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Study of interpolation methods for high-accuracy

computations on overlapping grids

J. Chicheportichea, X. Gloerfelta

aDynFluid Laboratory - Arts et Métiers ParisTech - 151 boulevard de l’Hôpital, 75013

Paris, France

Abstract

Overset strategy can be an efficient way to keep high-accuracy discretiza-

tion by decomposing a complex geometry in topologically simple subdomains.

Apart from the grid assembly algorithm, the key point of overset technique

lies in the interpolation processes which ensure the communications between

the overlapping grids. The family of explicit Lagrange and optimized inter-

polation schemes is studied. The a priori interpolation error is analyzed in

the Fourier space, and combined with the error of the chosen discretization

to highlight the modification of the numerical error. When high-accuracy

algorithms are used an optimization of the interpolation coefficients can en-

hance the resolvality, which can be useful when high-frequency waves or

small turbulent scales need to be supported by a grid. For general curvilin-

ear grids in more than one space dimension, a mapping in a computational

space followed by a tensorization of 1-D interpolations is preferred to a direct

evaluation of the coefficient in the physical domain. A high-order extension

Email addresses: jeremie.chicheportiche@paris.ensam.fr (J. Chicheportiche),
xavier.gloerfelt@paris.ensam.fr (X. Gloerfelt)

URL: www.dynfluid.eu (X. Gloerfelt)

Preprint submitted to Computer and Fluids July 25, 2012



of the isoparametric mapping is accurate and robust since it avoids the in-

version of a matrix which may be ill-conditioned. A posteriori error analyses

indicate that the interpolation stencil size must be tailored to the accuracy

of the discretization scheme. For well discretized wavelengthes, the results

show that the choice of a stencil smaller than the stencil of the corresponding

finite-difference scheme can be acceptable. Besides the gain of optimization

to capture high-frequency phenomena is also underlined. Adding order con-

traints to the optimization allows an interesting trade-off when a large range

of scales is considered. Finally, the ability of the present overset strategy to

preserve accuracy is illustrated by the diffraction of an acoustic source by two

cylinders, and the generation of acoustic tones in a rotor-stator interaction.

Some recommandations are formulated in the closing section.

Keywords: computational aeroacoustics, overlapping grids, optimized

interpolation

1. Introduction

Direct Noise Computation (DNC), consisting in solving the acoustic and

aerodynamic fields in the same run, increasingly becomes a viable tool for

analysis of engineering problems in which noise plays a significant role. In

fact, DNC has already been used to study fundamental aspects of noise gen-

eration and propagation, such as jets [1, 2], or cavities [3, 4]. Numerical al-

gorithms minimizing dispersion and dissipation errors are generally required

to resolve the weak acoustic wave and preserve their characteristics during

long-range propagation [5]. This can be achieved by the use of high-accuracy

central difference schemes [6]. Note that a similar constraint is also familiar
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in the DNS/LES framework, where fine-scale turbulent structures have to be

computed on a given grid. Quasi-spectral finite-difference approximations are

also widely used for that purpose due to their simplicity and efficiency. The

extension to complex geometries of practical interest is however not evident.

A first step has been provided by the use of curvilinear grids [7, 8] which

employs body-fitted grids. This guarantees an accurate treatment of wall

boundary conditions, but it is not an easy task to control the grid density:

either the grid spacing deteriorates as the distance from the body increases,

or the grid is too clustered in some regions, leading to a waste of computa-

tional time. Furthermore, the design of multiblock structured meshes with

a sufficient regularity is often a challenging task. A solution to control the

homogeneity and isotropy of the grid is the use of overset methods. This

method consists in solving partial differential equations on different grids

which overlap partially. The great interest is thus to decompose a complex

domain into several simpler sub-domains, where the high-accuracy schemes

can still be used independently. The simple sub-domains are overlapped and

interpolations are used to ensure communications.

This method has been first introduced by Benek et al. [9] in the beginning

of the 1980’s to simulate the flow around a space shuttle. Inspired from the

work of Kreiss [10], Chessire et Henshaw [11] studied the generic features of

a composite grid builder. Numerous particular cases must be treated such

as the overlap of two grids near a solid boundary, as explained for instance

by Petersson [12]. A free library called Overture developed by Henshaw et

al. [13] is now available. The next step has been to combine the overlapping

grid capability with adaptive mesh refinement techniques, as demonstrated
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recently by Henshaw and Schwendeman [14], Saunier et al. [15], Sitaraman

et al. [16], or Péron et al. [17]. The review by Prewitt et al. [18] shows the

maturity of the method for aerodynamic applications with moving grids.

In the context of Computational AeroAcoustics (CAA), high-accuracy al-

gorithms are generally retained, which require relatively regular grids, and

large stencils to evaluate derivatives. Yin et Delfs [19] has proposed a first ex-

tension of the overset technique with Dispersion Relation Preserving (DRP)

schemes [20]. Sherer and Scott [21] have developped the method for compact

schemes, and Desquesnes et al. [22] have applied it to a CFD/CAA cou-

pling. Emmert et al. [23, 24] used the Overture libraries to perform overset

simulations with eleven-point stencil finite-difference DRP schemes. When

high-order numerical schemes are retained, the interpolation scheme neces-

sary to ensure the communication between the grids should not reduce the

global accuracy of the algorithm.

The aim of the present paper is precisely to investigate the interpola-

tion errors in order to choose an interpolation method tailored to the dis-

cretization algorithms. The main properties of an interpolation scheme are

summarized in a first part. The family of explicit Lagrange or optimized

interpolation is detailed in the second section where the extension to multi-

dimensional state space is discussed. A static error analysis based on Fourier

representation is proposed in the third section. Sensibly different conclu-

sions can be inferred by the dynamic error analysis of the fourth section.

The last section is dedicated to more challenging benchmark cases, such as

the diffraction of a source by two cylinders, or the interaction of a gust and

a cascade of vanes, representative of the rotor-stator interaction noise. Some
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recommendations are drawn in the concluding section.

2. Role of interpolations for overset grids

2.1. Principle of the method

The example of figure 1 provides an illustration of the principle for two

overlapping grids in one space dimension. Two identical regular grids shifted

by half a grid spacing are used, but the generalization to any multidimen-

sional grids is straightforward. Grid 1 (on top) ended at index n, and grid 2

(bottom) starts at index 1. An information propagating from left to right is

thus known on grid 1, but not on grid 2. Values must be transmitted from

grid 1 to grid 2 to sustain the propagation. This communication involves in-

terpolations from interior points (white points) of grid 1 toward interpolated

points (black points) of grid 2. In overset terminology, white points are the

donor points, whereas black points are receiver points, sometimes referred

to as ghost points. The number of ghost points is fixed by the width of the

discretization stencil. For instance, an eleven-point centered finite difference

scheme is chosen in the example of figure 1, so that five ghost are added at

the right of grid 1. Likewise five ghost are added at the left of grid 2 to allow

a two-way communication. The region between the first interpolation point

of grid 2 and the last interpolation point of grid 1 is the overlapping zone.

Apart from the direct cost due to interpolation operations, the size of the

overlap will add an extra cost. It is thus interesting to keep this zone to a

minimum.

For explicit interpolation, the distinction between donor and receiver

points imposes a minimal distance between the points, directly linked to
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the stencil of the interpolation scheme. When a donor point can also be a

receiver point, the interpolation is said implicit. That means that at least

one of the values used to perform the interpolation is an unknown variable to

be interpolated on the other grid. The two-sided interpolation processes are

coupled and require the solution of a linear system of equations, which can be

expensive [11]. Nevertheless, an implicit interpolation allows a reduced over-

lapping zone, and becomes pertinent for complex geometries, where the gap

between two bodies is small for instance. In the following of the study, only

explicit interpolations are discussed. This choice is also motivated by the eas-

ier implementation on parallel computers, inevitable when three-dimensional

applications on large grids are tackled.

2.2. Properties of an interpolation scheme

Stability issues can arise when considering non-centered stencils [25], or

extrapolation [26]. It is then possible to combine an optimization in the

wavenumber space and a constraint on the amplification to stabilize the in-

terpolation scheme [26, 25]. In the following, only centered interpolations

with an even number of stencil points are considered, so that no stability

issue arises.

Another issue is the conservative character of the interpolation, which is

crucial for transonic or supersonic flows. Conservative interpolation schemes

[27, 28, 29] are cumbersome for high-order multidimensional applications,

so that practitioners prefer the use of non-conservative interpolations, which

can be sufficient for weak shocks [30, 24], or in conjunction with an adaptive

refinement technique to locally increase grid resolution near shocks [31, 14].

