and spatio-temporal derivation). However,
it is well known that a numerical differentiation strongly amplifies the level of noise
that affects a signal (i.e. the experimental measurements). An intermediary step of
smoothing is thus often necessary before proceeding to the numerical derivation.



Only a few smoothing techniques are currently used by the experimental mechanics
community [1]:

• Local data filtering by a kernel: this 2D-filtering is directly inspired by image
processing algorithms. A convolution with a 2D-weighting kernel (for instance, a
gaussian kernel) is performed onto the data [2]. This technique provides a fast
approach but does not efficiently reconstruct the data near the boundaries of their
domain.
• Global regression techniques: the experimental data are assumed to follow a specific

global form (a 2D polynomial function for instance) and are reconstructed by
regression thanks to a least squares algorithm [3]. This approach can be efficient for
very low spatial frequency signals that do not present strong localization phenomena
but can induce reconstruction artefacts on the borders and parasitic oscillations
within the reconstructed field when the number of parameters of the function
increases (for instance, the degree of the polynomial) [4].
• Global regression based on a “finite elements-like” approach [5, 6]. This technique

can be quite efficient in terms of computation time but the quality of the
reconstruction is strongly related to the meshing of the region of interest.
• Local polynomial regression utilizing a moving weighted least squares algorithm is

the approach underlying the so-called “diffuse approximation” [5, 6]. This technique
provides very satisfactory results (especially efficient for reconstructing the data at
the boundary) but can be very time-consuming when the span of the moving least
squares algorithm increases.

In order to improve the currently applied methodologies, a fast bibliographical
review in statistics and data analysis literature shows that several competitive
alternatives do exist. This article is aimed at adapting such a technique to the processing
of full-field kinematic measurements.

After having drawn up a bibliographical review of available methods, a scope
statement of the smoothing algorithm of displacement maps is established. In the
next section, the principle of the chosen algorithm, the penalized least squares, is
explained before exploring the performances of this technique compared to two other
popular methods. A final section concludes the paper and gives some prospects of the
chosen method that could easily be extended to fit new requirements induced by the
current evolution of full-field kinematic measurements (especially, the 3D tomographic
measurements that are becoming more and more popular).

2. State of the art: different methods of smoothing

As underlined in the previous section, the critical point to perform a valid numerical
derivation is to smooth the data in such a way that the effect of the noise does not
completely invalidate the derivative values. But, at the same time, the smoothed values
must not diverge too much from the original raw data.



For some authors, the notion of “smoothing” itself implies this compromise between
regression techniques for which the data are assumed to follow a specific functional form
(parametric approach), which is a strong assumption, and the direct use of raw data
(purely nonparametric approach) [7, 8]. In smoothing techniques, the only assumption
that is made a priori is that the true values follow a smooth progression (which excludes,
a priori, the occurrence of discontinuities such as in cracking phenomena).

Among, the available techniques, four main approaches can be distinguished. They
are overviewed in the next paragraphs and mathematically explained for a simple 1D
data set (i.e. a function y = f(x) for which noisy observations are recorded, depending
on a single parameter x).

The simplest method is kernel smoothing. This approach was introduced for density
estimation by Rozenbalt [9] and Parzen [10] and has since been widely employed as the
method is intuitive and easily set up. The reader may find a general presentation of
kernel smoothing and references in [11].

The smoothed value ŷi at a specific point xi is defined as a weighted average of the
raw values in a window defined around the specified point xi. Generally, the window is
centered on the considered point and thus the reconstruction algorithm can be written
as:

ŷi =

n∑
j=1

W

(
xj − xi

h

)
yj

n∑
k=1

W

(
xk − xi

h

) , (1)

where

• ŷi is the reconstructed smooth value of the data at the point xi;

• h is a parameter known as the bandwidth, such as the window is defined as
x ∈ [x− h;x+ h];

• n is the number of x values in the window;

• W (·) is the weight function constructed such as to be maximal near xi and decrease
more or less progressively toward zero when moving away from xi (such as gaussian
or polynomial functions for instance);

• yj is the raw recorded value of the data at the point xj.

Applying this algorithm for all the available xi leads to a complete smooth curve.
This approach is widely used, due to its relatively simple principle. It is particularly
implemented for image processing as “convolution” to remove high frequency noise from
a picture.

However, this kernel approach presents a number of weaknesses: especially
the boundary bias. Near the boundaries of the domain of the data, the sum∑n

j=1W
(xj−xi

h

)
yj is truncated leading to border effects with erroneous results (under or



overestimation of the values). To prevent this bias, modified versions of kernel smoothers
have been proposed in the literature with a more or less efficient correction effect [11, 12].

