
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8651

To cite this version :

Nicolas MEALIER, Philippe ARNOUX, Laurent GUILLAUMAT, Frédéric DAU - Reliability
approach for safe designing on a locking system - Probabilistic Engineering Mechanics - Vol. 25,
n°1, p.67-74 - 2010

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/8651
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Reliability assessment of locking systems
N. Mealier a, F. Dau a,∗, L. Guillaumat a, P. Arnoux b
a LAMEFIP, Esplanade des Arts et Metiers, 33405 Talence cedex, France
b CEA/CESTA BP 2, 33114 Le Barp, France

Keywords:
Reliability
Safety system
Monte Carlo
FORM/SORMmethod
Experimental design
Response surface

a b s t r a c t

The aim of this work is to predict the failure probability of a locking system. This failure probability is
assessed using complementary methods: the First-Order Reliability Method (FORM) and Second-Order
Reliability Method (SORM) as approximated methods, and Monte Carlo simulations as the reference
method. Both types are implemented in a specific software [Phimeca software. Software for reliability
analysis developed by Phimeca Engineering S.A.] used in this study. For the Monte Carlo simulations, a
response surface, based on experimental design and finite element calculations [Abaqus/Standard User’s
Manuel vol. I.], is elaborated so that the relation between the random input variables and structural
responses could be established. Investigations of previous reliable methods on two configurations of the
locking system show the large sturdiness of the first one and enable design improvements for the second
one.

1. Introduction

Integration of uncertainties in a complex system to evaluate the
failure probability as regards dreaded events remains a question
of great interest. It constitutes an invaluable help in taking
risks when dimensioning structures which can avoid the use of
excessive safety coefficients. In the present paper, a reliability
methodology is proposed to evaluate the failure probability Pf of a
locking system. As the failure probability is generally not obtained
by experiments, this methodology is based on an approach
which combines both mechanical and reliable analyses using
modelisation and reliability tools. This approach has already been
investigated in numerous different engineering fields: nuclear [3,
4], offshore [5,6] and civil engineering [7].
The locking system description and specifications are first

presented. Two variants of the system, denoted system A and
system B, are considered.
Secondly, the methodology to achieve the failure probability

is detailed: Experimental Design (ED), Finite Element Simulations
(FESs), Response Surface (RS) and Reliability Analysis (RA) compose
the successive stage of this methodology. Each of them will be
developed and justified. Interest in using first ED, FES, RS and
coupling between FES and RAwill also be explained.
The failure probability level and the statistical sensitivity of the

input variables obtained with reliability tools are compared and
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Fig. 1. Locking device.

discussed in the results part for both system A and system B. Finally,
conclusions are given underlining interests of this kind of approach
in designing complex systems.

2. The locking system

2.1. Description and specifications

The device studied is integrated in a pneumatic dispenser. It is
composed of four distinct parts, as illustrated in Fig. 1. The Finger
(Fi)must prevent the Piston (Pi) displacement up to the Stop (St) in
the case of untimely setting pressure p in device. This is precisely
the feared event to take into account in the reliability analysis.
ds is the distance between (St) and (Pi), dfr represents the

existing gap between (Fr) and (Fi), dfi denotes the existing gap
between (Fi) and (Pi) and h stands for the distance between (Pi) and
(Fi) representative of the finger penetration in a secure position.
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(a) System A. (b) System B.

Fig. 2. System A and system B configurations.
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(a) Truncated Gaussian distribution. (b) Uniform distribution.

Fig. 3. Distributions for variables.

In the case of untimely pressure in the device, (Pi)moving towards
(St) must be stopped by (Fi) and must not touch (St), taking into
account ds, dfi and dfr distances but also a displacement UA at
position A (see Fig. 1) due to the (Fi) deformation.
The specification in terms of failure probability as regards the

feared event ‘(Pi) touches (St)’ is 10−4. That is to say, in 104 events,
the feared event must occur less than one time!
Two variants of the system, Fig. 2a, b, respectively called system

A and system B, are studied. The difference between the two
systems only concerns (Fi) geometry.

