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10Classical nitriding of heat 
treatable steel
L. Barrallier
Arts et Métiers ParisTech, France

10.1	 Introduction

Classical nitriding of heat treatable steel generates compressive residual stresses 
and hardened cases. Stress generation is directly linked to volume changes due to 
phase transformations during the nitrogen diffusion and the carbon co-diffusion 
processes, and the multiphase character of nitrided layers means that these stresses 
can be three dimensional in nature. 
	 Hardness is related to MN nitride formation with a smaller size than the primary 
carbure ones and whilst the hardness and residual stress gradients cannot be directly 
linked, coupling the kinetics of the precipitation with N/C diffusion via a multiscale 
mechanical approach is necessary to understand this surface treatment. 
	 Fatigue life can be increased by limiting crack propagation in the compressive 
case and by improving the intrinsic mechanical properties in the nitrided layers. 
Due to the temperatures at which nitrided layers are formed (up to 500°C for gas 
nitriding), they are very stable and mechanical relaxation is very limited.
	 The fatigue life of mechanical parts can be improved by surface engineering and 
the generation of compressive residual stresses (see Section 10.4). One such surface 
treatment, known as nitriding, is suitable for application to high performance parts 
that operate under severe loading and temperature conditions. Examples include:

•	 the powertrain of the main gearbox in a helicopter (Razim, 1994; Boniardi et al., 2006),
•	 shafts and bearings in airplane engines (Bhadeshia, 2012),
•	 crankshafts for automotive applications (Holzheimer and Naundorf, 1990), and
•	 valve springs for internal combustion engines (Fujino et al., 2006).

10.2	 Steels suitable for nitriding

Improvement of the fatigue life using nitriding requires steels which contain nitride-
forming alloying elements. The steel composition should also display good fatigue 
properties of the unnitrided core. For surface fatigue (gears, bearings, etc.) hardness 
and residual stress gradients should be progressive from the surface to the core 
without steep gradients. For this type of application, the depth of the nitriding is 
mainly controlled by the time during which nitrogen diffusion takes place. Nitriding 
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Classical nitriding of heat treatable steel 393

steel grades are low alloyed steels with 0.3–0.4 wt.% carbon, 1–5 wt.% chromium, 
and aluminium at less than 1.5 wt.%. Other elements are molybdenum for hardness 
and vanadium for the prevention of grain coarsening. Table 10.1 gives the main 
steel grades used in nitriding. Heat treatment prior to nitriding can further improve 
the mechanical properties of the material and Figure 10.1(a) illustrates a typical 
resulting microstructure. It should be noted that the size of carbides depends on 
the temperature at which the treatment occurs, as well as the time during which 
tempering takes place. 

10.3	 Microstructure and hardness improvement

The morphology of the nitrided layers depends on the core microstructure resulting 
from the transformation of chromium carbides into chromium nitrides. Although 
this microstructure must be stable during the nitriding treatment, the core hardness 
decreases by 20–30 HV if either the tempering temperature is too close to the nitriding 
temperature or the nitriding time is too long (more than 100 hours). 
	 In order to improve the nitrogen diffusion rate at the gas–solid interface, pre-
treatments may be performed. Parts are cleaned in order to remove oil contamination 
and are oxidized using either a solvent vapour with an acid or alkaline solution 
(Ghiglione et al., 1996). A phosphate coating treatment may also be used for surface 
activation.
	 Maraging steels can be gas nitrided at low temperature (below 500°C) to obtain a 
progressive hardness profile (Hussain et al., 1999). The main issue with high-alloyed 
steels with a high content of nitride-forming elements such as chromium is a thin 
diffusion zone with a thick and hard compound layer which is disadvantageous for 
fatigue applications. Austenitic stainless steels may be nitrided to improve wear 
resistance (see Chapter 3, Section 3.2) (Aghazadeh-Mohandesi and Priestner, 1983). 
For tool steels, the depth of the diffusion layer can be reached using low-pressure 
nitriding at around 103 Pa in order to increase the diffusivity of the nitrogen in the 
presence of a high quantity of alloying elements (Gawronski, 2000). For high alloy 
steels, plasma nitriding is preferred to reduce the treatment temperature, increase 
nitrogen activity and prevent the onset of grain boundary precipitation (Yagita and 
Ohki, 2010). Table 10.2 gives some applications and uses of a number of nitrided 
steel grades for surface and volume fatigue life improvement. 
	 Sometimes nitriding layers must be ground to remove compound, to improve 
the roughness and the precision of dimension of the parts. The choice of grinding 
parameters must be optimized in order to have compressive residual stress (Brinksmeier 
et al., 1982) and avoid grinding burns (Shah, 1974).
	 Post-treatments may also be performed to improve the mechanical properties 
of nitrided parts such as PVD (Bader et al., 1998) or shot-peening (Ohue and 
Matsumoto, 2007; Croccolo et al., 2002). For high carbon steel, duplex treatments 
can be performed such as salt or gas nitriding followed by plasma nitriding in order 
to have better control of the nitrogen content (Streit and Trojahn, 2002).
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z = zcore
t = t0

