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Abstract: Reducing fuel consumption is a prime objective in the automotive industry in 

order to meet regulatory and customer demands. Variable valve actuation offers many 

opportunities for improving the spark ignition engine’s performance in areas such as fuel 

economy and pollutant emissions. Our studies revealed that the ability to control maximum 

intake valve lift does indeed offer the ability to control intake air mass, but also has the 

added benefit that it improves the fuel-air mixing process thanks to an increased 

turbulence, caused by the increased intake flow velocity. This is particularly important at 

idle and low part loads when low maximum lifts are to be used for improving the fuel 

economy or for achieving the required power. The paper focuses on the experimental 

results obtained when approaching idle operation with different intake valve laws. Results 

indicating the potential of using low intake valve lift for fuel economy and cyclic 

dispersion improvement are presented in this paper. 

Keywords: fuel economy; cyclic dispersion; idle operation; intake valve lift/law  
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Notations and Abbreviations: 

ABDC after bottom dead center; 

A/D analog/digital; 

Aiv flow area at the intake valve  

gap (m2); 

ATDC after top dead center; 

BBDC before bottom dead center; 

BTDC before top dead center; 

°CA crank angle degrees (CAD); 

CFD computational fluid dynamics; 

CGI charge guided injection; 

CI compression ignition; 

Ch hourly fuel consumption, (Kg/h); 

CoV coefficient of variance (%); 

DAQ data acquisition; 

DPa “in-cylinder / intake manifold” 

pressure drop (bar); 

deg degrees of crank angle (°CA); 

dQ heat release rate (%/deg)  

or (%/°CA); 

ECR effective compression ratio; 

ECU electronic/engine control unit; 

EGR exhaust gas recirculation; 

EIVC early intake valve closing; 

EOC end of combustion; 

EVC exhaust valve closing; 

EVO exhaust valve opening; 

FSI fuel stratified injection; 

GDI gasoline direct injection; 

HC unburned hydrocarbons; 

hiv intake valve lift height (mm); 

Hmin minimum intake valve law; 

Hmax maximum intake valve law; 

HR heat release; 

IEGR internal exhaust gas recirculation; 

IMEP indicated mean effective  

pressure (bar); 

IVO intake valve opening; 

IVC intake valve closing; 

LIVO late intake valve opening; 

λ air excess coefficient; 

MAP (intake) manifold absolute  

pressure (bar);  

MBF mass burnt fraction; 

MBFx the angle at which x% of the charge 

is burned (°CA); 

MVL maximum valve lift (mm); 

NEDC new European driving cycle; 

P absolute pressure (bar); 

PC personal computer; 

PCYL in-cylinder absolute pressure (bar); 

PCYL_AVRG  averaged in-cylinder pressure 

over 100 cycles (bar);  

PFI port fuel injected; 

PMEP pumping mean effective  

pressure (bar); 

RON research octane number; 

SI spark ignition; 

TDC top dead center; 

TWC three way catalyst; 

Vcc combustion chamber volume; 

VCR variable compression ratio; 

VIVC cylinder volume at the intake valve 

closing moment; 

VVA variable valve actuation; 

Wiv flow velocity at the intake valve 

gap (m/s); 

  

1. Introduction 

In spite of the development of electrical vehicles, the internal combustion engine still remains today 

an appropriate and attractive solution for ensuring mobility. Engines have improved dramatically over 
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the past two decades [1], but current scientific developments [2] suggest that there could be a reduction 

of 6% to 15% fuel consumption in the coming decade. 

While the compression ignition (CI) engine has made enormous progress in recent years concerning 

fuel economy, the spark ignition (SI) engine still lags behind from this point of view. Nevertheless, this 

gap can be reduced by the use of different technical solutions: lean burn and stratified-charge 

gasoline direct injection—GDI, variable valve actuation—VVA, variable compression ratio—VCR, 

Downsizing, Atkinson-Miller cycle, some of them already applied in mass production [1–11]. 