2.2. Reliability problem statement

The reliability problem statement consists in traducing the
feared event in a mathematical way in order to be able to evaluate
the failure probability Pf as regards this event. Classically, a
performance functionG is introduced. It is defined as the difference
between a strength function R and a loading function S so that
(G = R− S) ≤ 0 corresponds to the failure of the system.
The limit case when G = 0 corresponds to the limit state of the

system. For this problem, the performance function G is expressed
by

G(ds, dfi, dfr , h) = ds − (dfi + dfr + UA) (1)

with displacement UA = UA(dfr , h, p) depending on the material
properties, loading and boundary conditions, and where ds stands
for R and (dfi + dfr + UA) stands for S. At this stage, S is implicitly
depending on the parameters dfi, dfr and UA.
The uncertainties involved in the present system concern

parameters ds, dfi, dfr and h but also the pressure p. In default
of knowing real distributions for those parameters, we choose

Fig. 4. Density of joint probability.

truncated Gaussian distributions for the geometric parameters ds,
dfi, dfr and h, avoiding in this manner non-physical values. On the
other hand, an uniform distribution is chosen for the imposed
parameter p, Fig. 3a-b. So, no preferential values are expected in
the fixed range (800–1200 bar). These distributions are supposed
to be realistic in this application.
In Fig. 3a, x stands for ds, dfi, dfr and h. In both Fig. 3a-b, f denotes

the density of probability for the respective variables.
Mathematically, the failure probability can be classically

expressed by

Pf =
∫
G≤0
fR,S(x1, . . . , xn)dx1 . . . dx2, (2)

where fR,S represents the density of joint probability for R and S,
Fig. 4, and xi stands for variables, i = 1, n.
Finally, the reliability problem can be summarized as follows:
Evaluate Pf from Eq. (2) as regards the feared event defined by

Eq. (1) considering the distribution of parameters given in Fig. 3.



Fig. 5. Synoptic of adopted methodology.

Fig. 6. 3D drawing of the Box–Behnken matrix.

Unfortunately, the calculation of Pf from Eq. (2) is not so easy,
and that is why approximated methods are used for this.

3. Methodology for this work

Considering the five variables as explained in previous section
and due to system complexity, it is not realistic to assess the
failure probability directly with the Monte Carlo method by
using experimental or numerical ways due to the prohibitory
number of trials. So, a specific but classical methodology involving
experimental design and finite element simulations to elaborate
the Response Surface (RS) for reliability analysis [8–10] is
developed. Such a meta-model avoiding Finite Element (FE)
calculations is not time consuming.
Different stages of this methodology, Fig. 5, are detailed in this

section.

3.1. Experimental design

An experimental design is first investigated. The objective is to
reduce the number of FES and to choose significant ones so that a
suitable response surface could be established.
Using a cubic space and looking for a second-order RS for UA =

UA(dfr , h, p), a Box–Behnken experimental design [11] is adopted.
The three variables dfr , h and p are considered. Each parameter can
take three values in cubic space; see Table 1, where xi, with i =
1, 2, 3, stands for dfr , h, p, and min, max and mean, respectively,
stand forminimum,maximumandmean values. Finally, 13 FES are
extracted from the experimental design; see Table 2 and Fig. 6.

Table 1
Box–Behnken experimental matrix.

x1 x2 x3

max max mean 4min min
max mean max 4min min

mean max max 4min min
mean mean mean 1

FES = 13

Table 2
Numerical experiments to be performed: p in MPa, h and dfr in mm.

System A System B
p Dfr h p Dfr h

120 0.318 3.824 120 0.148 4.749
80 0.318 3.824 80 0.148 4.749
120 0.000 3.824 120 0.091 4.749
80 0.000 3.824 80 0.091 4.749
120 0.159 3.959 120 0.1195 4.969
80 0.159 3.959 80 0.1195 4.969
120 0.159 3.689 120 0.1195 4.529
80 0.159 3.689 80 0.1195 4.529
100 0.318 3.959 100 0.148 4.969
100 0.000 3.959 100 0.091 4.969
100 0.318 3.689 100 0.148 4.529
100 0.000 3.689 100 0.091 4.529
100 0.159 3.824 100 0.1195 4.749