z ≠ zcore
t ≠ t0

M3C

Globular MN

Semi-coherent MN20 µm 20 µm

10 nm

(a) (b)

M23C6

Martensite laths

Figure 10.1  Microstructure of base material (a) and nitride layers (b), 32CrMoV13 oil 
quenched and tempered, 96 h gas nitriding at 560°C.

Table 10.2 Applications for fatigue life of nitriding steel grades

Steel family Grade Application

Plain carbon C45* (Ck45) Academic research, not really 
used for high loading partsC35* (Ck35)

Low alloyed 31CrMoV9** (En40A, En40B, 
En40C) 

Shafts, crankshafts, gears

32CrMoV13 (AMS6481)

34CrAlMo5** (En41A, En41B)

42CrMo4* (AISI4140)

35CrNiMo6 (AISI4340)

20NiCrMo2***(AISI8620)

60Si7 (AISI9260) Springs

High alloyed M50NiL Bearings

XT87W6Mo5Cr4V2 (AISI M2) Tools

80MoCrV40 (M50, ASM 6490) Bearings

Maraging 350 maraging For high loadings and corrosion 
resistance

*EN10083, **EN10085, ***EN10084 standards
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 The mechanical properties of the nitrided layers are directly linked to the 
microstructure and precipitation phenomena that occur during nitrogen diffusion. 
With increasing hardness, compressive residual stresses are generated due to phase 
transformation and/or precipitation. 
 Figure 10.1(a) illustrates a typical initial microstructure for chromium steel grades 
after oil quenching and tempering, i.e. ferrite with M23C6 (M = Cr, Fe), M7C3 (M 
= Cr, Fe) or VC carbides (depending on the steel composition). Globular MN (M 
= Cr, Fe) precipitation occurs in a ‘chaplet’ shape (Locquet et al., 1997) as shown 
in	Figure	10.1(b).	Free	chromium	in	tempered	martensite	is	used	to	form	fi	ne	and	
semi-coherent MN (M = Cr, V, Mo) nitrides. Iron substitution within MN nitrides 
(Ginter et al., 2006) or local lattice strain at the precipitate–matrix interface increases 
nitrogen solubility and can explain the observed excess of nitrogen (Somers et al., 
1989). The initial carbides (M23C6, M7C3) are transformed to the MN nitrides and the 
M3C (M = Cr, Fe) cementite during the nitrogen diffusion. This mechanism explains 
the coupled carbon and nitrogen diffusion. In order to limit any potential weakness 
of the nitride layers, the grain boundary cementite should not form a continuous 
network, which involves optimization of the processing parameters. The MN nitrides 
formed are smaller than the initial carbides, which increases the hardness of the 
nitrided layers.
 In the case of steel, the mechanical properties can be linked via the tensile the 
strength sy to the Vickers hardness H by a Tabor-type law (Tabor, 1951): 

  H = a sy with a	≈	0.29	–	0.3	 [10.1]

For nitrided layers (32CrMoV13 steel), Locquet (1998) showed that the a coeffi	cient	
is close to 0.4. Some authors were able to measure the local yield stress using 
nanoindentation experiments and inverse methods (Jacq et al., 2003).