The second available approach listed is the locally weighted polynomial regression.
This method was mainly introduced by Cleveland as the LOWESS (LOcally WEighted
Scatterplot Smoothing) or LOESS (LOcal regrESSion) method [13, 14, 15]. The “diffuse
approximation” previously mentioned is based on the same approach and can be seen as
a 2D variation on Cleveland’s LOESS. More information about it can be found in [12, 16].

With this technique, the reconstructed smooth value of the data ŷi is considered
to be the image of xi by a low degree polynomial, only valid in the neighbourhood
of xi (for x ∈ [x− h;x+ h]). The ŷi value is computed thanks to a locally weighted
least squares approach, that is to say by minimizing the following expression 2 (for a
quadratic approximation):

n∑
j=1

W

(
xj − xi

h

)(
yj −

(
a0 + a1 (xj − xi) + a2 (xj − xi)

2))2 , (2)

where the terms are the same as defined for kernel smoothing in equation 1.
As the least squares method has an analytical solution, one can write:

â0

â1

â2


i

=
(

[Xi]
T [Wi] [Xi]

)−1

[Xi]
T [Wi] {Yi} , (3)

with [Xi], the following matrix:

[Xi] =

 1 x1 − xi (x1 − xi)
2

...
...

...
1 xn − xi (xn − xi)

2

 ,

[Wi], a diagonal matrix containing the differentW
(xj−xi

h

)
values and {Yi} = 〈y1 · · · yn〉T .

Finally, ŷi is equal to the polynomial value at xi, i.e., (â0)i (and its local first
derivative is equal to (â1)i).

Compared to kernel smoothing, this method is less sensitive to border effects which
allows to increase the bandwidth parameter and thus the level of smoothing without
impairing the results.

At the crossroads of the two previously mentioned approaches, the popular
Savitzky-Golay smoothing filter is a kernel based estimation of the local polynomial
regression [17]. This method combines the simplicity and velocity of kernel smoothers
and the efficiency of a local polynomial regression (all the more by using a modified
version dealing with borders [18]). It can also directly compute the derivatives of the
parameter [18].

Orthogonal series methods represent the data with respect to an orthogonal set of
basis functions. This is the case of Fourier and wavelet transforms. Eventually, only
the low frequency terms are retained to reconstruct the smoothed data [19, 20]. These
methods have been widely used to model time series.



Finally, the last classical smoothing method is the use of splines combined with a
penalized likelihood algorithm. This one, which is the chosen method in this study, is
explained in details in next section.

Apart from these “classical” smoothing approaches, one can also mention other
methods based especially on dimension reduction such as projection pursuit [21],
regression trees [22], generalized additive models [23] and neural networks [24].

After this short review of available smoothing methods, among which a few are
already implemented to process kinematic fields as stated in the introduction, it can be
seen that various solution exists. To be suitable for the processing of kinematic full-field
measurements, the chosen method must fulfill a few obvious requirements:

(i) be able to deal with 2D data (measured data depending on two spatial parameters
(x, y)) or even 3D data (results from tomographic measurements);

(ii) be able to deal with irregularly disposed set of values and missing values: due to
the shapes of samples that can present some curvature, holes, etc.;

In addition, it is preferable that the method fulfills the two following conditions:

(i) to allow a local reconstruction: in the most general cases, kinematic full-field
measurements are used to visualize and study heterogeneous strain fields with
potentially high gradients. The application of overly broad methods such as a
polynomial regression will involve an increase of the order of the polynomial that
will induce parasitic effects as previously mentioned [4];

(ii) to be quick and robust: this point is critical as the smoothing procedure can be
time consuming when large data sets have to be processed.

If all the reviewed techniques fulfil more or less most of these requirements, it has
been said that kernel smoothing is not really suited to deal with the second one (irregular
shapes and holes due to boundary effects) whereas local polynomial regression can be
overly time consuming. It is shown in the two next sections that the penalized least
squares technique illustrated in this study satisfies a priori all the listed conditions.

3. The penalized least squares method

The explanations of the principles and developments of the penalized least squares
method are taken mostly from [25] and [26]. The reader may find further details in both
these references.

3.1. Basic expression

The origin of the penalized least squares method dates from 1899 with Bohlmann’s
work [27]. However, this work did not receive much attention at this time (maybe
due to the fact that the paper was written in German) and the original idea is often
attributed to Whittaker in 1923 [28], who spoke about graduation of the observations



to refer to the smoothing operation. This work was completed by Whittaker [29]
and Henderson [30, 31, 32], which is why the method is sometimes called “Whittaker-
Henderson smoothing”.

Four decades later, Tikhonov proposed a well-known regularization scheme within
the context of ill-posed problems [33]. The underlying equation is very similar to
Whittaker’s formulation: Penalized least squares method, Tikhonov regularization and
ridge regression are different names for the same approach.

The modern formulation as spline smoothing within the context of nonparametric
regression was given by Schoenberg [34] and Reinsch [35] in the 60’s.