3.2. Finite element simulations (FES)

For each previous set (dfr , h, p) issued from the Box–Behnken
experimental design, an FES is performed to obtain the corre-
sponding UA displacement. Numerical convergence according to
the mesh has been checked for this displacement. The FES results
will be useful data to then elaborate the response surface bymulti-
linear regression.
Numerical models (one for each locking configuration, see

Fig. 2) and simulations are carried out using finite element
code [2]. The elasto-plastic constitutive law, finite displacements
and contact between Fi and Pi are involved in this model. The
meshes and boundary conditions for system A and system B are
shown in Fig. 7. A second-order hexahedric 3D finite element with
reduced integration (C3D20R) is employed except for system A
where a modified 3D tetrahedric finite element (C3D10M) is used.
In these models, the material properties are fixed to their

minimal values with a weak probability of obtaining these values.
So, the presentmodels are pessimist from this point of view, which
goes in the direction of safety.

3.3. Response surface

Following the initial aim, a Response Surface (RS) is now
elaborated in order to easily assess UA = UA(dfr , h, p) for any
(dfr , h, p) set avoiding consuming time. Because of this surface
(one for each system), it becomes convenient to evaluate the
performance function in the next and final step.
A second-order polynomial is classically obtained for UA using

a multi-linear regression method. It is expressed in the following
form:
UA = a0 + a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

+ a11x21 + a22x
2
2 + a33x

2
3 (3)

where (x1, x2, x3), respectively, stand for physical parameters
(dfr , h, p) and a = (a0, a1, a2, a3, a12, a13, a23, a11, a22, a33) are
estimated coefficients issued from a = (xtx)−1xty formula, where
y stands for UA and x is the matrix of experiments.
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Fig. 7. Meshes and boundary conditions for system A and system B.

Fig. 8. Interpretation of the response surface for system A.

Involving more than two variables, the present surface is a
hypersurface, not representable in the dimensions! Nevertheless,
this hypersurface can be illustrated by fixing one of the three
parameters.
Thus, Fig. 8 gives a sketch of the RS in the case of system A. In

each plot, the third free parameter is fixed to its mean value while
the two other ones vary.
Estimating the quality of the previous response surface is

essential to ensure that the physical phenomenon is correctly
modelled. The gap between the FE calculations and RS prediction
is first evaluated for 13 (dfr , h, p) initial set values. Second, 10
additional FES are carried out using (dfr , h, p) set values chosen in
the feasible design space to check the RS accuracy. These new FE
results are compared with the RS predictions. In the case of large
disagreement (relative variation higher than 10% not acceptable), a
new response surface is elaborated including these new FES. It will
be particularly important to evaluate the response surface quality
at the (dfr , h, p) set corresponding to the higher failure probability.

3.4. Reliability analysis

This final stage consists in evaluating the failure probability for
the feared event traduced by Eq. (1). Using the RS is an efficient
way to easily estimate the performance function G and see if the
feared event is encountered or not. The use of the Monte Carlo
method is now possible and the results can be considered as a
reference provided that the number of trials is correctly linked to
the probability level. Indeed, it needs around 10n+2 to 10n+3 trials
to evaluate a failure probability level of 10−n.
Approximated FORM and SORM methods are investigated in

this work and compared with Monte Carlo and derivated Monte
Carlo methods. An overview of these methods is now presented.

3.4.1. Monte Carlo (MC) method
In theMonte Carlo approach [12], all the variables are randomly

sampled according to their statistical distribution. For each trial (a

set of data) theG function is calculated using the RS, Eqs. (1) and (3).
Finally, the number of situations givingGnegative is counted to ob-
tain an estimation of the failure probability Pf in a simpleway [13]:

P̃f =
1
N

N∑
r=1

IrDf (4)

where N is the total number of trials, r is the current trial number
and IrDf the counter of feared event realization. Using this method,
an error depending on the trials number and the estimated prob-
ability level can advantageously be obtained by the Shooman for-
mula [14] for a degree of confidence of 95%:

%erro = 200

√
1− P̃f
N · P̃f

. (5)

This method, illustrated in Fig. 9 in standard space [13], can be
very time consuming when the limit state function calculation is
complex and needs experiments or FE calculations, as explained
above.
Nevertheless, it becomes efficient when an analytical expres-

sion of this function can be established using the response surface,
as in the present study.