10.4 Nitriding-induced stress in steel

Nitriding reduces the risk of distortion (Machlet, A. Fry, Pye, 2003) due to the internal 
stresses associated to nitrogen diffusion and phase transformations. Nitriding induced 
compressive	 stresses	 were	 fi	rstly	 evaluated	 by	 R.B.	 Waterhouse	 by	 comparison	
with	compressive	stress	obtained	in	sulphidized	coatings	from	the	defl	ection	of	the	
specimen	(Waterhouse,	1965).	Residual	stresses	are	found	throughout	the	multiscale	
in-depth	incompatibility	of	stress-free	strain.	In	other	ways,	the	residual	stress	fi	eld	
and associated elastic strain exists to make the total strain compatible and satisfy 
the Saint-Venant compatibility equations.
 The stress-free strain esf is directly related to the microstructure transformations 
that occur during nitriding:

•	 Volume	changes
 

DV
V

tr

 
can be caused by several phenomena during the co-diffusion of

 
nitrogen and carbon:
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Classical nitriding of heat treatable steel 397

	 –	 modifi	cation	of	the	phase	composition	such	as	the	solubility	of	carbon	and	nitrogen	in	
ferrite and the contents of alloying elements in MN, M23C6 or M3C precipitates,

 – phase development such as MN or M3C precipitates from M-containing ferrite and/or 
M23C6 carbides,

 – phase transformations such as M23C6 carbides.
 Figure 10.2 shows schematically how the microstructure evolves from the base to the 

nitrided	case.	The	quantity	and	specifi	c	volume	of	the	crystalline	phase	defi	nes	how	large	
the volume change will be. Calculation of the volume change must take into account both 
the diffusion of nitrogen and co-diffusion of carbon (Jegou et al., 2010).

	 Figure	10.3	gives	the	specifi	c	volumes	of	the	main	phases	found	during	nitriding	of	low	
carbon alloying steels. The total volume change may be obtained by consideration of the 
local volume change pondered by the volume fraction of each phase.

•	 The	volume	change
 

DV
V

th

 
due to thermal shrinkage on cooling from the nitriding temperature

 
T n (500–560°C) to room temperature T r and linked to the volume fractions and thermal 
expansion	coeffi	cients	a of the different phases present. 

∑ Plastic straining ep due to the mechanical behaviour of ferrite. A local elastoplastic law 
can be used to link this deformation with stresses. Hardening, which depends on ferrite 
composition. For precipitates in the nitrided case, such as MN nitrides, only elastic behavior 
needs	to	be	considered	(Barrallier	and	Barralis,	1994).

Z = Zcore
t = t0

Z ≠ Zcore
t ≠ t0

C

N

M3C

M23C6

MNa-Fe

Figure 10.2 Schematic representation of volume variation during nitriding of low alloyed 
steels.

Fe3N Fe4NFe3C

125.8 127.1 130.4 138.9 144.9 145.4 161.3

a-Fe Cr23C6 Cr7C3 CrN Specifi c volume

cm3.kg–1

Figure 10.3 Specifi	c	volume	of	nitrides	and	carbides	for	low	alloyed	steels.
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The induced strain is small and can be neglected. Some authors consider creep 
phenomena	(Buchhagen	and	Bell,	1996;	Daves	and		Fischer,	1994)	but	this	will	not	
be considered here. Neither dislocations nor residual plastic straining have been 
observed,	 except	 at	 the	matrix–precipitate	 interface	 (Barrallier	 et al., 1997). Note 
that stress relaxation (time dependent evolution of the stress state) should not be 
confused with stress redistribution close to the surface.
 Due to the multiphase character of the material, the macroscopic properties (denoted 
X̂) should be distinguished from the microscopic properties (denoted Xfi for phase 
fi). The mechanical properties are three-dimensional and may be expressed using 
tensor notation (X for second-order tensors and X for fourth-order tensors).
 Several authors have proposed methodologies for modelling the residual stress 
distribution.	Buchhagen	and	Bell	(1996),	for	example,	have	taken	into	account	the	
nitrogen	concentration	profi	le	in	the	substrate	matrix,	the	volume	divergence	between	
the matrix and the increasing volume fraction of nitrides, the dissolution of carbides 
during the nitriding process, the relaxation of stress at the nitriding temperature and 
the build-up of thermal stress on cooling. Other similar models describe the origin 
of the volume change in terms of coupled effects between lattice strains, volume 
changes accompanying precipitation, thermal effects and phase composition changes 
(Oettel	and	Schreiber,	1989;	Mittemeijer,	1983).	Vives	Diáz	et al. (2008) employed 
a phenomenological approach for the macroscopic residual stresses of binary nitrided 
iron-based alloys based on the different precipitation mechanisms of the nitrides 
(semi- and incoherent precipitates and discontinuous precipitation).
 Using an incremental time dependent approach (where Ẋ = ∂X/∂t), at the nitriding 
temperature, the macroscopic strain tensor rate ˆe  can be expressed as a function of 
the elastic ˆe e and the stress-free strain ˆe sf:

  
ˆ ˆ ˆ ˆ ˆ ˆ     e e e e e ee e =e e  e e  e e + e e =e e  e e  e e + e e +e ee sˆ ˆe sˆ ˆe ee se e+ e s+ f eˆ ˆf eˆ ˆe ef ee ee e =e ef ee e =e ee sf ee sˆ ˆe sˆ ˆf eˆ ˆe sˆ ˆe ee se ef ee ee se e p tˆ ˆp tˆ ˆe ep te e +p t +e e +e ep te e +e e rp trp t

	 [10.2]
with

  rot(rot( ˆe )) = 0	 [10.3]

Equation	 [10.3]	 is	 illustrated	 in	Figure	10.4.	Due	 to	 the	positive	value	of	volume	
change in the nitrided layer, a state of compressive stress is generated. The macroscopic 
mechanical equilibrium is expressed:

s

s < 0

Z

Surface

Nitrided layer

Core

Figure 10.4 Schematic representation of residual stress generation due to the volume change 
during nitriding.
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  div  = 0
   





ŝ 	 [10.4]
Scale transition relations between the macroscopic and microscopic scales render 
the material heterogeneous through mixing. Macro-strains or stresses are a function 
of local strains or stresses weighted by the volume fractions of the phases, yfi 
(microscopical value is noted to refer to the phase fi):

  
ˆ

s sf fs sf fs ss s =s sSs sSs sis sis sys sys sf fyf fi if fi if ff fi if fs sf fs si is sf fs s
	 [10.5]

and

  
ˆ

e ef fe ef fe ee e =e ee e  e eSe eSe ee eie eie eie ee e  e eie e  e eye eye ef fyf fi if fi if ff fi if fe ef fe ei ie ef fe e
	 [10.6]

Local stress-free strains, effifif
sf , can be described using the Eshelby inclusion and 

Kröner approaches (Kröner, 1967):

  




e effe efe e
ifif

e ee ee ee ee eI Ie ee eI Ie ee ee ee eI Ie ee ee e = ( = (e e = (e ee e = (e ee ee ee e = (e ee ee ee eI Ie e +e eI Ie ee eI Ie e +e eI Ie ee ee ee eI Ie ee ee e +e ee ee eI Ie ee ee e ) )e e )e ee e )e ee eI Ie e )e eI Ie ee eI Ie e )e eI Ie ee ee ee eI Ie ee ee e )e ee ee eI Ie ee ee e (  (  ) : (  (  ) : (U Ue eU Ue eI IU UI Ie eI Ie eU Ue eI Ie ee eI Ie eU Ue eI Ie ee ee ee eI Ie ee ee eU Ue ee ee eI Ie ee ee ee e )e eU Ue e )e ee eI Ie e )e eI Ie eU Ue eI Ie e )e eI Ie ee eI Ie e )e eI Ie eU Ue eI Ie e )e eI Ie ee ee ee eI Ie ee ee e )e ee ee eI Ie ee ee eU Ue ee ee eI Ie ee ee e )e ee ee eI Ie ee ee ee e :e eU Ue e :e ee eI Ie e :e eI Ie eU Ue eI Ie e :e eI Ie ee ee ee eI Ie ee ee e :e ee ee eI Ie ee ee eU Ue ee ee eI Ie ee ee e :e ee ee eI Ie ee ee eI I  I IU UI I  I Ie eI Ie e  e eI Ie eU Ue eI Ie e  e eI Ie eI I+ I IU UI I+ I I(  U U(  I I(  I IU UI I(  I I + U U+ S I(  S I(  + S I+ ˆe eˆe ee eI Ie eU Ue eI Ie eˆe eI Ie eU Ue eI Ie e e eee eeffe efe e
ifif

