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Abstract 

Aspheric surfaces have become widely used in various fields ranging from imaging systems to energy and biomedical applications. 

Although many researches have been conducted to address their manufacturing and measurement, there are still challenges in form 

characterization of aspheric surfaces considering a large number of data points. This paper presents a comparative study of 3D 

measurement and form characterization of an aspheric lens using tactile and optical single scanning probing systems. The design of 

the LNE high precision profilometer, traceable to standard references is presented. The measured surfaces are obtained from the 

aforementioned system. They are characterized with large number of data points for which a suitable process chain is deployed. The 

form characterization of the aspheric surfaces is based on surface fitting techniques by comparing the measured surface with the 

design surface. A comparative study of registration methods and non-linear Orthogonal Least-Squares fitting Methods is presented. 

Experimental results are analyzed and discussed to illustrate the effectiveness of the proposed approaches. 

 
© 2014 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of CIRP CAT 2014.  
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1. Introduction
a
 

Aspheric surfaces have become widely used in 

various applications such as optics, photonics and 

biomedicine. The manufacturing and measurement of 

such elements is still a common challenge in industry as 

the  form characterization of aspheric surfaces is not yet 

normalized. This process becomes even harder when 

considering a large number of measurement points. 

This paper presents a comparison of two 

measurement techniques and of three different fitting 

algorithms for the form characterization of aspheric 

surfaces. Optical and tactile single scanning probe 
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systems are commonly used in dimensional metrology 

applications. However, in order to reach a nanometric 

level of accuracy in the masurement of aspheric lenses, 

ultra-high precision machines should be employed. 

Therefore, the design of the LNE's high precision 

profilometer, traceable to the SI meter definition is 

presented. Its architecture complies with the Abbe 

principle and its metrology loop is optimized. The 

performance and capability of the machine in the scope 

of aspheric lenses metrology are discussed. 

The measured surfaces (MS) are obtained from the 

aforementioned system. They are characterized by a 

large number of data points (> 100,000 points) which 

will be processed following a suitable procedure. This 

paper emphasizes the importance of building a 

combinatorial structure through a meshing phase. The 

mesh, as a linear approximation of the underlying 

surface, gives an insight of its topology and geometry. 
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Moreover, it conveys sampling information and spatial 

distribution of the measured surface points. 

The Design Surface (DS) of the aspheric lens can be 

described using different models. A conic-polynomial 

model which serves as a basis for aspheric lens 

specification, a  discretized form of the polynomial into 

a set of reference points to create a nominal CAD form, 

and a mapping of that polynomial into a linear 

combination of orthogonal basis functions.  

The form characterization of aspheric lenses is based 

on Orthogonal Least-Squares fitting techniques by 

comparing the measured surface with the design surface. 

A comparative study of an Iterative Closest Point (ICP) 

method and non-linear Orthogonal Least-Squares 

Optimization Methods is presented here. 

Three fitting algorithms are compared based on their 

capacities to converge quickly with an acceptable 

accuracy, to manage a large volume of data and to be 

robust and numerically stable.  

Experimental results are presented and discussed to 

illustrate the effectiveness of the proposed approaches. 

2. LNE high precision profilometer 

Measuring aspheric surfaces to an accuracy of few 

tens of nanometres remains an important challenge in 

manufacturing and metrology of freeform optics [1]. To 

achieve the best possible accuracies,  specific ultra-high 

precision machines have been developed by the National 

Metrology Institutes (NMIs) that ensure the traceability 

chain. In this regard, a three-year project has been 

launched by the European Metrology Research Program 

(EMRP) [2] and encompasses a multitude of European 

National Metrology Institutes (LNE, PTB, VSL, 

METAS, SMD and CMI), industry and academia aiming 

at improving apparatus and methods for high-precision 

measurement of aspheric and freeform optics and 

characterizing their form. The apparatus are generally 

related to small-volume coordinate measuring machines 

that feature measuring ranges of hundreds of milimetres. 