3.4.2. FORM/SORM approximated methods
FORM and SORM methods consist in an analytical approxima-

tion of the failure probability by calculating a reliability index, β
[13]. It is necessary in this case to formulate the limit state, Eq. (1),
in a reduced variable space (standard space) where each variable
has a zero mean and unit standard deviation. The transformation
for a given Gaussian distribution from physical space, xi variables,
to standard space, ui variables, is called an isoprobabilistic trans-
formation and is expressed

ui =
xi −mi
σi

(6)

wheremi and σi stand for the mean and standard deviation of xi.
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Fig. 9. Classical Monte Carlo method illustrated in standard space.

In the previous standard space, the reliability index β
represents the shortest distance from the limit state surface to the
origin; see Fig. 9. P∗ defines the most probable point of failure.
Optimisation algorithms are then needed to determine the β

index. Genetic algorithms are investigated for this purpose, looking
for the best value of this index (global minimum) [15,16].
Then, knowing the index β , the failure probability can be easily

determined using the standard normal Cumulative Distribution
Function (CDF) ϕ.
For instance, for the FORM method, where the limit state is

approximated by a first-order hyperplane, it is expressed by

Pf = φ(−β) = 1− φ(β). (7)

In the case of the SORM approach, where the limit state is
approximated by a second-order hypersurface, it is given by the
Breitung formula [17]:

Pf = φ(−β)

〈
n−1∏
j=1

1√
(1+ βkj)

〉
(8)

where the coefficients kj permit one to take into account the
curvature of the limit state [13] at P∗.
Thus, the failure probability calculation can be suitable

provided that β obtained from the optimization algorithms is
sufficiently accurate: its determination is of first importance.
Using deterministic optimization algorithms [18–20], the xi

variables corresponding to P∗ can be obtained. From these values,
sensitivities and elasticities useful for design, Eq. (11), can be
estimated.
Moreover, in a particular condition where only two indepen-

dent Gaussian variables, R and S, are considered, β can be obtained
analytically by

β =
R̄− S̄√
(σ 2R + σ

2
S )

(9)

where R̄ and S̄ denote the mean of R and S respectively, and σR and
σS represent the standard deviation of R and S respectively.
With the FORM or SORMmethod, illustrated in Fig. 10, no error

estimation is available, in contrast to the Monte Carlo approach.
In addition to obtaining the critical set values of variables

(P∗, not achievable using the Monte Carlo method), significant
information can be also assessed by FORM/SORMmethods:
(1) the influence of each variable near the critical set values

using αi coefficients defined by

αi =
∂β

∂ui
; and (10)
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Fig. 10. Approximated FORM/SORMmethods.
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Fig. 11. Monte Carlo method by importance sampling.

(2) the sensibility (s) and elasticity (e) of Pf around P∗ using

e1i =
mi
Pf

∂Pf
∂mi
; e2i =

σi

Pf

∂Pf
∂σi
; S1i =

∂Pf
∂mi
; S2i =

∂Pf
∂σi

.

(11)

As presented below, FORM/SORM and Monte Carlo methods
may be combined in derivated Monte Carlo methods.

3.4.3. Derivated Monte Carlo method (DMC): Monte Carlo by
importance sampling
This method, presented in [13], is also used in this work.

Knowing P∗, it consists in concentrating sampling around this
point determined before. An illustration of this method is given in
Fig. 11. So, if no other secondary local minima exist, the probability
of failure can be assessed using Eq. (12)with aminimumnumber of
trials. With this method, only a few thousands of trials are enough
to obtain a probability of 10−7 instead of 109 using the classical
Monte Carlo method.

P̃f =
1
N

N∑
A=1

IrDf exp

(∑
i

u∗i · u
r
i −

β

2

)
(12)

where u∗i represent the P
∗ co-ordinates in standard space, uri the

co-ordinates of variable i for trial r , IrDf the number of failures and
N the number of trials.
Nevertheless, the quality of results using Monte Carlo simula-

tions is highly dependent on the quality of the generator of pseudo-
random numbers. The ‘Mersenne Twister’ generator, developed by
Matsumoto and Nishimura [21], is implemented in the reliability
tool used for this study [1].
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Fig. 12. Convex limit state.