In the present paper, only subsonic compressible problems are considered.
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The main issue in the computational aeroacoustics and large-eddy simu-

lation frameworks is the high-accuracy of the interpolation scheme. Chessire

and Henshaw [11] have obtained theoretical results for elliptic problems on

composite meshes, and show that the interpolation scheme should be at least

of the same order as the finite-difference scheme. Delfs et al. [32] indicate

that a second-order interpolation is not sufficient to propagate acoustic waves

from an airfoil grid to a background Cartesian grid. The errors can be re-

duced by using high-order interpolation in the sense of Taylor’s expansion

truncation, as illustrated by Sherer and Scott [21]. These authors have tested

compact approximations, which allow an enhanced resolvability. They how-

ever induce an extra cost and difficulies for parallelisation, since they are

implicit (in the sense that the interpolation at a point requires the inter-

polated values at neighboring points). Tam et Kurbatskii [26] proposed to

minimize the dissipative error in the wavenumber space rather than maximiz-

ing the Taylor truncation order, in the same spirit as the DRP optimization

for finite-difference schemes [20]. Hermite interpolation is another way of in-

creasing the accuracy, but the use of derivatives at interface points will add

numerous degrees of freedom [33]. Very accurate results can also be obtained

by using B-splines. An advantage is the independence of the order on the

stencil width, but the imposition of constraints at end points can be tricky.

Moreover a previous study for one-way communication to extrapolate near-

field acoustic waves to the far-field [4] indicated that spline interpolations

are costly. Their use in multidimensional cases can become prohibitive as

shown by Guénanff [33], or Sherer and Scott [21]. The discussion is hereafter

restricted to explicit Lagrange or optimized interpolation schemes.
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3. Explicit Lagrange or optimized interpolations

3.1. One-dimensional interpolations

Let N be the size of the interpolation stencil and u a function defined on

the xi discretization points. The explicit interpolation from xi points to a

point x0 is given by:

u(x0) =
N
∑

i=1

Siu(xi) (1)

where Si are the interpolation coefficients. In this study, the coefficients are

defined for centered interpolation stencils with an even number of points N

and the point x0 located such that xN
2
< x0 < xN

2
+1. There are different

methods to compute the coefficients.

3.1.1. Lagrange polynomials

The Lagrange family of interpolations has proven to be a simple and

inexpensive solution [21, 34, 33]. For a stencil of size N , the coefficients Si

are polynomials of degree N − 1 defined by:

Si =
N
∏

l=1,l 6=i

x0 − xl

xi − xl
(2)

The order of accuracy in the sense of Taylor’s truncation error is N .

3.1.2. Interpolations optimized in wavenumber space

Tam and Kurbatskii [26] have computed coefficients optimized in the

wavenumber space, by minimizing a local error as in the DRP procedure. The

aim is to control the spectral resolvability rather than ensuring a formal order

for Taylor’s expansions. Compared to a classical Lagrange interpolation on

the same stencil, less grid points per wavelength are required. The increased

8



resolvability at small scales induces in turn a slightly reduced accuracy at

very low wavenumbers. For a monochromatic wave with unitary amplitude

uα(x) = ei[kx+φ(k)], a local error in the wavenumber space can be written as:

Elocal =

∣

∣

∣

∣

∣

ei(kx0+φ) −
N
∑

j=1

Sje
i(kxj+φ)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

1−
N
∑

j=1

Sje
−i

(xj−x0)

∆x
k∆x

∣

∣

∣

∣

∣

2

(3)

The total error after integration over the reduced wavenumbers k∆x between

0 and the parameter κ writes:

E =

∫ κ

0

∣

∣

∣

∣

∣

1−

N
∑

j=1

Sje
−i

(xj−x0)

∆x
k∆x

∣

∣

∣

∣

∣

2

d(k∆x)

The parameter κ controls the range of wavenumbers over which the coeffi-

cients are optimized. Tam and Kurbatskii [26], and then Sherer and Scott

[21], have shown that the error of an optimized interpolation depends on the

choice of κ. Here, κ is set to π/2, corresponding to an optimization until

4 points per wavelength, which corresponds to the spectral limit of the dis-

cretization scheme which is used in the following. The first constraint to be

imposed is that E is zero for constant u, i.e. k = 0:

Elocal(k = 0) =

∣

∣

∣

∣

∣

1−
N
∑

j=1

Sj

∣

∣

∣

∣

∣

2

= 0

The minimization problem is solved with the Lagrange multiplier method to

take into account the previous constraint. The Lagrangian is defined by:

L =

∫ κ

0

∣

∣

∣

∣

∣

1−

N
∑

j=1

Sje
−i

(xj−x0)

∆x
y

∣

∣

∣

∣

∣

2

dy + λ

(

1−

N
∑

j=1

Sj

)2
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with λ the Lagrange multiplier. Sj and λ are then solution of the following

set of equations:

∂L

∂Sj
= 0 i.e. Re

[

−

∫ κ

0

e−ijy

(

1−

N
∑

m=1

Sme
−i

xm−x0
∆x

y

)

dy

]

+
λ

2
= 0

∂L

∂λ
= 0 i.e.

N
∑

j=1

Sj − 1 = 0

The explicit solution is written for instance in [26] or [21].

3.1.3. Optimized interpolation with order constraints

To reduce errors of an optimized interpolation at low wavenumbers, Tam

and Hu [35] suggest to add order constraints to the Lagrangian. These order

constraints come from Taylor’s series expansions, and the Lagrangian then

becomes:

L =

∫ κ

0

∣

∣

∣

∣

∣

1−
N
∑

j=1

Sje
−i

(xj−x0)

∆x
(k∆x)

∣

∣

∣

∣

∣

2

d(k∆x) + λ

(

1−
N
∑

j=1

Sj

)2

+
∑

m

µm

[

N
∑

k=1

Sk(xk − x0)
m

]

= 0,

where µm are the new Lagrange multipliers related to the order constraints.

A new set of equations can be formed:

∂L

∂Sj
=0 i .e. Re

[

−

∫ κ

0

e−ij(k∆x)

(

1−

N
∑

m=1

Sme
−i

xm−x0
∆x

(k∆x)

)

d(k∆x)

]

+
λ

2
=0

∂L

∂λ
= 0 i .e.

N
∑

j=1

Sj − 1 = 0

∂L

∂µm
=0 i .e.

N
∑

k=1

mSk(xk − x0)
m−1 = 0
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In the following sections, an optimized interpolation with a mth-order con-

straint will mean that m order constraints are added by m Lagrange multi-

pliers µm.

3.2. Two-dimensional interpolations

Two-dimensional or three-dimensional overlapping methods can handle

both Cartesian and general curvilinear non-coincident grids. The interpo-

lation stencil varies from point to point, so that an efficient and robust al-

gorithm to compute the interpolation coefficients at each points is required.

Two different methods are presented in this section: the tensorization of 1-D

interpolations, and the calculation directly in the curvilinear space. In the

first method, the interpolation stencil is mapped in the regular Cartesian

computational space, where 1-D interpolations can be applied by direction.

The difficulty is thus reported in the choice of a particular mapping.

Let N×N be the size of the interpolation stencil, and u a fonction defined

on (xi, yj) discretization points. The explicit interpolation at a point (x0, y0)

can be written as:

u(x0, y0) =

N
∑

i,j=1

Siju(xi, yj) (4)

where Sij are the interpolation coefficients.

3.2.1. Tensorization of 1-D interpolations

Special case of Cartesian grids. First consider the case of a N×N Cartesian

interpolation stencil, as depicted in figure 2. The interpolation of u at point

(x0, y0) is performed in two steps. N horizontal interpolations of u at abscissa

x0 for the different ordinate locations yj are first realized (white squares in
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figure 2). The next step is to interpolate vertically at point (x0, y0) from

the intermediate values at (x0, yj), with j = 1, ..., N . The interpolation

coefficients Sij are thus simply the tensor products of the 1-D interpolation

coefficients Si and Sj. For instance, for Lagrange interpolation, we get:

Sij = SiSj =
N
∏

l=1,l 6=i

x0 − xl

xi − xl

N
∏

k=1,k 6=j

y0 − yk
yj − yk

(5)

The method is hereafter referred to as 2×1-D interpolation. Its extension to

general curvilinear grids is based on a prior mapping of the curvilinear phys-

ical space into a Cartesian computational space, where the 2×1-D method

can be readily applied. The difficulty is to determine accurately the position

of the interpolated point (x0, y0) in the reference space. This localization is

straighforward if the mapping is known analytically, e.g. for conformal trans-

formations. In particular, when a cylindrical formulation of the governing

equations is used, the transformation is:







x = r cos θ and y = r sin θ

r =
√

x2 + y2 and θ = atan(y/x)
(6)

where (x,y) are Cartesian coordinates and (r,θ) the polar coordinates.

Isoparametric mapping. The interpolation is realized in the computational

domain (ξ,η) as depicted in figure 3. The location of the interpolation point

is determined by the offsets (δξ, δη) relative to the base point of the stencil.

The calculation of high-order offsets is performed using an isoparametric

mapping from the physical space to the computational domain. The latter is

Cartesian regular, so that the coefficients of a Lagrange interpolation in the
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α-direction are defined by:

Sα
j =

(−1)N+j−1

[N − (j + 1)]!j!