These machines respect the Abbe principle, apply the 

dissociated metrological structure and incorporate high-

precision mechanical guiding elements. 

2.1. Description of the LNE high precision profilometer 

LNE's high precision profilometer is a measurement 

machine (Fig. 1) capable of performing independent 

motions in all x, y and z directions using three 

independent high-precision mechanical guiding systems 

equipped with encoders. While x and y motions are 

controlled by sub-nanometer resolution laser 

interferometers, the z motion is controlled by a 

differential laser interferometer that allows to shorten the 

metrology loop and maintain a sub nanometric accuracy. 
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Fig. 1 Architecture of the LNE' high precision profilometer. 

The working range in the xy-plane is 50×50 mm². 

The probe and its supporting structure are mounted on 

the vertical guiding system in the z-direction along 

which the measurement is done. The working range of 

the mechanical guiding system in z-direction is about 

100 mm.The supporting frame is made of massive 

granite and carries the guiding elements. The metrology 

frame is made of Invar for minimal sensitivity to 

environmental influence.  

The metrology loop incorporates three Renishaw 

laser interferometers and is equipped either with a 

chromatic confocal probe or a tactile probe to achieve 

nanometric resolution. The machine allows the in-situ 

calibration of the probes by means of a differential laser 

interferometer considered as a reference. 

2.2. Evaluation of the LNE high precision profilometer 

 The uncertainty budget is established for the 

measurement of  KNT4080-30 V-groove standards 

taking into consideration different and various error 

sources with the addition of the measuring probe's 

errors. The obtained results validate the cabability of the 

profilometer to perform measurement at the nanometer 

level of accuracy. Optical and tactile scanning of 

aspheric surfaces 

The tactile and optical measurements of the asphere 

take place in the LNE's cleanroom in which 

environmental conditions are optimal. Temperature is 

controlled to 20±0.3 °C and humidity to 50±5 %RH.  

The asphere is posed on the Zerodur table (Fig. 1) and 

is measured by a tactile single point scanning probe 

which has been previously calibrated in-situ. On this 

machine, it is not possible to exactly align the asphere's 

axis with the z axis of the measurement, however, an 

approximation of the apex position can be done by 

estimating the cusp of the surface. For this matter, the 
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surface is scanned once in the x- direction and once in 

the y- direction and a peak is computed. This peak 

represents an approximation of the cusp around which a 

symmetrical measurement is performed in x and y 

directions. 

A large number of data points (>> 100,000 points) are 

recorded in the form of XY-grids (ranging from 5×5 

mm² to 6×6 mm²). The optical probe's total measurement 

time is about half of the tactile probe's total 

measurement time since no contact needs to be 

established for the optical measurement. 

2.3. Data structuring 

The measured data are reported in Cartesian 

coordinates and a surface reconstruction algorithm is 

applied. A mesh is built and defines a structure on the 

points. It is a linear interpolation of the initially 

unstructured point set which becomes organized and 

structured. The mesh is a linear approximation of the 

underlying surface, which gives an insight of its 

topology and geometry. Discrete differential geometry 

parameters can be calculated and used for further 

processing such as filtration, partition and fitting.  

3. Form characterization of aspheric surfaces 

3.1. Mathematical representation of aspheric surfaces 

The traditional way to represent aspheric surfaces is 

the axially symmetric quadric and power series 

parametric description as described in ISO 10110-Part 

12 (Eq. 1) 
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where r is the radial coordinate, z is the sag (sagittal 

representation), c is the curvature at the apex, and  is 

the conic constant. The 2jr
2j

 terms are the higher order 

aspheric terms that represent the additive departure from 

the quadric.  

Other mathematical formulations have been 

developed [3]. Among them orthogonal basis 

polynomials such as Q-polynomials and Zernike 

polynomials in an attempt to improve the classic power 

series and representing the useful surface shape with a 

small number of parameters. This makes each term 

unique and meaningful. 