Table 3
Distributions of system A variables.

Variable Unit Distribution Mean
value

Standard
deviation

Minimum
value

Maximum
value

ds mm tr.
Gaussian

2.072 0.037 1.937 2.207

dfi mm tr.
Gaussian

0.469 0.037 0.335 0.60

dfr mm tr.
Gaussian

0.159 0.044 0.0 0.318

h mm tr.
Gaussian

3.824 0.06 3.689 3.959

p MPa uniform 100 80 120

4. Results and discussions

4.1. Concerning reliability tools

Before applying them for present complex system A and system
B, the relevance of previous reliability tools has been first evaluated
on reference tests obtained from the literature [22–26]. Many
nonlinear performance functions have been involved in those tests.
Considering the quadratic limit state function, see Fig. 12,

it appears obvious that FORM/SORM methods must be used
very carefully. As demonstrated earlier [25], such cases can lead
to significant overestimation or underestimation of the failure
probability.
Moreover, if several critical points P∗1 and P

∗

2 that are physically
acceptable exist, genetic algorithms can be advantageously used
while deterministic algorithms should converge to point P , which
is not the critical one. In such a case where several convenient
critical points exist, a multi-FORM approach [13] is clearly
recommended to correctly evaluate the failure probability level.

4.2. Concerning system A and system B reliability

4.2.1. System A
The ds, dfi, dfr , h and p distributions are given in Table 3, where

the truncated Gaussian distribution is denoted by tr. Gaussian.
Several optimization calculations using theAbdo–Rackwitz [18],

BFGS [19] or SQP [20] deterministic algorithms have been per-
formed changing the initial starting point. Scanning all over the
design space, only one critical point has been found every time.
The reliability index, β , the failure probability, Pf , and the critical
design point obtained from FORM, SORM and DMC methods are
summarized in Table 4. DMC needs 3 × 105 simulations whereas
FORM and SORM need only 365.

Table 4
Characteristics of critical design point.

β Critical design point Failure probability

5.78 p dfr h dfi dS FORM: Pf = 3.72× 10−9

119.773 0.249 3.700 0.575 1.965 SORM: Pf = 6.02× 10−10

Monte Carlo: 4.53× 10−10

500

400

300

200

100

0

-100
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Fig. 13. Elasticity diagram concerning system A.

Obtaining the critical design point, it is necessary to verify the
quality of the response surface at this point.
So, a new FE simulation with ds, dfi, dfr , h and p corresponding

to the critical point is performed to obtain UFEA and compare this
value to URSA obtained by the RS. A variation of 2.5 % is obtained
in this case. This result is acceptable as regards the system safety
since UA is overestimated by the response surface.
Table 4 reveals a gap between the FORM and SORM results.

This can be explained by the nonlinear limit state around the
critical point. Moreover, the gap between SORM and Monte Carlo
results probablymeans that the SORM is not sufficient to cover the
nonlinearity around the critical point.
Moreover, approximated FORM and SORM methods can

advantageously give information about the Pf sensibility to the
mean value [MEA], standard deviation [SD], minimum value [MIN]
and maximum value [MAX] of each variable. Such information is
contained in the elasticity diagram presented Fig. 13.
Obviously, Pf is very sensitive to pressure p[max]: Pf goes up by

500% when the p[max] value goes up 1%. The pressure needs to be
controlled very carefully. In contrast, Pf is logically reduced by an
increase of ds and hmean values. Finally, Pf is not sensitive to the
standard deviation of each parameter except for pressure. So, itwill
be slightly affected by a bad quality control during manufacturing.



Table 5
Distributions of system B variables.

Variable Unit Distribution Mean
value

Standard
deviation

Minimum
value

Maximum
value

ds mm tr.
Gaussian

2.78 0.055 2.547 3.003

dfi mm tr.
Gaussian

0.446 0.043 0.210 0.682

dfr mm tr.
Gaussian

0.119 0.032 0.091 0.148

h mm tr.
Gaussian

4.749 0.050 4.529 3.969

p MPa uniform 100 80 120

Table 6
Critical design point and failure probability for system B.