N−1
∏

l=0,l 6=j

(δα − j) (7)

Sherer and Scott [21] proposed a high-order extension of the procedure of

Benek et al. [9] using explicit, non-optimized Lagrangian interpolants for

the isoparametric mapping. The offsets are then solution of the following set

of equations:






















F1 =

N−1
∑

j=0

N−1
∑

i=0

Sη
j (δη)S

ξ
i (δξ) xi,j − x0 = 0

F2 =

N−1
∑

j=0

N−1
∑

i=0

Sη
j (δη)S

ξ
i (δξ) yi,j − y0 = 0

(8)

where (x0, y0) and (xi,j, yi,j) are the coordinates in the physical space for the

interpolation point and the donor points forming the stencil. The interpola-

tion coefficients Sξ
i and Sη

j are given as functions of the offset in that direction

by (7). The system is solved iteratively using Newton’s method:




δξ

δη





n+1

=





δξ

δη





n

−



J−1 ×





F1

F2









n

where the inverse of the Jacobian matrix J is given by:

J−1 =
1

D





∂F2

∂δη
−∂F1

∂δη

−∂F2

∂δξ

∂F1

∂δξ



 with D =
∂F1

∂δξ

∂F2

∂δη
−

∂F1

∂δη

∂F2

∂δξ

The derivatives can be expressed as:

∂Fj

∂δα
=

(−1)N+j−1

[N − (j + 1)]!j!

N−1
∑

l=0,l 6=j

N−1
∏

k=0,k 6=j,k 6=l

(δα − k)

The initial guess for the offsets (δξ, δη) is provided by the second-order offsets

calculated by the grid-assembly program Overture [13].
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Polynomial approximation of the inverse mapping. Another approach, as

proposed by Guénanff et al. [36, 33], and later used by Desquesnes et al.

[22], consists in defining a polynomial approximation PH of the inverse map-

ping H , such that H(x, y) = (ξ, η). The location of the interpolation point

in the computational space is then directly determined by evaluating the

polynomial PH at (x0, y0). The determination of the polynomial coefficient

requires the inversion of a matrix, which can be ill-conditioned for large sten-

cils and particular orientations of the donor grid [33].

3.2.2. 2-D interpolations in a curvilinear space

Another possibility is to compute the interpolation coefficients directly in

the physical space. The system of Taylor’s expansion relationships and/or

optimization constraints is written and solved in the physical space. The

general formula for a 2-D interpolation u at the point (x0, y0) is now expressed

as:

u(x0, y0) =

N×N
∑

k=1

Sku(xk, yk) (9)

where Sk are the interpolation coefficients to be determined.

Multidimensional interpolation with order contraints. The Taylor series ex-

pansion of order M of the function u at the donor points (xk, yk) about

(x0, y0) reads:

u(xk, yk) = u(x0, y0) +
∑

p,q

1

p!q!

(

∂p+qu

∂xp∂yq

)

x0,y0

(xk − x0)
p(yk − y0)

q, (10)

for 1 6 p+q 6 M . The system of equations for the coefficients Sk is obtained

by replacing u(xk, yk) by its expansion (10) in (9), and by canceling all the
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monomial terms up to order M . This yields:

N
∑

k=1

Sk = 1, and
N
∑

k=1

Sk(xk − x0)
p(yk − y0)

q = 0, 1 6 p+ q 6 M (11)

which can be written in the matrix form:

CS =
(

1 0 ... 0 0
)T

(12)

The size of C is T ×N with:

T = 1/2(M + 1)(M + 2) , Cpq,k = (xk − x0)
p(yk − y0)

q ,

and S =
(

S1 S2 ... SN

)T

is the unknown vector of coefficients.

Multidimensional interpolation optimized in wavenumber space. Tam and Hu

[35] have proposed a multidimensional extension of the optimized 1-D inter-

polation of Tam and Kurbatskii [26]. The 2-D inverse Fourier transform is

defined as:

u(x, y) =

∫ ∫ +∞

−∞

A(k1, k2)e
i(k1x+k2y+φk1k2

)dk1dk2 (13)

with A(k1, k2) = |ũ(k1, k2)|, φk1,k2 = arg[ũ(k1, k2)]. ũ denotes the Fourier

transform of u. For a unitary amplitude simple wave uk1k2 = ei(k1x+k2y+φk1k2
),

the local error is given by:

Elocal(k1, k2) =

∣

∣

∣

∣

∣

1−

N
∑

k=1

Ske
i(k1∆x(xk−x0)/∆x+k2∆y(yk−y0)/∆y)

∣

∣

∣

∣

∣

(14)

Initially, for a cloud of points, Tam and Hu [35] introduced a unique length

scale ∆ to form the reduced wavenumber, which is the mean distance between

the different points. Le Garrec et al. [37] proposed for structured meshes
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to distinguish mean spacings in each direction, ∆x and ∆y, as expressed

in equation (14). This trick is useful to treat flattened cells. The reduced

wavenumbers are then noted α = k1∆x, and β = k2∆y. The integrated

interpolation error E,

E =

∫∫ +κ

−κ

∣

∣

∣

∣

∣

1−

N
∑

k=1

Ske
i(α(xk−x0)/∆x+β(yk−y0)/∆y)

∣

∣

∣

∣

∣

2

dαdβ , (15)

is minimized over −κ 6 α, β 6 κ, where κ represents the highest wavenumber

considered. The error must be zero for a constant function, i.e.
∑N

k=1 Sk = 1,

using Lagrange multiplier technique. The Lagrangian then reads:

L=

∫∫ +κ

−κ

∣

∣

∣

∣

∣

1−

N
∑

k=1

Ske
i(α(xk−x0)/∆x+β(yk−y0)/∆y)

∣

∣

∣

∣

∣

2

dαdβ + λ

(

N
∑

k=1

Sk−1

)

(16)

where λ is the Lagrange multiplier. The minimization implies:

∂L

∂Sk
= 0, k = 1, 2, ..., N and

∂L

∂λ
= 0 (17)

which can be written in the matrix form AS = b, with:






































































































S =
(

S1 S2 ... SN λ
)T

Akj=











4∆x∆y, j = k

4∆x∆y

(xj − xk)(yj − yk)
sin

[

κ
xj − xk

∆x

]

sin

[

κ
yj − yk
∆y

]

, j 6= k

(j, k = 1, 2, ..., N)

Aj(N+1) =
1

2
, j = 1, 2, ..., N

A(N+1)k = 1, j = 1, 2, ..., N

A(N+1)(N+1) = 0

bk =
4∆x∆y

(xk − x0)(yk − y0)
sin

[

κ
xk − x0

∆x

]

sin

[

κ
yk − y0
∆y

]

b(N+1) = 1

(18)
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Multidimensional optimization in wavenumber space and order constraints.

The enhanced resolvability due to the optimization process is at the price of

a reduction of the accuracy at low wavenumbers with respect to a standard

scheme. A good tradeoff can be assessed by adding order constraints, corre-

sponding to the Taylor’s expansion relationships, in the previous Lagrangian:

L =

∫∫ +κ

−κ

∣

∣

∣

∣

∣

1−

N
∑

k=1

Ske
i(α(xk−x0)/∆x+β(yk−y0)/∆y)

∣

∣

∣

∣

∣

2

dαdβ

+ λ

(

N
∑

k=1

Sk − 1

)

+
∑

n,m

µmn

[

N
∑

k=1

Sk(x− x0)
n(y − y0)

m

]

= 0, (19)

where µmn are the new Lagrange multipliers. To have a minimum, we need :

∂L

∂Sk

= 0,
∂L

∂λ
= 0 and

∂L

∂µmn

(20)

yielding the linear system BS = d with

S = (S1 S2 ... SN λ µ10 µ01 µ20 µ11 µ02 ... µmn ... µ0M)T

d =
(

b1 ... bN 1 0 ... 0
)T

,

and

B =





A CT

C 0



 ,

A is given in the previous section, and the matrix C of size (T −1)× (N +1)

is defined by:







Cmn,k = (x− x0)
n(y − y0)

m, k = 1, 2, ..., N

Cmn,N+1 = 0
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4. Static error analysis

4.1. Spectral analysis of 1-D interpolation schemes

The square root of the local interpolation error, defined by equation (3),

is plotted as a function of the reduced wavenumber k∆x. The stencil size

is varied between 2 and 12, and the coefficients are computed using the dif-

ferent methods with or without optimization. The interpolation point is

located at the center of the stencil. Sherer and Scott [21] have indeed shown

that the upper bound of the error is obtained for the mid-point interpolation.

First the local error is plotted in figure 4 for the Lagrange interpolation,

i.e. without optimization. The error is seen to decrease as the stencil size is

augmented. However this decrease is not uniform, and important errors are

still present at high wavenumbers. For instance, if the error at π/4 with a

12-point stencil is four orders of magnitude lower than with a 4-point stencil,

the gain is only one order of magnitude at π/2.

Figure 5 presents the interpolation error for the fully optimized coeffi-

cients. As the stencil width is increased, the error diminishes, and the resolv-

ability is enhanced. The significant improvements at high wavenumbers are

counterbalanced by greater levels of error at low wavenumbers. The number

of the ”bounces” associated with optimization increases for the larger stencils

while their amplitude is reduced. Beyond a stencil size of N=6, the highest

resolved wavenumber is close to the imposed optimization limit κ=π/2. The

error level decreases globally over the wavenumbers between 0 and π/2, so

that the error can be controlled over a large range of scales.
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The error in the wavenumber space for the Lagrange and optimized in-

terpolations are compared in figure 6. The stencil width is 8. The gain of

the optimization process is clearly visible for wavenumbers greater than π/4

up to the limit of π/2. The residual error levels are however higher at low

wavenumbers.