3.2. Aspheric surface fitting 

The form evaluation of aspheres can be done by 

performing the fitting or association of the aspheric 

model to the measured data according to a criterion such 

as least-squares or minimum zone. The residuals of the 

fitting or the deviations to the associated reference 

model are then evaluated. The Peak-to-Valley (PV) and 

the Root Mean Square (RMS) are the most widely 

adopted parameters for the assessment of form 

deviations of aspheric surfaces. 

Many fitting techniques are reported in the literature, 

but only few discuss the fitting of aspheres. Chen et al 

[4] propose an aspheric lens characterization by means 

of a 2D profile fitting. The dataset used is a profile 

measured using a stylus and the reference model is the 

corresponding asphere profile. The fitting is done using 

the Levenberg-Marquardt algorithm [5] for its quick 

convergence and precision. Similar works have been 

published and also deal with aspheric profile 

identification [6] and conic sections fitting [7]. Sun et al 

[8] perform fitting of aspheric curves and surfaces on 

simulated data with vertical distance minimization using 

a Gauss-Newton algorithm. In fact, they assume that the 

model and the data are both defined in the same 

reference frame. Other works involve approximating 

aspheres with NURBS models in order to generate CAD 

models for manufacturing purposes [9]. The problem of 

fitting the data to the aspheric surface model is posed as 

a nonlinear least-squares problem which is defined as 

follows (Eq. 2). 
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where  is the set of shape, position and orientation 

variables, R, T are transformation parameters, pi is a 

data point, and qi is the orthogonal projection of the data 

point pi onto the reference model (footpoint). In this 

paper, position and orientation parameters as well as 

shape parameters are estimated . The process described 

here goes by optimizing for five transformation 

parameters, the symmetry about z axis is being 

redundant here. The objective function to minimize is 

then given by the Eq. 3 
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Two general approaches to solving this problem can 

be considered. In the sequential approach, algorithms are 

implemented in sequential computation of footpoints and 

transformation parameters. Unlike sequential 

approaches, the simultaneous approach can perform 

optimization of transformation parameters and 

footpoints simultaneously. 

There exists vast literature about non-linear least 

squares fitting algorithms. Gauss-Newton type [10] and 
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Levenberg-Marquardt (LM) type [11] have been 

recommended by NMIs. In this paper, we restrain the 

comparison to the sequential fitting implementation. 

3.3. Orthogonal non-linear least squares fitting 

algorithms 

The Newton-Raphson method [12] is usually used in 

optimization problems that are not highly non-linear 

even though the Hessian matrix can be approximated 

and second derivative calculations can be avoided. It 

will therefore be used in this paper for the computation 

of footpoints. The goodness of the approximation 

depends on the stop criterion and on the quality of the 

initial guess (relative position of the point data and the 

model should be close to the optimal solution) [12, 13].  

For this problem, the vertical projection point is taken 

as an initial guess. Then, the Newton-Raphson method 

iterates until the orthogonal projection point is 

accurately approximated. 

Levenberg-Marquardt [5, 14] is a well-known 

optimization algorithm that is based on an interpolation 

between a Gauss-Newton approach and the gradient 

descent. It has been approved by the National Institute of 

Standards and Technology (NIST) for metrology 

applications that require fitting simple curves and 

surfaces in 3D [11]. Generally, this algorithm converges 

reasonably quickly and accurately for a wide range of 

initial guesses that are relatively close to the optimal 

solution [4]. The fitting of parametric curves and 

surfaces using the LM algorithm also requires the 

calculation of a large Jacobian matrix and the storage of 

a considerable system of linear equations, as described 

by Speer et al [15]. 

For a very large number of variables or unconstrained 

non-linear problems, iterative quasi-Newton methods 

such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method can be more convenient [16]. Like any 

minimization algorithm, BFGS preferably requires a 

twice differentiable objective function whose gradient 

must be zero at optimality. The method computes the 

Hessian of the function, therefore, a sequence of 

matrices is constructed through the iterations. 

