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a b s t r a c t

Crack stability is discussed as affected by their presence in statically-indeterminate beams,
frames, rings, etc. loaded into the plastic range. The stability of a crack in a section, which
has become plastic, is analyzed with the remainder of the structure elastic and with sub-
sequent additional plastic hinges occurring. The reduction of energy absorption character-
istics for large deformations is also discussed. The methods of elastic–plastic tearing
instability are incorporated to show that in many cases the fully plastic collapse mecha-
nism must occur for complete failure.

1. Introduction

Many safety critical structural members and frames incorporate materials with very high resistance to unstable fracture
from cracks, existing or produced by mechanisms of fatigue, corrosion, etc. Under such circumstances, if the cracked section
is later exposed to high loads, it can become fully plastic without crack instability. Nuclear reactor piping, civil buildings and
bridges with welded steel beams and frames, offshore oil platforms, etc. are but a few examples. This paper shall assume that
it is important to have the cracked section become fully plastic without unstable rapid fracture (the material is assumed
tough enough to avoid sudden fracture). It is the objective here to show that for statically-indeterminate members the con-
ditions for such behavior are often present and can be assured. The approach taken here will be the use of J-integral based
tearing stability analysis to demonstrate the case for such behavior.

First, the basis of J-integral tearing stability method is presented hereafter. The second part of this paper is devoted to
study the stability of a crack in a fixed ended beam with different typical cross-sections often used in mechanical engineer-
ing. Furthermore, one studies the effect, on the crack stability, of the elastic stiffness of the structure where the beam is fixed.
All these cases lead to simple analytic equations to assess the effective length of the beam. A third part is focused on some
special statically indeterminate structures. Then, the material properties needed to assure crack stability are discussed. The
work dissipated by plastic collapse mechanism with crack present is calculated in the case of one of the special frames pre-
viously studied and for the fixed ended beam with different sections. Finally, the ratio between the limit bending moment at
a cracked section and the uncracked plastic hinge moment of sections is considered.
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2. The J-integral tearing stability method

The J-integral is defined in the usual manner with alternate forms [1] by:
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where W ¼
R eij

0 rijdeij, and Ti and ui are corresponding components of traction and displacement on the contour, C, around
the crack tip, dA is the crack area increment, d is the load point displacement, P is the load and dA = tda, where t is the thick-
ness and a the crack length. When the cracked section has reached its limit load for additional plastic deformation the J value
at its tip can be approximated very well by:
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where the limit moment in bending is ML and h is the angle of bending of the cracked section. This formula may be used to
compute the increment or applied value of Japplied for a crack.

The materials resistance to the applied J shall be denoted as JR (R for resistance) and is normally shown on a JR vs. Da dia-
gram (where Da is the change in crack length) which is called a material’s resistance curve (Fig. 1a). It is an Equilibrium state-
ment to say that:

Japplied ¼ JR ð3Þ

A crack becomes Unstable only if: dJappl

dA P dJR
dA , where dA = tda. This Unstable condition is better written as Eq. (4) where E is

the elastic modulus and r0 is the flow stress.
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T is denoted as the applied, Tappl, and resisting, TR, tearing modulus. Eq. (4) is a more natural non-dimensional form for Insta-
bility determination [2–8]. Further, when judging instability it is often convenient to make use of a J vs. T diagram. The mate-
rial’s curve on such a J–T diagram can easily be bounded by a rectangular hyperbola for valid data (by ASTM specifications),
that is: JR � TR = C (a material constant for a given thickness and temperature). Stability is ensured when the Jappl, Tappl point
for a given loading or deformation is below and to the left of the material’s curve. Fig. 1b shows a schematic of a JR–TR curve
and the lower bounding material curve on a J–T diagram. These observations can be conveniently used to make stability
judgments for cracks with remaining ligaments loaded well into the plastic range.

3. Stability of a crack in a fixed ended beam

Fig. 2 shows a fixed ended beam with a crack at its center section which has become fully plastic in bending.
The peak load is presumed to be applied and the question to be asked is will the crack be stable? If the crack then grows

by an increment, da, one should ask whether the reduction in the moment, dML, causes an incremental increase in the bend
angle, dh, at the cracked section, which in turn can cause divergent increments of additional crack growth. If only the cracked
section is plastic, then the additional rotation at the cracked section is provided by further elastic rotation at the cracked

(a) (b)

Fig. 1. Schematic illustration of (a) a J–R curve and (b) a J–T stability diagram.



section caused only by the change in the limit moment, dML. For judging this, simple elastic beam theory gives Eq. (5), where
E is the Young modulus, I the moment of inertia and l the length of the beam:

dh ¼ dMLl
EI

ð5Þ

In order to consider stability, limit moment must be described. Fig. 3 shows some typical cracked cross-section as exam-
ples. Each one will be analyzed separately to note the pattern of results.