Figure 7 shows the local error for optimized interpolations with order con-

straints, and a fixed stencil N=8. The addition of order constraints is seen to

improve the low wavenumber range. But in the same time, the error increases

for wavenumbers greater than k∆x = π/4. A kind of average between the

behaviour of Lagrange and fully optimized interpolation is obtained. When

8th-order constraint are added, we retrieve exactly the 8th-order Lagrange

interpolation, which is superimposed in figure 7. The choice of the level of

order constraints to add will be guided by the necessity or not to represent

small scales on a given grid.

4.2. Error by combining interpolation and discretization scheme

In fact, the accuracy of the interpolation scheme should be compatible

with the choice of a particular discretization scheme. In this section, the effect

of the interpolation error on the resolvability of the discretization scheme

is investigated. The spatial derivative is approximated by an eleven-point

centered finite-difference scheme, which is part of the Euler solver presented

in section 5.1. As in the 1-D example discussed in the first section, 5 ghost

points are required, so that at most 5 interpolated values are used to evaluate

a derivative in the overlapping zone. The interpolation formula is now written
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as:

f(x0) =

N
∑

l=−N

Slf

(

x0 + l

(

1−
η

|l|

)

∆x

)

(21)

with η=0.5, the offset between the donor and receiver grids. The interpo-

lation points are thus at the center of the interpolation stencil. The finite-

difference derivative reads:

∂f

∂x
(x0) =

1

∆x

5
∑

j=−5

a11j f(x0 + j∆x) (22)

The coefficients a11j , given in [38], are optimized by a DRP method, and

correspond to a fourth-order scheme on an eleven-point stencil. Consider

that only the q ≤ 5 first points of the derivative stencil are interpolated

before the derivation. Using (21) in (22) yields:

∂f

∂x
(x0) =

1

∆x

[ q
∑

j=−5

a11j

N
∑

l=−N

Slf

(

x0 + (l(1−
η

|l|
) + j)∆x

)

+

5
∑

j=q+1

a11j f(x0 + j∆x)

]

For a simple wave fk = eikx, the effective wavenumber of the scheme com-

bining the derivative and q interpolations is given by:

k∗∆x = −i

[

q
∑

j=−5

a11j eikj∆x

N
∑

l=−N

Sle
ik(1− η

|l|
)∆x +

5
∑

j=q+1

a11j eikj∆x

]

(23)

Figures 8 to 13 present the dispersion error of a scheme combining the

eleven-point derivative and q interpolations, with 1 ≤ q ≤ 5. First Lagrange

interpolations are used on a stencil of size N=8 in figure 8. The error for

the finite-difference alone will serve as a target. The errors coming from

the interpolations should indeed not reduce the overall accuracy. The added
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dispersion error remains acceptable when one or two values are interpolated

beforehand (q=1 and q=2). For more than three interpolated points (q ≥3),

the error is increased for the wavenumbers between π/4 and π/2. The drop

at low wavenumbers is however almost not modified. Figure 9 depicts the

same results when a fully optimized interpolation is retained. When 1 to 4

interpolated points are used, the global level of error is preserved, except at

very low wavenumbers. For q=5, the imposed limit of resolvability κ = π/2

is still effective, but the error is uniformly increased in the range [0 ; π/2].

As in the previous Fourier analysis, the addition of order constraints im-

proves the behaviour at low wavenumbers, as seen in figures 10 and 11, where

fourth-order and sixth-order constraint are added respectively. The stencil

size is the same as previously (N=8). The deterioration in the intermediate

wavenumbers is more pronounced with sixth-order constraint. The resolv-

ability limit is also slightly shifted below π/2 for q=5. The best compromise

for a N=8 stencil is thus obtained with optimized interpolation and fourth-

order constraints. Now the stencil size is varied for this method. Figure

12 shows the dispersion error for optimized interpolation with fourth-order

constraints on a N=10 stencil, i.e. the same width as the finite-difference

stencil. Error levels are weakly affected by the interpolation processes. An

enlargement of the stencil at N=12 does not provide significant improve-

ments, as seen in figure 13. The interpolation errors are now smaller than

the dispersion error due the derivative over the full range of wavenumbers.

4.3. Spectral analysis of 2-D interpolation methods

A two-dimensional Fourier analysis is conducted to investigate the a priori

error of multidimensional interpolations. The stencil used in this part is
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depicted in figure 14. The 8 × 8 stencil is taken from a polar grid. Its

main orientation is 45◦ from the horizontal axis, which is a disadvantageous

configuration as shown for instance in [33, 39]. The stencil is hereafter treated

as issued from a general curvilinear grid. The use of this particular polar

arrangement allows the use of the analytical mapping (6). The error for

2×1-D interpolation with the analytical mapping is thereby plotted as a

reference in the figures.

Like in the one-dimensional analysis, the interpolated point is at the cen-

ter of the stencil, with respect to (r, θ) coordinates. The local interpolation

error is provided by equation (14), where the length scales ∆x and ∆y corre-

spond to the radial and azimutal spacings respectively.

Effect of the choice of the mapping for 2×1-D interpolations. First the in-

fluence of the coordinate mapping for a curvilinear stencil is investigated. A

2×1-D Lagrange interpolation is performed after the mapping. Figure 15(a)

shows isocontours of the error using a polynomial approximation of the in-

verse mapping. No differences are visible when compared to the analytic

mapping (polar transform). On the profiles plotted in figure 15(b), small

discrepancies are noticeable at very low wavenumbers. They can be due to

spurious noise induced by the inversion of the polynomial mapping matrix.

Guénanff [33] has indeed shown that this matrix can be ill-conditioned, no-

tably when the main orientation of the curvilinear stencil is near 45◦. The

error profiles for the isoparametric mapping (8) are plotted in figure 15(c),

and are superimposed on those with the analytic mapping. In that case, the

Newton’s iterations allow arbitrarily accurate convergence.
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Interpolation in the curvilinear space. The same stencil is used to test the

multidimensional interpolations, whose coeffcients are directly computed in

the physical space. Figure 16(a) compares the standard multidimensional

interpolation (i.e. without optimization) with the reference 2×1-D Lagrange

interpolation with the polar mapping. The isocontours are flattened indicat-

ing levels of error increased by a factor of ten in the k2-direction. The profiles

in the k1-direction is close to the reference, as seen in figure 16(b). The error

growth is visible on the profile in the diagonal direction. In fact, the condi-

tion number of the matrix C in (12) increases when large stencils are used.

For the 8×8 stencil, the matrix is close to singular. Le Garrec et al. [37]

showed that optimization can remove partially the singular character of the

problem. In the present case, the optimized version of the multidimensional

interpolation also leads to an ill-conditioned system, and the error is high on

the profiles shown in figure 16(c). Adding order constraint to the optimiza-

tion does not solve the problem, since an intermediate result is expected.

Finally the calculation of the interpolation coefficients in the physical space

is hardly achievable when large stencil are used, so that the multidimensional

interpolation is not retained in the following.

Optimized 2×1D interpolation with or without order constraints. The even-

tual gains due to the optimization for the 2×1-D interpolation are investi-

gated. The isoparametric mapping is used since it yields similar results as

the analytic mapping. Isocontours of the error in the 2-D wavenumber space

are depicted in figure 17(a) for the fully optimized 2×1-D interpolation. The

regions of low error levels are extended compared to the Lagrange version,

notably in the diagonal directions. The lobes correspond to the ”bounces”,
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visible on the profiles in figure 17(b). The profile in the k1-direction is in-

cidentally very close to its one-dimensional counterpart, plotted in figure 6.

The conclusions are thus the same as in the 1-D analysis: the resolvability

is enhanced at the price of higher error levels for low wavenumbers. Adding

fourth-order or sixth-order constraint to the optimization allows a trade-off

between the low and high wavenumber ranges, as shown in figure 17(c).

To sum up for a general curvilinear stencil, the isoparametric mapping is

robust and allows a simple 2×1D interpolation in the computational space.

Working directly in the physical space often lead to ill-conditioned systems

for the interpolation coefficients. Within the framework of 2×1D interpola-

tions, the choice of an optimization in the wavenumber space is dictated by

the presence of small scales, such as high-frequency acoustic waves or fine tur-

bulent scales. A convenient trade-off is obtained by adding order-constraint,

as already underlined in the 1-D analysis.

5. Dynamic error analysis

In order to investigate the complex interactions between the interpola-

tion procedure and the discretization algorithm, a posteriori analyses can be

conducted on simple cases for which analytical solutions are known. In par-

ticular the role of the overlapping zone, where the solution coexists on two

grids, can be studied. Since the performance of the interpolation is measured

in regard to the expected accuracy of the flow solver, we first present briefly

the discretization retained in the study.
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5.1. Presentation of the flow solver

5.1.1. Governing equations

The governing equations are the Euler equations. Three solvers are cou-

pled solving the Cartesian, polar and curvilinear formulations:

Cartesian formulation.

∂U

∂t
+

∂E

∂x
+

∂F

∂y
=

∂S

∂t
(24)

where U = (ρ, ρu, ρv, ρE)T is the unknow vector of conservative variables.