This sequence occupies a very large memory space 

which eventually comes to saturation when all the 

matrices are stored [17, 18]. Subsequently, Nocedal 

describes an improved method called L-BFGS which 

keeps updating the Hessian matrix using a limited 

amount of storage [17]. At every iteration, the Hessian is 

approximated using information from the last m 

iterations with each time, the new approximation 

replacing the oldest one in the queue. L-BFGS is an 

enhanced BFGS optimization algorithm for reducing 

memory usage when storage is critical and is suitable for 

applications involving large volumes of data and 

variables. Furthermore, Zheng et al [19] propose a L-

BFGS algorithm to perform B-Spline curve fitting and 

show that, unlike traditional methods, L-BFGS can 

perform optimization of control points and footpoints 

simultaneously. 

3.4. Computational Geometry approaches 

Computational geometry deals with the structure and 

complexity of discrete geometric objects as well as with 

the design of efficient computer algorithms for their 

manipulation. Registration and reconstruction are among 

the two most important research themes in 

computational geometry and can provide new research 

avenues to freeform surface fitting and Geometrical 

Product Specifications [20]. 

In previous work, a comparison of surface 

reconstruction algorithms for aspheric sufaces is 

presented. Delaunay and Voronoi-based meshing 

techniques are evaluated. The common approach for 

surface reconstruction is to build a 3D Delaunay 

triangulation and extract triangular facets that are a 

linear approximation of the underlying surface. The 

quality of the mesh sought is based on well-defined 

criteria. The reconstructed surface should topologically 

and geometrically be equivalent to the underlying 

surface of the points set. This lead to the choice of 

Cocone algorithm which fits at best our applications 

with the necessity of having an ε-sampled point set [21]. 

Another approach exploits that aspheric surface is a set 

of points that can be projected onto a plane following a 

bijective mapping without any superposition of points 

from different sides of the surface. The bijection 

property offers the advantage of tracing back the points 

to their original position without modifying either the 

geometry or the topology of the underlying surface. 

Since topology is preserved on the map, neighbourhood 

is conserved and points can thus be meshed in a 2D-like 

fashion. The data structure is built in 2D and then 

mapped back to 3D.  

As a new alternative to the parametric description, a 

mesh-based representation of the aspheric surface is a 

refrence model when the problem needs to be expressed 

in discrete form. 

The ICP (Iterative Closest Point) algorithm and its 

variants are the most popular methods for data 

registration [22, 23]. The ICP finds a spatial 

transformation to align two point-sets, making it a fast 

algorithm with negligible storage. It can be used for 

fitting applications when one of the point-sets is a 

theoretical point model or mesh model.  ICP is based on 

two main operations, point identification and point 

matching and this operation is usually computationally 

expensive. An iterative loop identifies pairs of points 

and matches them across both entities.The matching 

phase results in a transformation matrix that brings one 

point-set to the other with residual error. If this error is 
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larger than the threshold value, point identification and 

matching restarts until the two point-sets are closely 

aligned. In order to have fine precision on the results, it 

is preferable that the size of both sets be equal. 

For the mesh model case, the closest point is the 

footpoint of a data point on the closest triangle in the 

mesh. A mesh model offers the advantage of obtaining a 

more accurate distance calculation than a point model 

does. In general, dpm (point-to-mesh distance) is smaller 

than dpp (point-to-point distance) and there are three 

configurations for a point-to-mesh distance (point-

vertex, point-edge, and point face). So in this case, the 

distance is calculated on a point-to-mesh distance 

following the mentioned three configurations. 

4. Results and analysis 

The comparison of the fitting algorithms is founded 

on two elements. Firstly, the effect of fitting data with 

orthogonal distance minimization is studied. Secondly, 

the effect of data size on the algorithms’ complexity is 

analyzed and is based on two criteria, the units of 

memory used and the computational time expressed as 

Central Processing Unit time (CPU time). In order to 

vary the number of points in a dataset, no specific 

filtration technique is applied, but simply, points are 

sampled at different chosen rates. 