sfe esfe e sfe e – e e )ˆ
	 [10.7]

where I is the fourth-order unity tensor, U the polarization tensor and S the Eshelby 
tensor describing the shape of the inclusion (precipitates and ferrite). The phase 
transformation strain rate effifif

tr  due to the precipitation/dissolution of phase fi can be 
linked to the macroscopic value ˆ

 due to the precipitation/dissolution of phase 


 due to the precipitation/dissolution of phase 
e tr  by the relation: 

  
ˆ


e efe efe eff

tre etre eie eie e trye eye efyfie eie ee efe eie efe e
ifife e =e eSe eSe e
	 [10.8]

where y ifyfy ifi is the variation with time of the volume fraction of phase fi. The local 
deformations can be written:
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	 [10.9]
and the local elastic properties of the phases can be expressed by:
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	 [10.10]
where C ififi  is the stiffness tensor of phase fi. If the mechanical behaviour of a given 
phase is elastoplastic, the stress rate can be linked to the plastic strain rate by the 
hardening law gfi:
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	 [10.11]

In	order	to	derive	the	residual	stress,	Eqs	[5.2]–[5.1]	should	be	simultaneously	solved	
using appropriate initial and boundary conditions. 
 This mechanical model can be linked to a diffusion/precipitation model in order 
to calculate phase transformations (Jegou et al., 2010). Using this approach, stress 
relaxation close to the surface can be explained by the co-diffusion of carbon and 
the kinetics of the precipitation/dissolution of the nitrides and carbides. Figure 10.5 
shows	the	schematic	evolution	of	nitrogen	and	carbon	profi	les	during	the	nitriding	
of a low alloy steel. The surface concentration depends on nitrogen activity and 
the carbon content and is maintained at a constant value when a compound layer is 
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present at the surface. Due to the interaction with nitrogen, diffusion of carbon occurs 
generating a carbon-depleted zone close to the surface and a carbon-enriched zone 
ahead of the nitrogen front. The diffusion front diffuses into the steel as a function 
of √t . For a given depth, the nitrogen concentration increases with time, while the 
carbon concentration progresses through a maximum value. Figure 10.6 illustrates 
the volume fraction of precipitates in the diffusion layer as a function of depth and 
time as determined by the thermodynamic software Thermo-Calc®. 
	 At a given depth, the volume fraction of the alloyed cementite M3C follows the 
evolution of the carbon content implying that the volume variation accompanying the 
dissolution/precipitation of phases increases for a certain time/depth and decreases 
after/close to the surface as shown Figure 10.7. A positive increment in volume 
generates a compressive residual stress and a negative increment elastically unloads 
the material and leads to a reduction in the level of compressive stress. In Figure 
10.8, schematic evolution of the residual stress profiles are shown in comparison to 
the observed ones and a close correlation is observed. Also, the compressive surface 
stresses and the maximum of the latter decrease with time (Barralis et al., 1986).
	 During cooling, it is assumed that only thermal strain occurs and that no significant 
transformation strains exist. In fact, there is a very small reduction of the lattice solubility 

vol.% vol.% vol.%t1 t2 t3

z z z

CrN
M3C
M23C6/M7C3

Figure 10.5  Schematic evolution of volume fraction of carbides and nitrides during nitriding 
of low alloyed steels.
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Figure 10.6  Schematic evolution of nitrogen and carbon concentration during nitriding.
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of nitrogen in ferrite and this nitrogen can either form a≤-Fe16N2 or condense onto 
MN precipitates with an effective increase of the size of these particles. Hoffmann 
et al. (1995) showed that during cooling, the compressive stresses in ferrite close to 
the surface decrease slightly. This shows that residual phase-specific macro-stresses 
(or pseudo-macro-stresses or order II stresses) are different from the overall macro-
stress (or order I stress) in the sample. Figure 10.9 illustrates the residual stresses 
in ferrite (pseudo-macro-stresses) analysed using X-ray diffraction in comparison to 
the macro-residual stress evaluated from the deflexion of a plate (Goret, 2006). The 
value of the sample-averaged macro-stress is twice that of the average phase-specific 
stress in ferrite. 
	 In order to optimize the design of parts, numerical modelling of nitriding has 
been developed using a finite-element approach (Daves and Fischer,1994; Cavaliere 
et al., 2009; Arimoto et al., 2010). In this modelling, the local geometry of parts 