ρ, p, and (u, v) are the density, the pressure and the horizontal and vertical

velocity components. The convective fluxes are:

E = (ρu, p+ ρu2, ρuv, (ρE + p)u)T

F = (ρv, ρvu, p+ ρv2, (ρE + p)v)T (25)

E is the total energy defined by:

E = p/[(γ − 1)ρ] + (u2 + v2)/2

The system is closed by the ideal gas law p = ρrT , where r is the gas constant,

and γ is the ratio of specific heats. S in (24) represents a source term.

Polar formulation.

∂U

∂t
+

1

r

∂(rE)

∂r
+

1

r

∂F

∂θ
+

B

r
=

∂S

∂t
(26)

with the unknow vector U = (ρ, ρur, ρuθ, ρE)T, and:

E = (ρur, p+ ρu2
r, ρuruθ, (ρE + p)ur)

T

F = (ρuθ, ρuθur, p+ ρu2
θ, (ρE + p)uθ)

T

B = (0,−(ρu2
θ + p), ρuruθ, 0)

T
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ur and uθ are the radial and azimutal velocity components, and the internal

energy is given by:

E = p/[(γ − 1)ρ] + (u2
r + u2

θ)/2

Curvilinear formulation. A coordinate transform is used. Let (ξ, η) be the

coordinates in the computational space, the set of equations (24) becomes:

∂U

∂t
+

∂Fc

∂ξ
+

∂Gc

∂η
= 0 (27)

by defining the curvilinear fluxes as:











Fc = F
∂ξ

∂x
+G

∂ξ

∂y

Gc = F
∂η

∂x
+G

∂η

∂y

(28)

where F and G are given by (25). The following relationships are then used:

∂ξ

∂x
=

1

J

∂y

∂η
,

∂ξ

∂y
= −

1

J

∂x

∂η
,

∂η

∂x
= −

1

J

∂y

∂ξ
,

∂η

∂y
=

1

J

∂x

∂ξ
, (29)

where J is the Jacobian:

J =

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣

∣

∣

∣

∣

∣

∣

(30)

5.1.2. Numerical methods

The spatial discretization requires schemes that minimize the dispersion

and the dissipation errors. Centered finite-difference schemes, intrinsically

non dissipative and optimized in the wavenumber space in order to have

good spectral properties, have been proposed [20]. Here, the explicit finite-

difference scheme with an eleven-point stencil, optimised by Bogey and Bailly

[38], is used. The expression of a spatial derivative is given by equation (22).
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By applying a spatial Fourier transform, the error between the effective and

the exact wavenumbers, k∗∆x and k∆x, is obtained in figure 18. The loga-

rithmic scale of figure 18(b) shows clearly that the dispersion is maintained

at a very low level up to the limit of resolvability k∆x = π/2, corresponding

to four points per wavelength. Grid-to-grid oscillations (k∆x = π i.e. two

points per wavelength, the Nyquist limit) are not resolved, so that they must

be eliminated. We use a centered filter built on an eleven-point stencil [38],

incorporated in each direction. For the direction x, the filtered quantity f f

is computed as:

f f(x0) = f(x0)− χDf(x0) with Df(x0) =
5
∑

j=−5

d11j f(x0 + j∆x) ,

with the coefficient χ fixed to 0.2. The filter has symmetric coefficients d11j ,

so that it is non-dispersive, and the dissipation error is minimized in the

wavenumber space up to k∆x = π/2. Its transfer function is superimposed

in figure 18.

The governing equations are integrated in time using an explicit low-

storage six-step Runge-Kutta scheme [38], whose dispersion and dissipation

errors have been minimized in frequency space up to ω∆t = π/2, corre-

sponding to spatial fluctuations at k∆x = π/2 (with ∆t = CFL∆x/c∞, and

CFL=1), see figure 19. Fluctuations with four points per wavelength are

thus resolved spatially and temporally.

5.1.3. Overset strategy

A set of overset grids consists in overlapping grids with different order of

priority. The grids with the higher priorities are the one which are locally the
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most adapted to the geometry of the computational domain. In most appli-

cations, these grids are body-fitted grids. The grids with the lower priorities

compose the background grids. They are mostly Cartesian grids and are

sized on the dimension of the computational domain. The background grids

are overlapped by the smaller grids with the high priorities where the nu-

merical solution does not have to be computed and a hole is then created: it

is a cutting hole process. The cutting hole must have the appropriate size to

ensure a sufficient overlapping and to avoid the computation at useless points

of the background grids. For complex geometries, the algorithm related to

cutting hole process is difficult to implement [11]. In this study, the grid gen-

erator Ogen from the free library Overture is used to generate overlapping

grids [13]. This grid generator realizes cutting hole processes and provides us

the connectivity list between ghost points of a grid and stencil points from

an other grid. Since an eleven-point stencil is used to evaluate first-order

derivatives and to filter spurious solutions, five ghost points are added to

the interpolation interfaces of each grids. The coefficients of interpolation on

the ghost points are computed in a pre-processing step. Interpolations are

performed once at each sub-step of the Runge-Kutta scheme, and once after

filtering the solution at the last sub-step of the Runge-Kutta algorithm.

5.2. Advection of a 1-D wavepacket

A preliminary one-dimensional test is performed. A simple linear advec-

tion equation is solved:
∂w

∂t
+

∂w

∂x
= 0 (31)

with the algorithm presented in the previous section. The extent of the grid

can be inferred from figure 20. The central part is overlapped by a grid
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shifted by half a grid spacing. Its length is one third of the total length,

and both grids are regular with ∆x=1. The initial condition is a wavepacket

defined by:

w(x) = sin

(

2πx

a∆x

)

exp

(

− ln 2
( x

b∆x

)2
)

(32)

where a∆x is the disturbance wavelength, and b∆x represents the half-width

of the Gaussian wavepacket. We set a=5 and b=9, corresponding to 5 points

per wavelength (close to the resolvability limit of the discretization schemes).

The packet is initially located at x=0 as seen in figure 20, and is advected

over a distance Nit∆x, with the number of iterations Nit=200. The packet

has then gone through the overset insert, and a mean quadratic error is

computed as:

L =
1

Nit

Nit
∑

n=1

(
√

∑

i(wi − wexact)2
∑

i w
2
exact

)

n

(33)

The error normalized by the error of the background grid alone is plotted

in figure 21 by varying systematically the interpolation stencil size, and the

method to compute interpolation coefficients. Of course, the width of the

overlap depends on the stencil size, but the error is evaluated only for non-

interpolated point, so that this difference is not important.

As the size of the interpolation stencil is increased, the error is reduced

and tends toward the value without overlapping. The error decrease is faster

with optimized coefficients. The solution error is already lower than 1% with

N=8. The gain due to the optimization is not lost when adding the first order

constraint. The error level is intermediate with the eighth-order constraint

in figure 21(b).
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5.3. Advection of a vortex on overlapping grids

The first two-dimensional case to study systematically the choice of the

interpolation is the advection of a vortex through an overlapping interface

[23]. A regular Cartesian background grid of 151× 81 points is overlaid by a

smaller foreground grid:

• a 50× 51 regular Cartesian shifted by half a grid spacing as shown in

figure 22(a) with ∆x=∆y=1 m,

• a 49× 49 sinusoidal grid depicted in figure 22(b), and defined by:







xi,j = xmin + (i− 1)∆x+ A∆x sin(2π(j − 1)∆y/Ly)

yi,j = ymin + (j − 1)∆y + A∆y sin(2π(i− 1)∆x/Lx)

with A=1 and ∆x=∆y=1 m. The domain size is Lx = xmax − xmin ×

Ly = ymax − ymin with xmin=30, xmax=70, ymin=-20, ymax=20.

The initial condition is a Taylor’s vortex at the origin (0,0) of the coor-

dinates, defined by:



















u = u∞ + A y
∆y

exp(αR2)

v = −A x
∆x

exp(αR2)

p = p∞ − ρ∞
A2

4α∆x∆y
exp(2αR2)

(34)

where R =
√

x2 − y2, α = − ln 2/b2 with the half-width b=0.2 m. The

vortex of strength A = 10 is embedded in a constant mean flow at a Mach

number M= u∞/c∞ = 0.5. The computations are run over 800 iterations

with ∆t = 7.22 × 10−4 s. At the last iteration, the vortex is still inside the

computational domain but has crossed over the foreground grid.
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Figure 23 shows instantaneous snapshots of the fluctuating pressure when

the vortex passes through the first overlapping interface. Second and sixth-

order Lagrange interpolations, with stencils of 2×2 and 6×6 points respec-

tively, are compared. Intense spurious noise is generated with the second-

order interpolation, whereas the level of noise is less than ± 1 Pa with the

sixth-order interpolation. The spurious noise may be quantified by the resid-

ual pressure over the first third of the background grid defined as:

Rp =

√

√

√

√

40
∑

i=1

81
∑

j=1

(pi,j − p∞)2

40× ny1
(35)

The fall of the residual pressure after the passage of the vortex, plotted in

figure 24, helps to quantify the level of spurious noise. For an interpolation

on a 6×6 stencil, the residual pressure is already small. The close up of figure

24(b) shows that the spurious noise is weaker when the order of interpolation

increases. The L2-norm error of pressure between the numerical solution and

the analytical one at the final iteration is plotted in figure 25 for different

interpolation schemes. This error is computed on the last third of the back-

ground grid, and is normalized by the error obtained on the background grid

alone (i.e. without overlapping).