The machine used for the tests is an Intel core i7/x64 

platform with 8 Gb of RAM and a 2.0 GHz processor. 

4.1. Simulated datasets 

The aspheric model is simulated based on Eq. 1 as 

shown in Fig. 2 by generating symmetrically distributed 

points around the asphere's axis. The design parameters 

of the asphere have the following values (c=10
-20

, κ=-1, 

α2=0.02227, α4=7.29×10
-6

, α6=4.52×10
-9

, α8=-1.061×10
-

11
, α10=9.887×10

-15
).  

Then, simulations are performed in order to study the 

effect of data subject to errors both from measured 

object (form deviations) and measurement (Gauss noise) 

[24]. Measurement errors simulation involves generating 

Gaussian noise with controlled mean and standard 

deviation. This value is coherent with noise that can 

manifest on the measurement sensors. A MATLAB 

random function is used to generate this noise which is 

added to the theoretical data in the orthogonal direction 

at each data point. Fractional Brownian Motion is also 

superimposed on the theoretical data in order to simulate 

form deviations [25]. The H parameter (Hurst index) is 

taken to be 0.9 and the span equal to the number of 

points in the simulated dataset [26]. 

 

Fig. 2 Simulated asphere model without noise 

The three fitting methods (LM, L-BFGS, and ICP) 

are used to fit and analyze the data and the results are 

compared. The output transformation parameters of each 

algorithm as well as the model parameters that are 

computed after each fit are also compared. The RMS and 

PV values are also reported in table 1. The RMS and PV 

of the simulated dataset are calculated upon generation 

and theoretically amount to 54.95 and 265.292 nm, 

respectively. From the results recorded in table 1, all 

three algorithms are equivalent with respect to the fitting 

parameters they output. The transformation parameters 

are almost identical across L-BFGS, LM and ICP. Since 

ICP is only an algorithm for fitting two datasets 

geometrically, the model parameters can't be estimated 

and the comparison in this matter restrains to L-BFGS 

and LM. The values of RMS and PV output by all three 

algorithms are very similar and are close to those of the 

simulated set. The fitted residual errors are slightly 

smaller than the theoretical values because there is a 

better position for the aspherical surface with respect to 

the generated Brownian motion errors. 

This part validates the algorithms used for the 

purpose of fitting aspheric data. Their accuracy is 

acceptable and is equivalent across all of L-BFGS, LM 

and ICP. For a theoretical dataset simulated without any 

added noise, fitting returns parameters that are identical 

to the design parameters; whereas in the case of added 

noise, these parameters present a slight variation 

(especially α10). 
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Table1. Fitting using Least-Squares orthogonal distance minimization 

for the combined systematic and random errors (N: Number of points; 

tp: transformation parameters; mp: model parameters). 

N = 500,000 L-BFGS LM ICP 

tp 

Rx (°) 

Ry (°) 

tx (mm) 
ty (mm) 

tz (mm) 

-0.0086725 

1.853623E-4 

7.276719E-5 
0.0033001 

-8.6709E-5 

-0.0086463 

2.124006E-4 

8.412097E-5 
0.0033197 

-1.7561E-4 

-0.0086215 

1.96234E-4 

-1.5734E-5 

0.0033952 

-1.77180E-4 

mp 

c 
κ 

α2 

α4 
α6 

α8 

α10 

1.56046E-19 

-1.0 

0.02271712 

7.293143E-6 

4.520966E-9 

-1.05786E-11 

1.77676E-12 

1.0E-20 
-1.0 

0.0222847 

6.532301E-6 
2.68453E-8 

-3.06699E-10 

1.44107E-12 

X 
X 

X 

X 
X 

X 

X 

RMS (nm) 51.68628 51.68615 51.6841 

PV (nm) 236.2884 236.2927 236.3124 

4.2. Experimental data 

The surface is first scanned using a tactile probe over 

an area of 6×6 mm², giving a grid of about 1,500,000 

points. The results of the L-BFGS, LM and ICP fitting 

are detailed and compared for the experimental datasets 

for three different relative initial positions with respect 

to the reference model (table 2). The first initial position 

(IP1) is manually positioned to be very close to the 

model, IP2 is shifted by few millimeters (+10 mm) in x 

and y directions, and IP3 is the same as IP1 but rotated 

with an angle of almost 90° about x. 