DV/V% DV/V% DV/V%
DV/Vmaxt1 t2 t3

z1 z1 z1z2 z2 z2z z z

s s s

t1 t2 t3z z z

Figure 10.7  Schematic evolution of volume change during nitriding of low alloyed steels.

Figure 10.8  Schematic evolution of residual stress during nitriding of low alloyed steels.
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and their influence on the nitrogen diffusion process can be taken into account and 
residual stress fields calculated. Figure 10.10 (and Plate IV between pages xxx and 
xxx) shows the residual stress component in a single direction (1) of a nitriding 
disc where the other faces have been protected by a copper plating (Barrallier et al., 
2008). Figure 10.11 shows the macro-stress components 200 mm below the surface 
from the centre to the protected side of the disc. The biaxial residual stress state at 
the centre of the disc (s11 = s33, s22 = 0) changes to a uniaxial stress state at the 
edge of the disc (s11 = s22 = 0).
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Figure 10.9  Macro-residual stress (deflexion) and micro-residual stress (XRD in ferritic 
phase), 32CrMoV13 gas nitrided, 120 h at 560°C.
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Figure 10.10  Deflexion of one-side nitride plate disc, simulation of nitriding using FEM; 
stress in Pa (Barrallier et al., 2008).
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	 The true residual stress field is a function of the local shape of the parts such 
as the fillet between the two teeth for a gear or the groove for a shaft. In this case, 
because of the local geometry, the stress measurement can be performed using a 
non-destructive diffraction method without removal of matter (Goret et al., 2006).
	 Mechanical parts can be subjected to  multiple thermo-mechanical loading cycles 
and the stability of residual stress with time is an important factor for the behaviour 
of nitrided layers. If the temperature in service is below the nitriding temperature, no 
evolution of residual stress will occur. As long as no metallurgical transformation 
occurs, such as precipitation/dissolution of precipitates, no variation of residual stress 
is apparent as no local volume changes occur. At in-service temperatures close to the 
nitriding one, the residual stress profile evolves as a function of temperature level 
and time (Barrallier et al., 1993).
	 Stress relaxation due to mechanical loading is dependent on the level of the applied 
stress, and modification of the microstructure of a nitrided alloy can be observed 
through hardness measurements in the case of contact fatigue. Figure 10.12(a) 
shows the results of a micro-ball attrition test on 32CrMoV13 steel. The loading 
was applied using a 100Cr6 steel ball with controlled displacements. Several thin 
foils were taken for TEM investigation at the maximum stress. In Figure 10.12(b), 
the thin foil (15 ¥ 6 ¥ 0.5  mm3), which was machined using a focused ion beam 
microprobe, is curved due to relaxation of the local compressive stress field. Using 
TEM, it was possible to identify semi-coherent MN nitrides sheared by dislocation 
sliding (Figure 10.12(c)). A decrease of CrN scale increases the local hardness of the 
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Figure 10.11  Effect of triaxial stress close to the border of a one-side nitrided disc (Goret, 
2006).
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material. There is no change in the volume fraction of the MN nitrides, but plastic 
deformation does occurs resulting in residual stress modification and ultimately 
damage.