The basic principle of the penalized least squares method is to explicitly and
mathematically express the need of a compromise between fidelity to the raw data
and smoothness of the reconstruction. To do this, an objective function to minimize
is constructed as a combination of a quantity parameterizing the deviation from the
original data and another quantity parameterizing the roughness of the reconstructed
data. A relative weight is given to each of these quantities: generally, the weight of the
“Deviation” is set to 1 and relative weight of the “Roughness” is set to a real value λ
which is called the smoothing parameter (or sometimes “ridge parameter”).

To illustrate this principle, let us consider a 1D data set consisting in n observed
values yi depending on a single parameter x whose values xi are equally spaced. The
following equation defines the Q term that has to be minimized to get smoothed values
ŷi:

Q =
n∑

i=1

(yi − ŷi)
2

︸ ︷︷ ︸
Deviation from data

+λ
n−d∑
i=1

(
∆d ŷi

)2
︸ ︷︷ ︸

Roughness

. (4)

The term ∆d ŷi defines the dth difference of the ŷi values such as:

∆1 ŷi = ∆ ŷi = ŷi+1 − ŷi

∆2 ŷi = ∆ (∆ ŷi) = ŷi+2 − 2× ŷi+1 + ŷi

· · ·
(5)

Figure 1 illustrates the values (yi − ŷi) and (ŷi+1 − ŷi) (respectively named D for
“deviation” and R for “roughness”) for a single point (xi, yi) (and its reconstruction
(xi, ŷi)) for d = 1.

Rewriting equation 4 with a matrix form leads to:

Q = 〈y − ŷ〉 · {y − ŷ}+ λ ([Dd] {ŷ})T · ([Dd] {ŷ})
= 〈y − ŷ〉 · {y − ŷ}+ λ 〈ŷ〉 [Dd]T · [Dd] {ŷ}

, (6)

where 〈·〉 denotes a line vector, {·}, a column vector and [·] a matrix. The [Dd] denotes
the (n−d) by n dth difference matrix; for instance D1 is the (n−1) by n matrix defined
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Figure 1. Illustration on a simple 1D case of the “deviation” and “roughness” terms
of the penalized least squares method.

as:

D1 =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · −1 1 0

0 0 0 · · · 0 −1 1

 . (7)

To minimize Q, its derivatives with respect to the ŷi have to be canceled:{
∂Q

∂ŷi

}
= 0

= −2× {y − ŷ}+ 2× λ [Dd]T [Dd] {ŷ}
. (8)

It leads to:

{ŷ}+ λ [Dd]T [Dd] {ŷ} = {y}(
[I] + λ [Dd]T [Dd]

)
{ŷ} = {y} . (9)

Assuming that the operator
(

[I] + λ [Dd]T [Dd]
)

is invertible, the final optimal
values of {ŷ} are:

{ŷ} =
(

[I] + λ [Dd]T [Dd]
)−1

{y} . (10)

This way to smooth data is very simple and very fast since the problem has a close-
form solution (due to the use of quadratic terms for both deviation and roughness terms).
It can be easily implemented on high level languages such as Matlab R© or equivalent free
softwares (Octave, Scilab). Computation time can be further improved by using sparse
matrices and Cholesky factorization [25].

If the smoothing parameter λ is set to be equal to 0, the reconstructed data ŷi will
be equal to the original data yi. On the contrary, if λ tends to infinity, the reconstructed



ŷi will be such as ŷi = P (xi), with P (xi), the polynomial of degree (d−1) that is obtained
with a simple least square regression applied on the whole set of values [34, 25].

3.2. Dealing with missing data

To deal with missing data (that can be represented as NaN’s in the Matlab R©

environment), a weighted version of the algorithm is set up. The missing values are
affected with a null weight wi = 0 whereas the valid values are weighted by wi = 1. The
Q term to minimize thus becomes:

Q =
n∑

i=1

wi (yi − ŷi)
2 + λ

n−d∑
i=1

(
∆d ŷi

)2 , (11)

or, in vectorial form:

Q = 〈y − ŷ〉 [W ] {y − ŷ}+ λ 〈ŷ〉 [Dd]T · [Dd] {ŷ} , (12)

with [W ], the diagonal matrix containing the different wi values. Minimizing this
equation, following the same previous steps, leads to a vector of the reconstructed values
ŷi such as:

{ŷ} =
(

[W ] + λ [Dd]T [Dd]
)−1

[W ] {y} . (13)

3.3. Dealing with 2D data

To deal with 2D data sets, a simple way is to smooth each column first with the 1D-
algorithm and then each row. But other more subtle possibilities do exist [36, 26].

For example, the [Dd] matrix can be decomposed to let a discrete cosine transform
appear [37, 26].