Table2. Fitting results of the tactile measurement for L-BFGS, LM and 

ICP algorithms. 

 IP1 
 

N 

L-BFGS (nm) LM (nm) ICP (nm) 

RMS PV RMS PV RMS PV 

75, 000 217.18 2198.88 217.18 2198.39 217.22 2188.90 

200, 000 217.18 2198.87 217.18 2198.87 217.22 2189.44 

500, 000 217.18 2198.84 217.18 2198.84 217.21 2189.59 

1, 500, 000 217.18 2198.93 217.18 2198.93 217.21 2189.84 

 IP2 
   

75, 000 217.19 2198.42 217.19 2198.42 217.22 2188.89 

200, 000 217.19 2198.90 217.19 2198.89 217.22 2189.76 

500, 000 217.19 2198.87 217.19 2198.87 217.21 2189.92 

1, 500, 000 217.19 2198.96 217.19 2198.96 217.21 2190.13 

 IP3    

75, 000 217.18 2197.19 217.18 2197.19 × × 

200, 000 217.18 2197.67 217.18 2197.67 × × 

500, 000 217.18 2197.65 217.18 2197.65 × × 

1, 500, 000 217.18 2197.74 217.18 2197.73 × × 

Both L-BFGS and LM converge for all three cases, 

but ICP fails in the case of IP3. The residual errors are 

identical at the nanometer level for all three algorithms 

and return a RMS value of  217 nm and PV of  2198 nm. 

In the same reference frame, the surface is then scanned using a 

chromatic confocal probe, giving a grid of about 5×5 mm² containing 
1,000,000 points 

(

Optical meas.

Tactile meas.

Aspherical model
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Fig. 3). 
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Aspherical model
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Fig. 3 Measured portions of the aspheric surface. 

For the same initial positions, IP1, IP2 and IP3 of the 

dataset with respect to the model, and different dataset 

sizes, the fitting results are reported in table 3. The 

model parameteres computed with the fitting of both the 

optical dataset or the tactile dataset are listed in table 4. 

Table3. Fitting results of the optical measurement for L-BFGS, LM 

and ICP algorithms; (N: Number of points). 

IP1 
 

N 

L-BFGS (nm) LM (nm) ICP (nm) 

RMS PV RMS PV RMS PV 

50, 000 336.40 6160.80 336.40 6160.73 336.41 6161.12 

200, 000 336.40 6160.57 336.40 6160.46 336.41 6161.59 

500, 000 336.39 6156.95 336.40 6156.86 336.41 6157.61 

1, 000, 000 336.39 6157.18 336.39 6157.16 336.41 6157.93 

 IP2    
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50, 000 336.40 6160.95 336.40 6161.03 336.41 6162.06 

200, 000 336.40 6160.72 336.40 6160.86 336.41 6161.73 

500, 000 336.40 6157.06 336.40 6156.99 336.41 6158.12 

1, 000, 000 336.39 6157.31 336.39 6157.26 336.41 6158.24 

IP3    

50, 000 336.40 6160.84 336.40 6160.94 × × 

200, 000 336.40 6160.62 336.40 6160.85 × × 

500, 000 336.40 6157.02 336.40 6157.13 × × 

1, 000, 000 336.40 6157.23 336.40 6157.38 × × 

 

The experimental data show an equivalent accuracy 

among the two orthogonal distance-based fitting 

algorithms used which are also comparable to ICP in 

cases where the initial position of the elements to fit is 

relatively close (IP1 and IP2). The residual errors are 

illustrated in Fig. 4 for both tactile measurement fitting 

(Fig. 4a) and optical measruement fitting (Fig. 4b). Any 

of the algorithms returns the same error maps. 