10.5	 Nitriding and improved fatigue life of steel

Under mechanical cyclic loading with industrial steels the damage is generally 
localized at stress concentrators such as inclusions (sulphurs, oxides), grain boundaries 
or large precipitates (De la Cruz et al., 1998). Due to hardening and residual stress 
in the nitrided layers, initiations are generally localized in the base material close 
to the diffusion zone for un-notched parts. For notched parts, initiation of cracks 
can occur at the surface or very close to the surface (Limodin and Verreman, 2010). 
The morphology of the fracture surface of an un-notched specimen is shown in 
Figure 10.13. Crack propagation progresses into the base material from the stress 
concentration with a fish-eye-type shape. In the nitrided layers the cracking is brittle 
and partially intergranular and the fracture toughness is generally low. Şengul and 
Çelik (2011) found a fracture toughness of 3.7 MPa.m1/2 for plasma nitrided 42CrMo4 
(AISI4140) steel compared to 50MPa.m1/2 for the base material.
	 The work of Hengstenberg and Mailänder showed that nitriding leads to an 
improved fatigue limit for steel (Hengstenberg and Mailänder, 1930). The fatigue 
limit improvement is linked to the depth of the nitride alloy and as well as any post-
treatment such as grinding (Barralis and Castex, 1986; Castex et al., 1987). Residual 
stress combined with the hardening effects has been shown to improve the fatigue 
strength of nitride 34CrAlMo5 (En41B) steel grade by more than 25% (Jones and 
Martin, 1977). 
	 The nitriding temperature is also important with crack initiation occurring more 
quickly for notched specimens at higher temperature due to the lower hardness 

Controled 
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Shear
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Figure 10.12  Effect of cyclic loading of nitriding layer microstructure: (a) position of thin foil 
at the maximum of Hertz stress; (b) deformation of thin foil due to the residual stress field; 
(c) shearing of semi-coherent MN nitrides due to dislocation movement (white dash lines).
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obtained (Braam et al., 1997). For un-notched specimens, the effect of temperature 
is negligible because the initiation of cracks occurs in the base material. 
	 The type of loading is also an important factor. For tension–compression loading, 
the benefits of nitriding are not clear because the core of material is more heavily 
loaded than the nitrided layer. In this case, for low-cycle fatigue (LCF), the ratio 
between nitrided and un-nitrided cross sections defines the distribution of residual 
stress (Guagliono and Vergani, 1997). When the notch severity increases, the nitrided 
layer is more stressed and the high-cycle fatigue (HCF) strength, for bending loading, 
increases in comparison with an un-nitrided specimen.
	 Figure 10.14 shows schematically the Wöhler (S-N) curves of notched nitrided and 
un-nitrided specimens for LCF and HCF. For deep nitriding depths, the S-N curve 

Figure 10.13  Schematic representation of crack initiation and crack propragation for a rotating 
bending loading of nitrided shafts.
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Figure 10.14  Schematic S-N curves for un-nitrided and nitrided notched specimen with the 
influence of nitrided depth.
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is displaced towards high stresses and cycles. Unlimited fatigue strength is reached 
at 107–108 cycles. The S-N curve can be plotted for different probabilities p(N) of 
failure as shown in Figure 10.15(a). For uniaxial loading, the S-N curve depends on 
the stress ratio Rs = smin/smax where smin and smax are the minimum and maximum 
applied stresses, respectively. Figure 10.15(b) shows the effect of average stress on 
the S-N curve for a 50% probability p of failure. With a tensile–compressive loading 
with b (Rs = 1) and a cycle number to failure of Nf = 106 cycles, cracks occur when 
the loading amplitude is greater than the fatigue limit s f (point N¢).
	 HCF fatigue behaviour of material can be approached using fatigue criteria. 
The uniaxial fatigue criterion based on the Goodman–Gerber diagram can be used 
to explain the hardening effect of nitriding (Cowling and Martin, 1981). This type 
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Figure 10.15  (a) S-N curves for different probability p(N) to failure; (b) S-N curves for 
different loading ratios Rs (effect of mean stress).
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of approach cannot explain the effect of residual stresses. With a triaxial fatigue 
criterion, such as in Crossland diagrams, these effects can be taken into account 
(Chaussumier, 2000). The main assumption for a mechanically applied load sa is a 
simple function of time:

  s a(t) = sM + s alt(t) · f(t)	 [10.12]

where sM is a mean stress tensor independent of the time. The tensor salt(t) 
represents the alternate stress depending on time t.	 This	 approach	 is	 restrictive;	
the stress components of the applied stresses should not be out of phase with the 
time. A Crossland diagram is based on the drawing si of the von Mises alternate 

stress s ss sMs sMs sals sals sts sts s D
alt = (s s = (s strs strs s( )s s( )s s D( )D
al( )alt( )t )