For that, let us consider the [D2] matrix slightly modified by adding two rows (at
the beginning and the end of the matrix, in boldface in the follwing expression), leading
to a square matrix [D2m ]:

[D2m ] =



−1 1 0 0 · · · 0 0 0 0

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

0 0 0 0 · · · 0 0 1 −1


. (14)

This modification corresponds to the expression of reflective boundary condi-
tions [37].

As this new matrix is square, it can be eigendecomposed [38]:

[D2m ] = [U ] [Ω] [U ]−1 = [U ] [Ω] [U ]T , (15)



with [Ω], a diagonal matrix containing the eigenvalues of [D2m ] and [U ], the
concatanation of the eigenvectors of [D2m ] in a square matrix.

Replacing the [Dd] matrices in equation 10, it leads to:

{ŷ} = [U ]
(
[I] + λ [Ω]2

)−1
[U ]T {y} = [U ] [Γ] [U ]T {y} . (16)

[U ] and [U ]T are respectively the type-2 discrete cosine transform (DCT) and inverse
discrete cosine transform (IDCT) matrices [39]. Equation 16 thus becomes:

{ŷ} = [U ] [Γ] [U ]T {y} = IDCT ([Γ]DCT ({y})) . (17)

Due to the properties of the discrete cosine transform, the same kind of approach
can be applied to 2D equally spaced data. For a 2D grid of values, equation 17 becomes:

[ŷ] = IDCT2
([

ΓII
]
◦DCT2 ([y])

)
, (18)

with DCT2 and IDCT2 respectively denoting the 2D type-2 discrete cosine transform
and inverse discrete cosine transform, ◦, the Hadamard or Schur product (elementwise
product) and

[
ΓII
]
a square matrix depending on λ and the eigenvalues of [D2m ] in 2D.

3.4. Automatic choice of the smoothing parameter

One strength of the penalized least squares is the fact that the smoothing parameter can
be chosen automatically using the method of generalized cross-validation (GCV) [40,
41, 42].

The hypothesis underlying this method is that the measured values of {y} are
supposed to be affected by a gaussian noise, such as:

{y}measured = {y}actual + {ε} , (19)

with {ε}, a gaussian noise with mean zero and unknown variance. Within the framework
of the smoothing procedure, {y}actual is supposed to be the smoothed value:

{y} = {ŷ}+ {ε} . (20)

Assuming this hypothesis, the following linear system is considered:

{ŷ} = [H (λ)] {y} . (21)

[H (λ)] is the so-called “hat matrix” that can be identified in equation 10 as(
[I] + λ [Dd]T [Dd]

)−1

. λ is chosen to minimize the GCV score:

λ = argmin (GCV) , (22)

with:

GCV (λ) =
RSS/n

(1− Tr ([H (λ)]) /n)2 . (23)



RSS denotes the residual sum of squares i=1

of the matrix [H (λ)]. It can be seen that the function GCV (λ) does not have a
closed-form expression. Consequently, its minimization needs an iterative optimization
procedure than can be potentially time consuming. Using the decomposition defined in
equation 15, the problem is simplified as:

Tr ([H (λ)]) =
n∑

i=1

1

1 + λω2
i

. (24)

This approach can be extended to process 2D data. The reader may find more
details about the exact implementation of GCV minimization in [26].

4. Smoothing of kinematic maps: the penalized least squares algorithm

To study the ability of the penalized least squares algorithm (denoted “PLS” hereafter)
to deal with kinematic maps, it has been applied successively to:

• a map of a 2D analytical function on which noise has been added ;

• noised maps resulting from a finite-element simulation of a mechanical test;

• experimental maps.

For this purpose, the algorithm described in [26] has been used and reprogrammed
in the Matlab R© environment.

The results produced by PLS have been compared to those produced by two other
popular smoothing procedures:

• the diffuse approximation (denoted “DA” hereafter) that has been qualified as a 2D
variation of the LOWESS/LOESS approach in section 2 and that is often set up
by the experimental mechanics community;

• a modified version of the Savitzky-Golay smoothing filter (denoted “SG” hereafter)
as described in [18].

For both these approaches, a local 2D second order polynomial reconstruction has been
considered.

As previously mentioned, most of full-field kinematic measurement methods provide
displacement maps when the useful information is given by strain fields. Thus, there is
a spatial derivation operation (usually, done in a second time) that is superimposed to
the smoothing one. Consequently, the criteria that have been considered to qualify the
performance of the different algorithms has been applied on strain maps (the spatial
derivatives) and not directly on smoothed displacement maps.

4.1. Smoothing of a noised map of a 2D analytical function

The performances of the chosen algorithm have been first evaluated on a noised
analytical function. The advantage of using an analytical function is that one has access



to the analytical derivatives which allows a comparison of the reconstructed derivatives
to the actual ones getting rid off every source of error on these last values.