As for the residual pressure, the error is seen to decrease with the order of

interpolation for a Lagrange method. Beyond a 8×8 interpolation, the error

remains very close to the one obtained on the background grid alone. The

large errors introduced by a fully optimized interpolation for small stencil are

corrected by adding fourth order constraints. For large stencil, the error is not

monotonic due to error compensations. Similar results are obtained with the

sinusoidal insert in figure 25(b), indicating that the isoparametric mapping
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does not introduce additional errors. The effect of turning off the high-

order evaluation of the offsets determining the location of the interpolation

point in the transformed space is illustrated in this plot. A second-order

approximation of the offsets is then directly provided by the grid-assembly

Ogen. A residual error of few percents is then observed and reduce the

accuracy for N >10. Note that the spectral content for the vortex is in the

low wavenumber range, so that the conclusions, similar to that of Sherer and

Scott [21], concern well-discretized disturbances.

5.4. Propagation of an harmonic source on overlapping grids

The propagation of a Gaussian harmonic source on the same meshes is

now considered. This test-case allows the control of the number of grid points

per wavelength for a perturbation, by imposing the frequency. The harmonic

source, located at the origin, is defined by:

S(t) = ǫ sin(ωt) exp

(

ln 2

σ2

(

x2 + y2
)

)

(36)

with ω the circular frequency, ǫ = 346 Pa.s−1, and σ the Gaussian half-width.

Two values of ω are tested. The first case is ω = 2π/10×c∞/∆x, σ=3, which

means that the wavelength is equal to 10 mesh spacings. The solution is

then well-resolved with respect to the discretization schemes used. Figure 26

presents the L2-norm error between the root mean square numerical and an-

alytical pressures for a cut along y = 0 with the Lagrange interpolations and

the optimized interpolations with or withour order constraints. This error is

computed only on the interior grid points of each grids, and is normalized

by the error obtained on the background grid alone as previously. Whatever

the interpolations used, the errors in figure 26 are comparable beyond a 8×8
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stencil and tend toward the error of the computation on the background

grid alone. Identical trends are obtained for the foreground sinusoidal grid,

indicating that the influence of the mapping is negligible.

The second case is ω = 2π/5 × c∞/∆x, i.e. 5 points per wavelength.

The discretization of the wavelength in this case approaches the limit of

resolvability of the spatial finite-difference scheme. The Gaussian half-width

is also halved, σ=1.5 m, to obtain a similar compactness of the source.

Figure 27 depicts the same error as figure 26 for the different interpola-

tions. Optimized interpolations improve the solution for a given stencil size.

This trend is enhanced for smaller stencils. Moreover, optimized interpola-

tions tend more rapidly toward the reference value on the background grid

without overlapping. The disparity of values between a 8 × 8 interpolation

and a 14× 14 interpolation is less than one per cent of the reference value.

Thus, whatever the wavelengh of the source, the introducing of interpolations

involves an error which decreases with the size of the stencil. However, even

in the more constraining case, the most extented stencil does not present a

significant improvement in comparison with the stencils of size 6×6 or 8×8.

The choice of a stencil smaller than the stencil of the corresponding finite-

difference scheme can be acceptable. Moreover, the optimized interpolations

with 4th-order constraint present globally the better behavior.

6. Results

6.1. Scattering of an harmonic source by two cylinders

The scattering of an harmonic source by two cylinders is a challenging

test case with structured grids. Thanks to overset grid technique, it becomes
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possible to consider three simple grids: two body-fitted polar grids for each

cylinder, and a Cartesian background grid to propagate acoustic waves. The

first and second cylinder have a radius of 0.5 m and 0.25 m, and are located

at (x, y) = (−4, 0) and (0, 4) respectively. The resolution of the first polar

grid is nr = 25× nθ = 181, and the second polar grid is nr = 29× nθ = 181.

The Cartesian grid has a resolution of nx = 164 × ny = 164. Interpolations

are optimized with 4th-order constraints on 6× 6 stencils.

The harmonic source defined by (36) has a circular frequency 2πc∞, and

the half-width of the Gaussian is set to 0.2 m. Figure 28 depicts the instanta-

neous pressure field. The scattering effect is observed, and is enhanced near

the bigger cylinder. The fluctuating pressure in the silence zone behind the

cylinders is more intense for the smaller cylinder. No spurious noise allows

the detection of the presence of the overlapping interfaces.

Figure 29 presents the root mean square pressure along the line y = 0

for the numerical solution, compared with the analytical solution given by

Sherer [40]. The interference beams are very well reproduced in the region

between the two cylinders. Small errors are however visible after the small

cylinder, which can not be reduced by increasing the interpolation order. This

discrepancy is rather attributed to the non-reflecting boundary conditions,

which induce a residual error highlighted in this silence zone.

6.2. Gust cascade interaction noise

6.2.1. Presentation of the problem

The periodic impingement of the wakes of a rotor on a downstream sta-

tor is one of the principal sources of turbomachinery noise, and has been

studied extensively using analytical modeling and numerical approaches [41].
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A simplified configuration has been proposed in the fourth CAA workshop

on benchmark problems [42]. The two-dimensional geometry is the unrolled

section of a realistic three dimensional fan outlet guide vane stator. Figure

30 shows a sketch of the computational arrangement. The cascade gap-to-

chord ratio is S/C=2/3 with inflow and outflow planes located at ±1.5C.

The fan stage considered has 22 rotor blades and 54 stator vanes. Since both

numbers are even, a half stator with 27 vanes is simulated for symmetry

reasons. Periodic conditions apply at the upper and lower boundaries. The

vane geometry is given in [42].

Euler equations are solved on a set of overlapping grids. A body-fitted

O-grid is used around each vane with 201 and 25 points in the directions par-

allel and normal to the airfoil respectively. The background Cartesian grid

is 301× 82 points per passage. The number of points per passage is 29707

(without the hole-cutting process), giving approximately 800 000 points for

the cascade. The mesh for one passage is illustrated in figure 31. Note that

the grid is extended with a geometric stretching after the outflow plane up

to x/C ≃ 4. This extension combined with a Laplacian dissipation consti-

tutes a sponge zone to damp spurious pressure reflections when the gust is

advected. As shown for instance by Nallasamy et al. [43], the reflected waves

can interfere with the radiated acoustic waves. One-dimensional character-

istic condition [44] are used at the inlet and outlet boundaries to provide

the non-reflecting conditions. 2×1-D interpolation optimized with 4th-order

constraints on a 6× 6 stencil is retained since no high-frequency phenomena

are involved.
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6.2.2. Mean flow results

The mean flow conditions are set by imposing the outlet pressure po/pi =

0.92, and the incoming flow direction αi = 36◦. pi = 1, and Ti = 1 are

the nondimensionalized stagnation pressure and temperature at the inlet.

The flow is assumed inviscid and isentropic with reference values pref =

101353 Pa, and Tref = 288 K.

The steady flow is first converged on a single vane passage. The Mach

number based on velocity amplitude is 0.449 in the inflow plane (x/C=-

1.5) and 0.350 in the outflow plane (x/C=1.5), in good agreement with the

reference values 0.449 and 0.347 respectively, provided by Envia [45]. The

nondimensionalized pressure at the inlet is 0.872 in the present computation,

and 0.870 with the code Turbo in [45]. The steady loading on the vane is

plotted in figure 32. A very good agreement is obtained with Turbo reference

[45], and with the results of Nallasamy et al. [43]. Only small discrepancies

are visible at the trailing edge, which is sensitive to the particular treatment

of this edge point. The close up of pressure contours in figure 33 indicates

that no disturbances are generated by the overset interfaces.

6.2.3. Gust definition

The inflow periodic wake disturbance is modeled by a gust imposed at

the inlet boundary as:

u′
g(y, t) = a1 cos(kyy − ωt) + a2 cos(2(kyy − ωt))

+ a3 cos(3(kyy − ωt))eβ (37)

ρ′g(y, t) = 0 , p′g(y, t) = 0
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where the angle β = 44◦ defines the direction of the gust eβ = cos βex −

sin βey. The fundamental reduced frequency ω is fixed at 3π/4, and the

transverse wavenumber is ky = 11π/9. The gust is the sum of the first three

harmonics of the blade passing frequency (BPF) ω. Their amplitudes are

a1 = 5×10−3, a2 = 3×10−3, and a3 = 7×10−4. As verified by Nallasamy et

al. [43], the response to these gust amplitudes remains linear. That is why

several authors have used linearized solvers [45, 46]. In the present study,

the calculations are performed separately for single frequency excitations at

BPF, 2BPF and 3BPF.