2
( )

2
( ) 1/23s s3s s2s s2s s  as a function of the maximal hydrostatic pressure 
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MAX aMAX aMA  =X a =X a M MX a MX aaxX aaxX a(tX a(tX ar(X ar(X a(tr((tX a(tX ar(X a(tX a))1X a1X aX a MX a1X a MX a

3 M3 M sX asX a  where tr( )( )   + 11  11  22 22s s( )s s( ) =s s =  s s  s s +s s +22s s22
a a( )a a( )s sa as s( )s s( )a a( )s s( ) =s s =a a =s s = a a +a a +s sa as s +s s +a a +s s +  (Crossland, 1956). The 

effect of the hydrostatic pressure on the crack initiation and its propagation is taken 
into account with this criterion. Some other fatigue criteria exist depending on 
the material behaviour and could be used with the same approach. The Crossland 
line of the base material can be determined using two or more basic S-N curves 
with different uniaxial loading ratios (Figure 10.16(a)). Generally rotating bending 

(Rs = – 1, 
s H

al
with different uniaxial loading ratios (Figure 10.16(a)). Generally rotating bending 

al
with different uniaxial loading ratios (Figure 10.16(a)). Generally rotating bending 

t

H
MAXMAXMAp  = 3) and alternate twist ( pH

MAX = 0) fatigue tests can be chosen 
with one or two other repeated bending loading (Rs ≥ 0). The half space below 
the Crossland line represents the mechanical loading which do not induce failure 
(for p probability and Nf cycles to failure). The N and N¢ points on the (Rs = – 1) 
line are deduced from the S-N curve. For nitrided material, the determination of 
the Crossland line depends on the depth and can be related to the hardness and the 
local	yield	stress	using	Eq.	[10.1].	The	effect	of	microstructure	change	shifts	the	line	
to	higher	 stresses;	 the	 slope	 remains	 the	 same	 (Terres	et al., 2010). Assuming no 
residual	stresses,	it	is	possible	to	draw	in	a	Crossland	diagram	the	fi	gurative	points	of	
loading for the whole part inside or outside the nitrided layer. In Figure 10.16(b), if 
the	fi	gurative	point	M is below the Crossland line, no failure occurs for the selected 
(Nf, p) conditions. If the point is beyond the Crossland line, cracking occurs before 
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due	to	the	nitriding	can	be	added	to	Eq.	[10.12].	Nitriding	residual	stresses	are	not	
time dependent (no stress relaxation assumption) implying that the variation of 
the alternate stress is equal to zero and only the maximum of hydrostatic stress is 
modifi	ed	by	 the	value	 1/3(s11 + s22). For compressive residual stress this value is 
negative	and	the	fi	gurative	point	M is moved to M¢. The fatigue life improvements 
are cleary due to the coupled effect of the hardening and the compressive residual 
stresses of the nitride layer.
 Post-treatment after nitriding affects the microsctructure of the nitrided layers 
and	 can	 have	 benefi	cial	 or	 detrimental	 effects	 on	 fatigue	 performence.	 Grinding	
can induce tensile residual stresses even if the hardness is increased and the fatigue 
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strength reduced. With shotpeening after nitriding, the fatigue strength can increase 
by 10% for a 32CrMoV13 steel grade (Freddi et al., 1997).
	 The benefits of nitriding are also apparent for low surface stresses (surface fatigue 
and fretting fatigue) such as in the case of contact between two parts. The fretting 
fatigue strength associated with nitriding can increase by 60% compared with 
untreated steels (Mutoh and Tanaka, 1988). For rolling contact fatigue (bearings), 
deep nitriding appears to be a good alternative to conventional high temperature 
bearing steels which are hardened and tempered at low temperature.
	 The core material has excellent toughness for structural functions and high 
rotational speeds. The nitrided layer features high hardness, high compressive residual 
stresses and superior rolling contact properties for aerospace components (Girodin,  
2008).
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Figure 10.16  Crossland fatigue criterion used for nitriding (a) Crossland line for Nf cycles to 
failure and for a p failure probability, no failure for point N, failure for point N’; (b) influence 
of hardness on the fatigue limit and compressive residual stress on mechanical loading.
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