The analytical function that has been chosen is the “peaks” function of Matlab R©

that produces a square matrix of (n×n) values taken by the following z (x, y) function:

z (x, y) = 3 (1− x)2·e−x2−(1+y)2−10
(x

5
− x3 − y5

)
·e−x2−y2−1

3
e−(1+x)2−y2

,(25)

for −3 ≤ x ≤ +3 and −3 ≤ y ≤ +3 and for a pitch of
6

n− 1
. The analytical expressions

of both partial derivatives of z (x, y) (with respect to x and to y) are the following ones:

∂z

∂x
= −6 (1− x) (1 + x− x2) · e−x2−(1+y)2

−2 (1− 17x2 + 10x4 + 10xy5) · e−x2−y2

+
2

3
(1 + x) · e−(1+x)2−y2

, (26)

∂z

∂y
= −6 (1− x)2 (1 + y) · e−x2−(1+y)2

+2y (2x− 10x3 + 25y3 − 10y5) · e−x2−y2

+
2

3
y · e−(1+x)2−y2

. (27)

Here, a (1000× 1000) matrix has been generated (pitch equal to
2

333
). A gaussian

noise with mean zero and standard deviation one has been added to the map which
leads to a typical high resolution noised displacement maps both in terms of spatial
localizations and of signal to noise ratio. Views of the raw and noised functions and its
analytical derivatives are shown in figure 2.

First of all, the time spent to perform the reconstruction has been looked at. As
previously mentioned, the time needed to process large maps with DA can become very
long and discouraging.

The computation has been made as if the noised z (x, y) function map was both
ux and uy maps (leading to three in-plane strain components εxx, εyy and εxy). It has
been performed using Matlab R© on a 64 bits computer equipped with an Intel R© CoreTM

i7-2760QM (2.4 GHz) CPU and a 8 GB DDR3 1333 MHz RAM. The computation time
against the smoothing parameters for DA, SG and PLS algorithms are shown in figure 3.

It can be seen that:

• for both DA and SG, the computation time is strongly dependent of the span of
the window on which the reconstruction is performed (called h in both cases): the
more h, the longer the processing;

• if the computation time remains reasonable for SG (inferior to half a minute for
h = 85 pixels), it becomes very large for DA (about 6 hours for h = 85 pixels);
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Figure 2. The “peak” function, the noised function and its derivatives.

• the computation time is very low (about 0.78 seconds) and independent of the
smoothing parameter λ for PLS (for an automatic choice thanks to the GCV
minimization, the computation time becomes 1.2 seconds).

From these results, it is clear that PLS is far quicker than both DA and SG.
Moreover, the computation time is independent of the amount of smoothing.

In a second time, the accuracy of the reconstruction has been investigated. For that,
an approach similar to the one developed in [5, 6] has been set up. The criterion to
qualify the reconstruction is the average distance between the reconstructed derivatives
and the exact ones defined as:

d∂ =

〈√(
∂z

∂x

rec.

− ∂z

∂x

exact)2

+

(
∂z

∂y

rec.

− ∂z

∂y

exact)2
〉
, (28)

where 〈·〉 denotes here a spatial averaging of the data all over the map.
The optimal results for each method (i.e. the smoothing parameter leading to the

lowest value of d∂ and this last value) are given in table 1.
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Figure 3. Computation time against the smoothing parameters for the different
considered algorithms.

It can be seen that, for an optimal value of the smoothing parameter, PLS conducts
to a lower value of this average deviation than DA and SG (0.12 for PLS to be compared
to 0.22 for DA and 0.23 to SG).

Considering the automatic choice of λ by the GCV minimization, one notes that
it does not exactly lead to the value minimizing the average deviation defined in
equation 28. However, the value is not far from it (λ ' 5.02 · 104 leading to an average
deviation of 0.14 to be compared to λ ' 1.26 · 105 leading to an average deviation of
0.12).



Table 1. Performance results for the different algorithms with optimized smoothing
parameters for the noised analytical map.

Algorithm DA SG PLS PLS with GCV
Smoothing parameter h = 105 pixels h = 87 pixels λ = 1.26 · 105 λ = 5.02 · 104

d∂ 0.22 0.23 0.12 0.14

Algorithm PLS on raw derivatives PLS on raw derivatives + GCV
Smoothing parameter λ (∂Z/∂x) = 1.58 · 105; λ (∂Z/∂x) = 4.87 · 106;

λ (∂Z/∂y) = 1.26 · 105 λ (∂Z/∂y) = 3.62 · 106

d∂ 0.20 0.86

In addition, thanks to the nature of the λ parameter (an adimensional real number)
compared to the span h for DA and SG (an integer denoting a number of pixels), there
is a wider range of flexibility. Consequently, one can imagine the validity of applying
PLS after the spatial derivation and not before (which is not the case for DA and SG).
Moreover, λ does not directly represent a physical quantity (when h is related to the

spatial resolution), so there is no reason not to apply different values of λ to smooth
∂z

∂x

and
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∂y
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Figure 4. Derivatives values obtained by simple finite difference applied onto the raw
noised z (x, y) map.