6.2.4. Tyler-Sofrin modes

The rotor-stator interaction generates acoustic tones satifying the Tyler-

Sofrin criterion. Tyler and Sofrin [47] have studied spinning pressure patterns

in compressors. Each harmonic frequency may have one or several circum-

ferencial modes that propagate or decay. If Nrotor is the number of blades

of the rotor, and Nstator the number of vanes of the stator, the order of the

circumferencial modes satisfy:

m = nNrotor + kNstator (38)

where n is the BPF harmonic number, and k is an integer. In simple terms, an

acoustic pulse is generated when a blade and a vane are coincident. Consider

the visual interpretation in figure 34 adapted from Tyler and Sofrin [47]. In

the first row, the rotor has 3 blades and the stator 4 vanes. Using k=-1

and the first harmonic in (38) yields m = 3 − 4 = −1, meaning that the

direction of rotation of the generated pressure waves is opposite to that of

the rotor. In the second example (second row in figure 34), the 4 blades of
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the rotor generate acoustic pulses when they are passing in front of one of

the 12 vanes of the stator. Formula (38) for the first harmonic and k=0 gives

m = 4 − 0 = +4. The spinning mode has four lobes (order 4), and rotates

in the same direction as the rotor (+ sign).

The fan duct then acts as a filter. Depending on its wavenumber, the

mode can propagate (cut-on mode), or is evanescent (cut-off mode). In the

present configuration, the fan stage is composed of 22 rotor blades and 54

stator vanes. At the first harmonic (n=1), the lowest order modes are m=22

(k=0), and m=-32 (k=1). Nallasamy et al. [43] have calculated their cut-off

ratios, and show that both modes are evanescent. At the second harmonic,

the dominant mode is obtained for k=1, yielding a counter-spinning mode

m=-10, which is shown to be propagative. Two modes of order m=12 (k=1),

and m=-42 (k=2) are cut-on at the third BPF harmonic.

6.2.5. Acoustic results on the overlapping grids

The gust (37) is imposed through a triple decomposition u = ū+ ug + u′

in the inlet characteristic condition. The results for the first harmonic n=1

with amplitude a1 are depicted in figure 35. The advection of the velocity

gust is illustrated in plots (a) and (b), and represents the impingement of

the rotor blade wakes on the stator vanes. In particular, no oscillations are

noticed after the inlet demonstrating the effectiveness of the triple decompo-

sition for the inlet condition. The clean imposition of the gust is also effective

for the two other frequencies (not shown for brievety). The pressure patterns

in figure 35(c) are in excellent agreement with previous results [45, 48, 43].

The mode is cut-off, and an exponentional decay of the pressure upstream

and downstream of the airfoil is observed. The unsteady pressure distribu-
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tion over a vane is compared quantitatively with the results from Coupland

[48], Nallasamy et al. [43], and Wang et al. [49] in figure 36. A very good

agreement is observed with Coupland’s simulation performed on a very fine

mesh. The distribution has the same shape for the two other references, but

Nallasamy et al. predict higher levels (+2.5 dB) and Wang et al. underpre-

dict the levels (-4 dB). These trends are conform with the overall pressure

levels in the histograms of figure 39.

The propagating acoustic modes for the second and third harmonic are

illustrated in figure 37. The mode m=-10 for n=2 BPF is spinning in the

direction opposite of the rotor. Five wavelengthes are visible upstream and

downstream, corresponding to a circumferencial order |m′|=5 (the half of

-10 since only a half stator is calculated). Two modes are distinguishable in

figure 37(b) for n=3 BPF. Between the inflow and the vane, a mode with a

weak intensity has 6 transverse wavelengthes for the 27 vane cascade, thus

|m′|=6. This the co-spinning mode m=12. After the vane, a mode with 21

wavelengthes is dominant, corresponding to the counter-spinning mode m=-

42. Nallasamy et al. [43] have noted that the mode -42 has a cut-off ratio

close to one. This can be related to the particular shape of the mode with

almost horizontal lobes. These pressure patterns are in good agreement with

those of the benchmark participants.

A quantitative comparison is provided by the unsteady pressure distri-

bution at the highest frequency n=3 in figure 38. The same adjustment has

been done for the levels as in figure 36. The global shape agreement is correct

even if more scattering is noticed in the details of the distributions. The pres-

sure levels are approximately ten times lower than those at the fundamental
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frequency, so that subtle interferences are more tricky to capture. Note that

the discrepancies for the mean level of fluctuations are exactly the same as

those noted at the fundamental, indicating that they are not related to the

acoustic generation process, but rather to a slight difference in the intensity

of the incoming gust. These differences can result from the treatment of the

inlet conditions.

Finally, the integrated pressure levels on the vane pressure and suction

sides, and at the outflow plane are compared to the values reported in the

benchmark in figure 39. Only 3 of the 12 locations asked in the case definition

are reported for brievety, but similar hierarchy is observed at the other points.

Few decibel differences are noticed as discussed previously, but in general the

present overlapping strategy provides satisfactorily results for this challenging

benchmark case. In terms of efficiency, the grid used around the vane cannot

be reduced in the axial direction due to the size of the overlapping region

with an eleven-point stencil scheme. Nevertheless, this constraint will be

quickly relaxed when viscous three-dimensional cases are tackled, since a

finer resolution is required to capture the boundary layer over the airfoil.

Moreover, the interpolation procedure can also be used to define a sliding

interface, as in [35] in order to take into account the rotor, and have a more

realistic description of the incoming wakes.

7. Conclusions

The accuracy of interpolation schemes when used in conjunction with

high-order numerical algorithms has been investigated. Explicit Lagrange or

optimized interpolations are studied. The choice of the stencil size and of
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the way to compute the coefficients are guided by the precision of the dis-

cretization schemes, and by the necessity or not to resolve high-wavenumber

perturbations on a given grid. In agreement with the Fourier analysis, the

a posteriori error analysis indicates that a DRP-type optimization is advan-

tageous to deal with high-frequency waves. On the other side, Lagrange

interpolations maximizing the order of Taylor truncation show lower errors

for well-resolved waves. An interesting trade-off is obtained by adding order

constraint to the optimization, which can be useful for broadband noise or

developed turbulence, where a large range of scales is involved. The analysis

also underlined that using an interpolation stencil with less points than a

corresponding finite-difference discretization can provide acceptable results.

This point is attractive to reduce the cost due to interpolations, which be-

comes important for more than one space dimension.

The choice of an interpolation for multidimensional curvilinear grids is

discussed. The computation of the coefficient directly in the physical space

can yield ill-conditioned linear system, so that this option is hardly practi-

cable with large stencils. A mapping of the coordinates of the interpolated

point in the computational space allows the tensorization of one-dimensional

interpolations by direction. A high-order extension of the isoparametric map-

ping is retained. It is based on Newton’s iterations and avoids the inversion

of matrices. The a posteriori tests shows that the error due to the mapping

phase is negligible, so that conclusions drawn in 1-D are still valid in 2-D.

Two aeroacoustic benchmarks are conducted in the result part to show

that the accuracy of the numerical algorithms is preserved with overlapping

grids. The grids for the diffraction from two cylinders are straightforward to
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design by combining polar and Cartesian subdomains, and yield satisfactorily

results. The calculation of Tyler-Sofrin modes in the rotor-stator is a more

challenging case. Both propagating and evanescent waves are captured, and

the interpolation procedure is not the leading parameter for the solution

quality. The benefit of the present spectral-like schemes will be more evident

for three-dimensional turbulent configurations. When large-eddy simulation

is used for instance, the full range of wavenumbers until the scheme cut-off

are present, and the grids are fine near the solid boundaries so that it is easier

to define the overlapping region with large stencil. Optimized interpolation

with fourth-order constraint, and a stencil with two points less than the

finite-difference stencil can then provide a good trade-off between efficiency

and accuracy. The recent calculation of noise from a turbulent boundary

layer over a cylindrical cavity [50] gives an illustration of the interest of the

overset strategy in turbulent conditions.
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Figure 1: 1-D example of two overlapping grids. Each grid is both receiver and

donor of information. The black points are the interpolation points, called ghost

points. The white points are interior points on which derivatives are computed on

a centered eleven-point stencil. Thus, five ghost points in the overlapping area are

needed. The four arrows symbolize an explicit interpolation from a 4-point stencil.
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Figure 2: 2-D Cartesian interpolation stencil. White circles denote the points of

the interpolation stencil, the black square is the desired interpolated point, and

white squares are the intermediate interpolated values.
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Figure 3: Sketch of the mapping from the physical space (x, y) to the computational

space (ξ, η). The example on the left is a zoom of the overlapping grids used later

in § 6.2: the Cartesian grid is the background grid ( ) which contains the

interpolation point (red square). The curvilinear grid ( ) is an O-grid around

the vane (the zoom represents the lower upstream part). Donor points (green

circles) belong to the curvilinear grid. The right insert show the mapping of the

curvilinear into a Cartesian regular grid with unit spacing. The interpolation point

is located in this space by the offsets (δξ, δη) relative to the base point of the stencil

(lower left donor point).
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stencil of size N=2 ( ), N=4 ( ), N=6 ( ), N=8 ( ), N=10 (

), and N=12 ( ). Linear scale on top, and logatirhmic scale on bottom.
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Figure 5: Local error in the wavenumber space for the optimized interpolation with

stencil of size N=2 ( ), N=4 ( ), N=6 ( ), N=8 ( ), N=10 (

), and N=12 ( ).
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Figure 6: Comparison of the local error in the wavenumber space, obtained with

Lagrange interpolation ( ) and optimized interpolation ( ), for N = 8.