3.1. The rectangular cross-section

For a rectangular cross-section (Fig. 3a) the plane strain solution for the limit moment is the familiar Green and Hundy
formula:

ML ¼ 0:35r0c2t; where I ¼ h3t
12

ð6Þ

and r0 is the flow stress, h is the section height, t is its width, and c is the remaining uncracked ligament. For this case the
applied tearing modulus, Tappl, at limit moment is:
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Fig. 2. A fixed ended beam loaded with a plastic hinge at the crack in its center section (can da cause dML, which causes dh and further divergent increments
of da).

(b) (c)(a)

Fig. 3. Some typical cracked cross-sections subjected to fully plastic bending.



The determination of the dJ
dh in the first bracket is from Eq. (2). It is now noted that here dA = tda = �tdc so that then:
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where Leffective will later be taken as the effective length of a beam equivalent to a fixed ended beam cracked at the center.
Combining these results leads to Eq. (9) (for a rectangular beam of height, h). Order (1) means that for standard rectangular
cross-section dimensions Tappl is approximately equal to Leff/h.
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3.2. For a wide flange section with a flange fully cracked

With a wide flange, Fig. 3b, in bending about its strong axis, the flange width is denoted, b, its thickness, t, the web thick-
ness is w, and the total depth is d. If the tension flange is completely cracked and the crack extends into the web leaving a
depth, c, of the web uncracked, the analysis proceeds as in the previous section. The limit moment is:

ML ¼ r0cw
c þ t

2

� �
; where da ¼ �dc or dA ¼ �wdc here; and I ffi btd2

2
ð10Þ

The web is neglected in the moment of inertia, I, and in ML the flange thickness, t, is neglected compared to c, which will be
somewhat compensating errors. Combining these results following the steps of the previous section leads to Eq. (11) (for a
WF section of depth, d). Again, Order (1) means that for standard WF cross-section dimensions Tappl is approximately equal to
Leff/d.
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3.3. The tube or pipe section with a through wall crack

A tube section is taken with a through wall crack extending over a sector of the section of 2h in size (Fig. 3c). If the section
is of mean radius, R, and thickness, t (with t� R) and becomes fully plastic then (where dA = 2tda):

dML

da
¼ 2r0th; where h ¼ R cos hþ sin

h
2
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and I ¼ pR3t ð12Þ

Again, proceeding as before (for a tubular section of diameter, D) Eq. (13) is obtained:
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A more extensive analyses of cracked piping sections and their effective lengths is given in [9].
The trend noted here is clear that the Tappl for quite different cross-sections depends mainly on the beams effective length

divided by its height. It is granted that more detailed analyses for each section could be computed. Moreover, from this sim-
ple analysis it has also been demonstrated as the crack gets deeper into each section, that the Tappl tends to diminish and if a
crack does go unstable it is likely to be self-arresting. These trends are emphasized here to encourage further detailed anal-
yses such as [9] which shows nuclear reactor piping cracks are normally always stable even with loads into the plastic range.

3.4. Fixed ended beam with crack not in the center of the beam

The preceding discussion assumed the crack location was at the center of a fixed ended beam. It shall now be appropriate
to consider the non-symmetric case (Fig. 4) where the fully plastic cracked section is l1 from one end and l2 from the other
end (or l = l1 + l2). Using simple elastic beam theory with a hinge at the crack location, the equivalent or effective length can
be determined. The result is:
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However, there is no such thing as a fixed ended beam. Normally a beam is framed into a structure that has elastic stiffness.
Let the ends of the beam be framed into joints with rotational compliance equivalent to Eq. (15) where a1 and a2 are the non-
dimensional compliance coefficients.

dh1 ¼
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Adding these rotational compliances to the ends of the beam modifies the preceding relationship Eq. (14) into the follow-
ing form:
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It is noted that this form reduces to Eq. (14) for a1 = a2 = 0. It can be used to accommodate various elastic frames support-
ing the beam.

Further, for a1 = a2 = 0, let us suppose that an additional plastic hinge forms at the l2 end of the beam, while the cracked
section also remains fully plastic (Fig. 5), but with two plastic hinges the collapse mechanism is still not formed. For this case
(Fig. 5) elastic beam analysis with these hinges gives:
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It is equally easy to add examples of continuous beams with the second or more plastic hinges short of plastic collapse
which is left undone here in order to proceed to more advanced examples of statically indeterminate structures.