The raw derivatives (obtained by point-to-point difference of the noised maps) are
shown in figure 4. To the naked eye, no structure can be observed; the maps seem to
be composed only of noise. However, PLS manages to extract reconstructed derivatives
from these highly noised maps (average computation time ' 1.01s) with an accuracy
comparable to the one of DA or SG (reported in table 1). On the contrary, the automatic
choice of λ by GCV (computation time ' 1.40s) does not produced optimal results.
This can be explained easily by the fact that the minimization of the GCV is based
on a minimization of an average weighted quadratic distance between the reconstructed
data and the raw noised data [40, 42]. This approach is no longer applicable when the



amount of noise is greater than the signal (i.e. the signal to noise ratio becomes inferior
to 1).

All these results are confirmed by figure 5 that shows the reconstructed
∂z

∂x
maps

as well as the corresponding error maps (
∂z

∂x

rec.

− ∂z

∂x

exact

) for each applied method.
The error maps especially contain interesting information: it appears that error maps
corresponding to the application of PLS are less spatially correlated than for both DA
and SG. Therefore, one can maintain that PLS presents a better reconstruction of the
noised z (x, y) function than DA and SG. It can also be observed, that the reconstruction

is more disturbed on the edges (vertical ones for
∂z

∂x
) by applying the differentiation

before PLS smoothing. Finally, the minimization of GCV when PLS is applied after
differentiation leads to error maps showing large patterns of deviation from the exact
values.

4.2. Smoothing of kinematic maps from a finite elements simulation

The algorithm has been tested a second time on simulated data. For that, a finite
element model has been built. The mechanical test was a tensile test on a double
notched specimen such as the one used in [43]. Figure 6 shows a view of the geometry,
the region of interest and the boundary conditions of this model.

The finite element model consisted of a plane-stress simulation using standard linear
3-node triangular elements with an isotropic material. The sample was meshed by 74664
elements and 37587 nodes (65554 elements and 33204 nodes within the region of interest
where the mesh size was thinner so that the finite element displacement fields could be
reasonably considered as the exact ones). To create the synthetic displacement maps, the
fields were evaluated on a regular grid of 240 × 160 pixels by interpolating linearly the
nodal displacements (i.e. using the shape functions of the 3-node triangular element). In
these conditions, the data grid spacing is equal to 0.1 mm (which is typically the thinner
grid spacing of results that can be obtained from white-light optical measurements with
the “grid method” [44, 45]). Then, a gaussian noise with mean zero and standard
deviation 10−8 (in m i.e. 10 nm) was added to the displacement maps (leading to
typical noised displacement maps in terms of signal to noise ratio). Views of these maps
and of the strain maps obtained by finite difference derivation are shown in figure 7.

The quality of the reconstruction has been investigated using the same kind of
criterion as previously: the average distance between the reconstructed strains and the
exact ones defined as:

dε =

〈√
(εrec.

xx − εexact
xx )2 + 2

(
εrec.

xy − εexact
xy

)2
+
(
εrec.

yy − εexact
yy

)2〉 , (29)

where 〈·〉 always denotes a spatial averaging of the data all over the map.
The results obtained are summarized in table 2 and εxx maps as well as the

corresponding error maps (εrec.
xx − εexact

xx ) are shown in figure 7.
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Figure 7. Noised displacements maps and raw strain maps for the simulated tensile
test.

It can be observed that, for an optimal value of the smoothing parameter, PLS works
worse than both DA and SG. Indeed, the obtained average deviation in these conditions
(1.64× 10−5) is an order of magnitude higher than the ones obtained for the two others
algorithms (1.47 × 10−6 for DA and 2.03 × 10−6 for SG). This counterbalances the
conclusions of the previous section concerning the best performances of PLS. It appears
especially that PLS does not manage to reconstruct correctly the edges of the circular
notches, where the absolute deviation from the exact value of the strain is maximum.

An automatic choice of λ by minimization of GCV produces worse results: it leads
to smoothing parameters λ = 34.46 for the smoothing of ux and λ = 0.0282 for the
smoothing of uy and to an average deviation of the strains equal to 5.83 × 10−5. The



Table 2. Performance results for the different algorithms with optimized smoothing
parameters for the noised maps from a FEM simulation.