55



  0  π/4  π/2
k ∆ x

0

0.5

1

1.5

2

2.5
x 10

−3
E

lo
ca

l
1/

2

0 π/4 π/2 3π/4 π
10

−6

10
−4

10
−2

10
0

k ∆ x

lo
g(

E
lo

ca
l

1/
2

)

Figure 7: Local error in the wavenumber space for the optimized interpolation with

order constraints for a stencil size N = 8. Interpolation of order (o.) : o.0 ( ),

o.2 ( ), o.4 ( ), o.6 ( ), o.8 ( ). Lagrange interpolation for

N=8 ( ).
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Figure 8: Dispersion error of a scheme combining an eleven-point derivative and

q interpolations: q = 1 ( ), q = 2 ( ), q = 3 ( ), q = 4 ( ),

q = 5 ( ). Dispersion error of the finite-difference derivative alone ( )

is plotted as a reference. Lagrange interpolations are used with a stencil of size

N = 8.
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Figure 9: Same legend as figure 8 for fully optimized interpolations on a N = 8

stencil.
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Figure 10: Same legend as figure 8 for optimized interpolations with fourth-order

constraint on a N = 8 stencil.
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Figure 11: Same legend as figure 8 for optimized interpolations with sixth-order

constraint on a N = 8 stencil.
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Figure 12: Same legend as figure 8 for optimized interpolations with fourth-order

constraint on a N = 10 stencil.
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Figure 13: Same legend as figure 8 for optimized interpolations with fourth-order

constraint on a N = 12 stencil.
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Figure 14: Curvilinear 8×8 stencil used for the spectral analysis of 2-D interpolation

methods; ∆r=0.0036, and ∆θ=2π/410.
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Figure 15: Effect of the choice of the mapping for 2×1-D interpolations. (a) Map

of the two-dimensional local error for an interpolation using a polynomial approx-

imation of the inverse mapping ( ), superimposed on the reference error using

the polar mapping ( ). (b) Profiles of the error along k1∆x (left) and along

k1∆x = k2∆y (right) for polynomial inverse mapping ( ). (c) Same profiles

for the isoparametric mapping ( ) compared to the reference case with polar

mapping ( ). 64
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Figure 16: Interpolation in the curvilinear space. (a) Map of the two-dimensional

local error for a multidimensional interpolation ( ), superimposed on the ref-

erence error using the polar mapping ( ). (b) Profiles of the error along k1∆x

(left) and along k1∆x = k2∆y (right) for the standard multidimensional interpola-

tion ( ). (c) Same profiles for the optimized multidimensional interpolation

( ).
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Figure 17: Optimized 2×1D interpolation with or without order constraints. (a)

Map of the two-dimensional local error for an optimized 2×1-D interpolation (

), superimposed on the reference error using the polar mapping ( ). (b) Profiles

of the error along k1∆x (left) and along k1∆x = k2∆y (right) for the fully opti-

mized 2×1-D interpolation ( ). (c) Same profiles for the optimized 2×1-D

interpolation with fourth-order ( ) or sixth-order ( ) constraint.
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Figure 18: Properties of schemes in the wavenumber space k∆x. (a) The effective

wavenumber k∗∆x of the eleven-point-stencil optimized scheme ( ), and the

damping function Dk(k∆x) of the eleven-point stencil optimized filter (

). (b) The dissipation errors |k∆x − k∗∆x|/π for the discretization schemes and

Dk(k∆x) for the optimized filter are shown on a logarithmic scale.
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Figure 19: Properties of schemes in the frequency space ω∆t. Amplication rate

( ) and phase error ( ) of the optimized Runge-Kutta scheme on linear

scale (a) and on logarithmic scale (b). Low-storage fourth-order Runge-Kutta of

Bogey and Bailly [38] with 6 sub-steps.
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Figure 20: Initial solution of the 1-D wavepacket on grid 1 ( ), and on grid 2

( ).
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Figure 21: Normalized error at the final iteration for the 1-D advection of a

wavepacket as a function of the size N of the interpolation stencil. (a) Lagrange in-

terpolations ( �), fully optimized interpolations ( ◦), and optimized inter-

polation with fourth order constraint ( ×); (b) close-up view for large stencils.

Two methods for the evaluation of interpolation coefficient are added: optimized

interpolation with sixth-order constraint ( △), and with eighth-order con-

straint ( ▽).
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Figure 22: Overlapping of a Cartesian grid ( ) by another Cartesian grid (a), or

a sinusoidal grid (b) ( ). Every two points are represented. The grid with the

higher priority is the foreground grid, so that the cutting hole process is applied

to the background grid.
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Figure 23: Isocontours of the instantaneous pressure disturbance at three successive

instants, Nit = 100, 200, 350 (from left to right), showing the passage of the vortex

through the first overset interface ( ). Lagrange interpolations are used on

a 2× 2 (a) and 6× 6 (b) stencil. Isocontours values are ±1 Pa, and ±5 to ±20 Pa

with step of 5 Pa.
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Figure 24: Temporal evolution of the residual pressure Rp, eq.(35). (a) Stencils

2 × 2 (�), 4 × 4 (◦), 6 × 6 (∇). (b) Close-up view where the results for stencils

8× 8 ( ), 10 × 10 ( ), 12 × 12 ( ∗) have been added. The Cartesian

foreground grid is used with Lagrange interpolations.
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Figure 25: Advection of a vortex. Normalized error on the pressure between the

numerical and analytical solutions at the last iteration with a stencil N ×N , for

Lagrange interpolations ( �), fully optimized interpolations ( ◦), and

optimized interpolations with 4th-order constraint ( △ ). (a) foreground

Cartesian grid, (b) foreground sinusoidal grid. The inserts show close-up for large

stencils. For the sinusoidal grid (b), the effect of turning off the high-order evalu-

ation of the offsets with the isoparametric mapping is shown (· · · · · · ▽).
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Figure 26: Normalized error for a source of pulsation ω = 2π/10 × c∞/∆x. Same

legend as figure 25: (a) foreground Cartesian grid, (b) foreground sinusoidal grid.
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Figure 27: Normalized error for a source of pulsation ω = 2π/5 × c∞/∆x. Same

legend as figure 25: (a) foreground Cartesian grid, (b) foreground sinusoidal grid.
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Figure 28: Instantaneous pressure fluctuations. Colormap levels are between -0.05

Pa and 0.05 Pa. The black circles indicate the end of the polar grids for each

cylinders.
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Figure 29: Root mean square pressure along y = 0: analytical solution ( ),

numerical solution for the two polar grids (+) and the Cartesian grid (◦). The

vertical dashed lines depict the location of the cylinder boundaries. The first two

plots are upstream and downstream of the cylinder located at x = −4 m, and

the two last plots show the rms pressure upstream and downstream of the second

cylinder at x = 4 m.
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Figure 30: Sketch of the cascade-gust interaction problem.
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Figure 31: Overlapping grids for one vane passage. Every two grid points are shown.
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Figure 32: Mean pressure loading on the vane: present overset computation ( ),

code Turbo, Envia [45] (•), Nallasamy et al. [43] (N).
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Figure 33: Mean pressure: 20 isocontours equally spaced between 82331 and

98331 Pa.
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Figure 34: Rotor-Stator interaction with 3 blades and 4 vanes (first row), and 4 blades

and 12 vanes (second row). The red lobes mark the acoustic pulses when a blade and a

vane are coincident, forming a circumferencial mode. The arrows indicate the direction of

rotation of the rotor and of the generated pressure waves.
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(a) (b) (c)

Figure 35: Gust-cascade interaction tone at the first BPF frequency: instantaneous

perturbations of the longitudinal velocity u′ (a), of the transverse velocity v′ (b),

and of the pressure p′ (c). Colormap bounds are ±2 m/s for the velocity maps,

and ±200 Pa for the pressure.
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Figure 36: Unsteady pressure distribution over the vane at the first harmonic:

( ) present simulation, ( ) Coupland [48], ( ) Nallasamy et al. [43]

(-2.5dB), ( ) Wang et al. [49] (+4dB).
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(a) (b)

Figure 37: Acoustic rotor-stator tones for the 27 vanes domain. Instantaneous

pressure disturbances at the second harmonic (a) with levels ±50 Pa, and at the

third harmonic (b) with levels ±12.5 Pa.
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Figure 38: Unsteady pressure distribution over the vane at the third harmonic.

Same legend as figure 36.
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Figure 39: Comparison of overall pressure levels at x/C=0 on the suction side (a),

on the pressure side (b), and at y/C=0 on the outflow plane (c). Values are com-

pared to results of the fourth CAA workshop: Linflux linearized reference by Envia

[45], linearized structured solver of Coupland [48], Space-Time Mapping Analysis

method of Hixon [51], block-structured Euler solver of Nallasamy et al.[52], un-

structured Euler solver of Serrano et al. [46], unstructured CE/SE method by

Wang et al. [49].
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