4. Some special frames and a ring as examples of L-effective

Fig. 6 shows some frames and a simple ring of interest for further analysis. The two legged frame with differing stiffnesses
for the beam, EBIB, and the columns, ECIC, with elastic bending theory leads to Eq. (18) for a centered crack in the beam, with
length l, and a column height, h.

EI
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2ECIC
h ð18Þ

For the square frame with each side of length, l, (Fig. 6) the result is:

EI
dh

dML
¼ Leff ¼ 2l ð19Þ

Fig. 4. Fixed ended or elastically rotationally supported beam ends.

Fig. 5. A beam with a second plastic hinge in addition to one at the crack.



which is not much of an increase of the effective length over a fixed ended beam. If this was part of a rectangular grid the two
coefficient would be much closer to 1.

The problem of a ring of radius, R, has been discussed in [10] with the crack location at various angles from diametrically
opposite concentrated loads. Therein the sequence of formation of plastic hinges was determined and the equivalent of the
effective length was also determined for each case. Here, the treatment is with a plastic hinge at the crack location only to
determine the effective length Leff. Eq. (20) is obtained.
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3
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Again, it is noted that the result is a little more than the diameter, 2R, of the ring.
Finally, here let us come back to the first frame but, where typical side-sway induced additional plastic hinges are formed,

as shown in Fig. 7. Again, this problem is analyzed using simple beam theory to obtain:
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It is also noted here that the stiffnesses of columns in compression with large axial loads, P, should be adjusted by Eq. (22)
where Pcr is the Euler critical load in compression.

ECIC-effective ¼ ECIC 1� P
Pcr

� �
ð22Þ

5. Material properties needed to assure crack stability

The preceding discussion defined the material’s tearing modulus as:

TR ¼ Tmaterial ¼
dJ
da

����
mat

E
r2

0

ð23Þ

where the values which may be used to evaluate crack stability can be determined from a material’s J–R curve and elastic
modulus and flow stress. It was also mentioned that empirically it has been noted that the J–R curve valid data will generate
a part of a J vs. T diagram which can be conservatively enclosed by a rectangular hyperbola:

(c)(b)(a)

Fig. 6. Some frames and a ring for
dh

dML
determination at the crack.

Fig. 7. A frame sustaining side-sway loading with two plastic hinges, as well as that at the crack.



JR � TR ¼ Jmat � Tmat ¼ C ð24Þ

Normally, using these items to judge stability for well-designed structures, if cracked, will show very conservatively that
crack stability can often be achieved. For example, consider an infinite sheet and with a central crack of 2a in length sub-
jected to uniform tension, r, perpendicular to the crack. This is the Griffith configuration, which, if large enough, can be trea-
ted by the usual elastic analysis. If a J–T diagram for the same thickness of material is bounded by the preceding rectangular
hyperbola, the following Griffith equation can be employed:

Jappl ¼ G ¼ pr2a
E

ð25Þ

From this result it follows that:
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da
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Combining these two previous equations leads to:

Jappl

Tappl
¼ r2

0a
E

ð27Þ

which is a straight line of this slope through the origin of the J–T diagram as shown in Fig. 8.
For the various beam sections treated previously herein the results took the form:

Tappl ¼ Order ð1Þ Leff

D
ð28Þ

which are simply a vertical line on the J–T diagram as illustrated in Fig. 8. The intersections of these ‘‘applied curves” with the
‘‘material curve” indicates instability. For the Griffith configuration, it is noted that any increase the crack length results in a
higher value of J at instability.

For an example in Ref. [9] it was noticed for typical nuclear piping systems that:

Leff

D
ffi Tappl ¼ 11:2—62:7 ð29Þ

whereas the measured J-integral tests of this material gave:

Tmat ¼ 205—452 ð30Þ

to very high values of J implying fully plastic action at cracked sections was easily reached with minor crack growth occur-
ring. This practical example gives confidence that these analyses, although approximate, are very relevant.

In cases were doubt remains a final method, which does not even use the concepts of J-integral fracture mechanics, can be
employed for practical engineering design. Experimentally, one can take a cracked section of the relevant beam and test it
recording its moment vs. angle change curve for the cracked section. Then one has to compare the descending material dML

dh

like those found in the equations above from the structure’s Leff. If the material’s dML
dh
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mat

is less than the structure’s dML
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then stability is assured. See Fig. 9 for an illustration of the test results.