L-BFGS and LM perform faster than ICP in terms of 

computational time such as shown in Fig. 5. 

Nevertheless, all three algorithms are very low on 

memory storage and datasets of several millions of 

points can be processed using any of these algorithms. 

Although runtime is of the same order between LM and 

L-BFGS, the latter still performs a little faster than LM, 

and that, by a ratio of around 50%. For large volume 

datasets, the difference can be of some tens of seconds 

and therefore be critical for on-line metrology 

applications. 

 

 
(a) 

 

 
(b) 

Fig. 4 Residual error maps. (a) Tactile measurement fitting, (b) Optical 

measurement fitting. 

 

 

Fig. 5 CPU time performance of the L-BFGS, LM and ICP algorithms. 

Table4. The model parameters of the asphere after fitting both the 

tactile and the confocal datasets. 
 

N = 500,000 Tactile dataset Confocal dataset 

tp 

Rx (°) 

Ry (°) 

tx (mm) 

ty (mm) 
tz (mm) 

0.0022868 

0.0057522 

0.1286046 

-0.0510596 
-2.989905E-4 

0.0109687 

11.99958 

3.6542821 

0.5042661 
-0.4847707 

mp 

c 
κ 

α2 

α4 
α6 

α8 

α10 

4.969E-5 

-1.0 

0.0223669 

-2.864146E-6 

7.474612E-7 

-3.375417E-8 

5.373977E-10 

2.192E-5 
-1.0 

0.0223392 

-1.261943E-5 
1.27085E-6 

-3.160791E-8 

2.737668E-10 
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4.3. Discussion 

L-BFGS, LM and ICP algorithms are tested on 

simulated datasets and they return similar results for the 

fitting on a given aspheric surface model. Since both 

algorithms are both Newtonian methods, applied on the 

same input datasets, it is logical that they converge to the 

same minimum. The algorithms are also tested on 

experimental datasets and the RMS and PV values are 

comparable. L-BFGS is slightly faster than LM and both 

perform faster than the classical ICP. However all three 

algorithms are very low on memory storage and can thus 

process very large datasets. Furthermore, all algorithms 

are invariant in regard to dataset size as they return the 

same residual errors when the number of points change. 

The adopted sampling strategy is that a reading is picked 

from the dataset but no filtration is applied. The Least-

Squares minimization is not sensitive to point-set size 

when the latter has low uncertainty and contains a 

sufficient number of points. Tactile measurement is 

slower but more accurate than chromatic confocal 

measurement as the RMS and PV of the residual errors 

for tactile measurement are smaller, meaning that the 

tactile measurement is less noisy. 

5. Conclusion and future work 

This paper presents measurement and form 

characterization of aspheric surfaces. The comparison of 

optical and tactile measurements of an asphere using the 

LNE’s high precision profilometer is done based on a 

surface form characterization. LNE's primary 

profilometer, traceable to the SI meter definition is 

presented. Its architecture complies with the Abbe 

principle and its metrology loop is optimized. The 

performance and capability of the machine in the scope 

of aspheric lenses metrology are discussed.  

Simulations and experiments have been conducted to 

test and compare the performance of three different 

algorithms for aspheric surface fitting. The results show 

that L-BFGS and LM perform faster than ICP in terms 

of computational time. Nevertheless, all three algorithms 

are very low on memory storage and datasets of several 

millions of points can be processed. Although runtime is 

of the same order between LM and L-BFGS, the latter 

still performs a little faster than LM, and is suitable for 

large number of data points. 

Future research efforts will concentrate on improving 

the robustness and accuracy of the L-BFGS algorithm. 

Reference data set generation for the validation of 

metrological software for the characterization of 

aspheric surfaces will be also investigated. 
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