Algorithm DA SG PLS PLS with GCV
Smoothing parameter h = 37 pixels h = 31 pixels λ (ux) = 354.8; λ (ux) = 34.5;

λ (uy) = 89.1 λ (ux) = 0.028

dε 1.47 · 10−6 2.03 · 10−6 1.64 · 10−5 5.83 · 10−5

Algorithm PLS on raw derivatives PLS on raw derivatives + GCV
Smoothing parameter λ (εxx) = 1000; λ (εxx) = 11440;

λ (εyy) = 1000; λ (εyy) = 6986;
λ (εxy) = 501.2 λ (εxy) = 4917

dε 2.13 · 10−6 3.66 · 10−6
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Figure 8. Reconstructed εxx and corresponding error maps for the different smoothing
methods.



most probable explanation of this fact is that the GCV minimization optimizes the
reconstruction of the smoothed data. In the present case, this is not directly smoothed
values that are looked at but their spatial derivatives. To work efficiently, an automatic
choice of the smoothing parameter should consider minimizing a criterion based on
the derivatives (which is not really applicable since the derivation always increases
dramatically the influence of noise). It can thus be concluded that automatic choice
of the smoothing parameter is not suitable to the smoothing and derivation of full-field
kinematic measurements.

However, when smoothing directly the raw derivatives as previously done for the
noised analytical function, the reconstruction by PLS works more efficiently. Indeed,
for an optimal set of λ’s, the average deviation obtained is of the same range as the one
obtained with the two other algorithms (2.13× 10−6).

In conclusion, it can be said that, if PLS is not the best procedure for this problem
(possibly because the highest gradients are located on the edges of the maps which was
not the case previously, with the analytical function), it shows results comparable with
the ones produced by DA or SG (especially when performing the derivation before the
smoothing) and remains far faster.

4.3. Smoothing of experimental kinematic maps

Finally, the smoothing procedure by PLS has been tested onto true experimental
kinematic maps. To illustrate this final step, two mechanical test are considered.

4.3.1. Smoothing of experimental kinematic maps of a notched specimen under tensile
test The first one is the experimental set up of the tensile test on a double notched
specimen considered in the previous section. The displacement maps were obtained by
the grid method. This one consists in computing ux and uy, the two components of
the in-plane displacement field, from a periodical pattern deposited onto the surface to
study by a phase-stepping algorithm [44, 45]. The grid here had a pitch of 100 µm
leading to kinematic maps of 159×231 pixels2 (a measurement point corresponds to a
period).

The raw displacements fields have been processed by the different algorithms leading
to strain maps represented in figure 9 (the few missing points within the region of
interest correspond to small zones where the grid was not transferred properly onto the
specimen). In this figure, it can be clearly observed that both DA and PLS directly
applied on raw strain maps lead to accurate maps that can be compared to the ones
obtained on simulated data even if the experimental results show an asymmetry between
the left and right sides due to some misalignment between the axis of the sample and
the one of the testing device during the test (figure 8). On the contrary, SG and PLS
applied before derivating displacement maps do not work. Strain maps resulting from
SG show a dithering effect probably due to the important influence of the edges (zones
surrounded by dashed rectangles in figure 9). For the same reason, PLS applied before



x

y

DA; h = 49

SG; h = 49

PLS; λ = 1000

PLS on raw strain maps; λ = 5000

εxx εxy εyy

εxx εxy εyy

εxx εxy εyy

εxx εxy εyy

Figure 9. Experimental in-plane strain maps obtained on the double-notched tensile
sample by applying different smoothing procedures (size of the region of interest:
16×23 mm2).

derivating displacement maps does not provide good results. This is especially the case
for εxx (zones surrounded by dashed ellipses in figure 9) that is here the most difficult
map to reconstruct as the signal to noise ratio is the lowest (the x direction is not
highly solicitated in this test). So, for such a case, with high gradients on the edges
and potentially low signal to noise ratio, it seems preferable to apply a point-to-point
differentiation before smoothing by PLS rather than applying the smoothing and then
differentiating the smoothed displacement maps: this produces results comparable with
the ones of DA.

The most probable reason for this is that the probability distribution of the



noise of those experimental maps is not normal. But, when applying a point-to-point
differentiation, if it leads to an increase in the level of noise as already mentioned, this
also modifies the probability distribution to get closer to a “bell-shaped distribution”.
Indeed, due to the central limit theorem, the application of a nth differentiation
operation onto random variables following the same probability distribution converges
to a normal distribution when n increases. Practically, in most experimental cases, a
first differentiation is enough to assume a “normalization” of the distribution.

To illustrate this effect, three different non-normal distributions have been studied:

• a Weibull distribution (scale parameter = 1.5; shape parameter = 1.8);

• a beta distribution (shape parameters: α = 2; β = 2);

• a bimodal distribution, mixture of two normal distributions (contribution for 40 %
of a normal law with mean of -3 and standard deviation of 1.5 and 60 % of a normal
law with mean of 2 and standard deviation of 2).

For each of them, a population of 10,000 numbers following these distributions
have been generated. Figure 10 shows for each the probability density function, a
histogram of the population with a normal probability density function having the same
average and standard deviation and a histogram of the point-to-point differences of
the population with a normal probability density function having the same average
and standard deviation of this new population. This figure clearly indicates that the
differentiation leads to a more “normalized” distribution of the noise even if it impairs
the signal to noise ratio.