Fig. 8. A conservative bound of the material data, with the JR vs. TR shown for the Griffith configuration and beam analyses.



6. Energy dissipation by plastic collapse mechanisms with cracks present

It is also of interest to compare the work dissipated by plastic hinges including those at cracked sections with those with
cracks absent. Let us come back to the fixed ended beam studied in Section 3.4 (Fig. 5), but now, with a plastic hinge at each
end, as illustrated in Fig. 10. This figure shows the collapse mechanism for such a fixed ended beam (or frame) where the
collapse mechanism is entirely in one beam.

For the beam in Fig. 10 the work done with a crack at the central hinge is:

Work ðcrackedÞ ¼ ðMP þMLÞðh1 þ h2Þ ¼ ðMP þMLÞd
l1 þ l2

l1l2

� �
ð32Þ

where MP is the fully plastic hinge moment of the uncracked section, and ML is the hinge moment (i.e. the limit moment) of
the cracked section. For the same mechanism without a crack at the central location, all the hinge moments are simply MP.
Therefore the ratio of the work cracked to uncracked is:

Work ðcrackedÞ
Work ðuncrackedÞ ¼

MP þML

2MP
¼ 1

2
1þML

MP

� �
ð33Þ

Now, if in Fig. 10 the crack location is instead at the l1 end of the beam then the ratio of the work cracked to uncracked is:

Work ðcrackedÞ
Work ðuncrackedÞ ¼

2l1 þ 1þ ML
MP

� �
l2

2ðl1 þ l2Þ
ð34Þ

For both of these cases the minimum ratio is 1/2 to a maximum below 1.
Further, consider now the previous frame with a side-sway tendency present to develop a final hinge at the base of the

other column as its collapse mechanism (Fig. 11).
For this mechanism with the cracked section in the central part of the beam the work is:

Work ðcrackedÞ ¼ MPd
3þ ML

MP

� �
l2 þ 1þ ML

MP

� �
l1

l1l2

2
4

3
5 ð35Þ

Fig. 10. A collapse mechanism for a fixed ended beam.

Fig. 9. An experimental approach with ML vs. h testing to avoid a J-integral approach.



From this, setting ML = MP, the uncracked mechanism can be evaluated to get the work ratio of cracked to uncracked
frame as in Fig. 11. It is:

Work ðcrackedÞ
Work ðuncrackedÞ ¼

1þ ML
MP

� �
l1 þ 3þ ML

MP

� �
l2

2l1 þ 4l2
ð36Þ

The minimum ratio here must be more than 1/2 up closer to 1. Requiring a 4-hinged mechanism has caused that result.
However, if not enough side-sway inducing loads are present the beam mechanism of Fig. 10 could be relevant instead for
this frame.

In order to view these work ratios with a bit more perspective it is relevant to comment on the typical values of ML
MP

for the
various cross-sections which has been already studied, and illustrated in Fig. 3, that are listed as follows:

(1) For the rectangular section cracked to 1/2 its depth the result is (for plane strain conditions):

ML

MP
¼ 0:35 ð37Þ

(2) For the wide flange with the flange fully cracked:

ML

MP
¼ 1

2
w
t

� � c
b

� � c
d

� �
¼ 0:28 ðfor typical proportionsÞ ð38Þ

(3) For a tube or pipe section with a through wall crack over a sector 2h ¼ p
2 or 90�:

ML

MP
¼ 0:57 ð39Þ

Substituting these values into the previously stated work ratios gives further understanding of the absorption of
energy for cracked structures where cracks can remain stable and collapse mechanisms are formed to enhance that
absorption.

7. Conclusions

The application of J-integral tearing stability method to different typical cracked cross-sections of beams used in struc-
tural mechanical engineering has shown that Tappl is approximately equal to the ratio of an effective length, Leff, over the
characteristic dimension of the section (height for a rectangular section, diameter for a pipe for examples). Such J-integral
analysis together with the simple elastic beam theory applied on some statically indeterminate frames and on a ring with
plastic hinges allowed the assessment of the effective length Leff. Finally, under bending the limit moment for a fully plastic

Fig. 11. A collapse mechanism for a frame with side-sway.



section with a crack, compared to the limit moment for uncracked section, is not negligible. The absorption of energy for
cracked structures can be ensured by collapse mechanisms formed to enhance this absorption. Consequently, with tough
material and good design to limit the effective length, as defined herein, it is possible to ensure stable crack growth even
if plastic hinges appear. In such a case the fully plastic collapse mechanism must occur for complete catastrophic failure
of the structure.
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