β Critical design point Failure probability

2.89 p dfr h dfi dS FORM: Pf = 1.90× 10−3

119.476 0.118 4.703 0.488 2.706 SORM: Pf = 6.50× 10−4

Monte Carlo: 6.45× 10−4
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Fig. 14. Elasticity diagram concerning system B.

In spite of the pessimist FE model and a response surface
overestimating this model, Pf is less than 10−9, which is very far
from 10−4 required, so the system seems to be largely secure!

4.2.2. System B
For this system, the ds, dfi, dfr , h and p distributions are given in

Table 5 and the results are summarized in Table 6.
The SORM result is very close to Monte Carlo one using

approximately 6 × 105 trials, but this indicates that the
specification is just satisfied.
Moreover, an FE simulation with ds, dfi, dfr , h, p corresponding

to the critical point leads to a relative error of 6.5%. In this case, the
displacement UA issued from response surface is underestimated.
So, the failure probability is also underestimated, which is not
acceptable.
Improvements must be done on this system to ensure the

specification. The elasticity diagram plotted in Fig. 14 is very
useful to point out ways of improvements. It indicates that the
failure probability level is largely influenced by the pressure p and
distance h. It can also be observed that the failure probability level
is not sensitive to the standard deviation of each parameter.

4.3. Ways of improvements for system B

Two ways of improvement are suggested by Fig. 14.
First, a better knowledge of p distribution would probably

permit one to reduce the failure probability level. For instance, if
the maximum value of p is 118 MPa rather than 120 MPa, then Pf
becomes 2.69×10−6 instead of 6.45×10−4! In the same way, if p

Fig. 15. System B configuration.

follows a truncatedGaussian distributionwith 100MPa as itsmean
value, 50MPa as the standard deviation, 80MPa asminimumvalue
and 120 MPa as maximum value instead of a uniform distribution,
Pf is 9.57× 10−7 instead of 6.45× 10−4!
A second way of improvement consists in increasing the

distance h and reducing the distance a; see Fig. 15. As shown in
Fig. 16, this permits one to largely decrease the failure probability
level. So, by reducing by 0.2 mm the distance a, Pf changes from
6.45× 10−4 to 3.12× 10−7.

5. Conclusion

In this work, a reliability approach is developed for analysing
the safety of locking systems. A mechanic–reliability engineer
method, combining bothmechanical and reliable tools, is proposed
to assess the failure probability Pf of those systems including un-
certainties. Experimental Design (ED), Finite Element Simulations
(FES), the Response Surface (RS) and Reliability Analysis (RA) com-
pose the successive stage of the present methodology. It appears
convenient to conclude this study with reference to three points:
(1) an engineer’s point of view about the reliability of system

A and system B underlining the analysis reliability engineer like
decision-making aid,
(2) an advised user’s point of view about the use ofmodelisation

and reliability tools,
(3) a researcher’s point of view concerning improvements in

future works.
About the reliability of system A and system B.
The very great robustness of the first system of locking

(system A) and the weak safety margin for system B have been
demonstrated. Improvements of system B have been possible
from the analysis of the diagram of elasticities. This revealed
that the level of failure probability was significantly affected
by the distribution of the pressure. A better knowledge of this
distributionwould probably lead to a level of probability of weaker
failure. Moreover, the second way of improvements proposed
(modification of the a and h dimensions) also showed that the
mechanic–reliability engineer method could be advantageously
used as a decision-making aid method.
About modelisation and reliability tools.
A suitable ED has been used to elaborate a second-order

polynomial as the RS. Necessary data to identify this second-order
polynomial have been obtained by FES. At this stage, the capacity
of the model to correctly represent the physical phenomenon
only depends on the quality of the RS. Robust indicators are
necessary to estimate this quality. Using a reliable RS, it is now
possible to perform a reliability analysis using appropriate tools.
The investigations made in this study showed it was convenient
to use FORM and SORM methods in addition to the Monte Carlo
method.
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Fig. 16. Evolution of the failure probability on increasing h; System B configuration.

About future works.
In this paper, no effort was made to improve the distributions

of the variables. We will concentrate on this particular point in
future works. Investigations will relate precisely to the means of
improving the distributions of sensitive variable at the design point
while carrying out a minimum of tests.
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