So, as mentioned in section 3.4, the underlying hypothesis behind PLS is that the
noise is gaussian. This must be the reason why, on these experimental displacement
maps, applying the derivation before PLS works better than doing it in the reverse
order.

4.3.2. Smoothing of experimental kinematic maps of a specimen with a FSW joint
under tensile test The second experimental data came from a study of the elasto-
plastic behaviour of a magnesium sample presenting a friction-stir welding joint [46].
The principle of friction-stir welding (FSW) is to use a tool whose speed generates
heat, softening locally the material. This tool mechanically intermixes the two pieces of
metal at the place of the join (Figure 11(a)). This thermomechanical process leads to
different regions within the material (base metal, heat affected zone, thermomechanically
affected zone, nugget) that present different mechanical properties. A mechanical test
performed onto such a sample produces heterogeneous strain maps with high gradients
zones (especially, within the elasto-plastic domain).

The sample has been tested on a small home-made micro tensile machine [47]. Full-
field measurements have been done through the thickness of the sample thanks to an
Electronic speckle pattern interferometric system (ESPI) [48]. The spatial resolution is
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measurement by Electronic Speckle Pattern Interferometry (ESPI).



16 µm for a size of sample of 1.8×22 mm2 (109×1361 pixels2). A view of the setup is
shown in figure 11(b).

Figure 12 shows the raw εxx map and the reconstructed εxx maps obtained for
DA, SG and PLS applied before and after differentiation (the smoothing parameters
indicated in the figure). In this case, less severe than the tensile test on the double-
notched specimen, the four procedures give very close maps. So, it can be concluded
that PLS manages to reveal strain localizations due to the FSW joint tested in its plastic
domain.

x
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DA; h = 39

SG; h = 39

PLS; λ = 1000

PLS on raw strain maps; λ = 1000

Raw derivative

Figure 12. εxx maps obtained on the FSW tensile sample by applying different
smoothing procedures (size of the sample: 1.8×22 mm2).

5. Conclusion and prospects

In this paper, the possibility to use the penalized least squares smoothing procedure
(PLS) as an alternative way to process kinematic full-field measurements has been
addressed. At the end of this study, it can be asserted that PLS manages to produce
valid strain maps from displacements measurements, with an accuracy comparable to



the techniques currently set up such as diffuse approximation (DA) or Savitzky-Golay
smoothing filter (SG). Nevertheless, a few precautions have to be taken.

• For kinematic measurements presenting high gradients on the edges of the studied
region and showing low signal to noise ratio, it is highly preferable to apply PLS on
raw strain fields, after a spatial derivation of displacement fields thanks to a simple
finite differences procedure.

• The automatic choice of the smoothing parameter λ by minimizing the generalized
cross validation (GCV) does not produce optimal results. It is thus advised to
choose “manually” λ taking into account engineering considerations.

Compared to other procedure such as DA or SG, PLS presents two main advantages:

• the computation time of the algorithm is independent of the value of the smoothing
parameter and highly lower than both DA and SG;

• The h span parameter of DA and SG is an odd integer that gives only a discrete
control of the amount of smoothing to apply; on the contrary, the smoothing
parameter λ of PLS is a real continuous value.

However, a few drawbacks can be underlined:

• λ, the real smoothing parameter, has no direct physical meaning (whereas h for DA
and SG is directly related to the spatial resolution);

• due to the global nature of the procedure, the amount of smoothing cannot be
adapted locally to match local gradients (which can be imagined with DA even if
it is hardly applied).

Finally, PLS appears to be a robust alternative to currently applied smoothing
techniques that can be preferentially selected whenever one has to process large maps
that need a large amount of smoothing due to its high computation speed.

Several prospects of this work are envisaged:

• the procedure can easily be extended to 3D problems which would allow one
to smooth a whole set of 2D maps both spatially and temporally or to process
3D tomographic measurements that have become more and more popular in
experimental mechanics applications;

• a criterion based on considerations of signal to noise ratio and of an empirical
computation rather than GCV minimization could be defined.

At last, a long term prospect could be to use another regularization method.
Replacing equation 4 by this expression:

Q =
n∑

i=1

(yi − ŷi)
2 + λ

n−d∑
i=1

∣∣∆d ŷi

∣∣ , (30)

one get access to the so called “total variation” scheme that was introduced within the
context of image processing in [49]. This method, using the absolute value of the dth



order difference of reconstructed values as a penalization term instead of the its square
value, leads to a more accurate determination of discontinuities occurring within the
data. The drawback is that the minimization of Q defined in equation 30 has no more
close-form solution and needs a stage of numerical optimization (which is more time
consuming). This approach has already been successfully set up within the numerical
differentiation context for 1D non-missing data [50].
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