During most of its life, a passenger car engine is run under low loads and speeds. At these operating 

points, the overall engine efficiency decreases from the peak values (about 35%) to dramatically lower 

values (sometimes even below 10%), so technical solutions capable of offering better efficiency in this 

operating area are required. 

Low loads on SI engines are traditionally accomplished by means of a throttle plate which creates 

additional pumping losses. Much of the research effort on improving SI engine efficiency therefore 

focuses on throttle-free load control. Two methods are being intensively investigated in order to obtain 

unthrottled operation: lean burn and stratified-charge GDI (see [1,2,9,10] or Mitsubishi GDI,  

VW FSI, Mercedes CGI, which are on the market) and VVA with a stoichiometric mixture  

(see [2–5,7,8,10–16] and BMW Valvetronic, on the market since 2001). Both techniques have 

demonstrated a significant improvement in fuel economy. However, only stoechiometric VVA still 

allows the use of the less expensive conventional exhaust gas after treatment (TWC), whereas lean 

GDI needs the more expensive extra treatment of nitrogen oxide. 

VVA throttle-free load control can be achieved by different intake valve actuation strategies such 

as: combined variable valve lift, duration and timing [3–5,7,8,10–16]. The solution used by BMW with 

its Valvetronic-Vanos mechanism [4] is outstanding. It combines variable intake valve lift with very 

early intake valve closing (EIVC) at part loads and late intake valve opening (LIVO) at idle for 

combustion stability reasons [17–19] despite increasing pumping losses. 

The BMW solution demonstrates that reducing pumping losses goal is one of the goals, but it must 

not be done while impairing other aspects such as the mixing process and charge kinetic energy prior 

to spark, which have a direct impact on the combustion process and cycle-to-cycle variation/cyclic 

dispersion. All these need to be carefully taken into consideration for each engine operating point. 

Among these points, idle operation plays a significant role, being a prominent feature of real world 

driving, especially in congested city traffic. Very few publications on VVA deal with idle operation. 

With the intake valve law set for nominal performance, the airflow velocity within the intake valve gap 

is greatly decreased at this operating point. Inevitably, this results in a deterioration of the air-fuel 

mixture formation with corresponding effects on combustion and cyclic dispersion [19]. Therefore, 

low maximum lifts could be used. However, especially for port fuel injected (PFI) engines, as the 

valve lift is reduced, the fuel break-up mechanism becomes far more complex with the introduction of 

fuel films, stripping, coalescence and gravitational valve slide-off [20]. This break-up mechanism can 

produce large drops, which enter the combustion chamber and mix rather poorly with the air. Some of 

these drops may end up as films on the wall surfaces, resulting in HC emissions [18,20–22]. Thus, 

prediction of the air-fuel stoichiometry in this particular case becomes a difficult task [21], with 

negative effects on fuel consumption and pollution. 
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Given this context, the present paper presents the results of a PFI SI engine experimental 

investigation when operating at idle with low maximum intake valve lift. For this purpose, an original 

VVA engine prototype was used. Its VVA mechanism is able to adjust the intake valve lift continuously 

between minimum and maximum values during engine operation [5,6,11,23], see Figure 1 and Appendix. 

Figure 1. Valve laws. 
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2. Experimental Apparatus and Procedure 

2.1. Experimental Setup 

The study was conducted on the engine prototype mentioned above whose main parameters are 

presented in Table 1.  

Table 1. Main parameters of the VVA PFI SI engine prototype. 

Number of cylinders 4 

Stroke (mm)/Bore(mm) 77/76 

Volumetric Compression Ratio 9.0 

Combustion chamber Wedge type; 2 valves 

Exhaust Valve Law 

Maximum Valve Lift, MVL (mm) 7.5 

Exhaust Valve Opening, EVO (°CA BBDC) 73 

Exhaust Valve Closing, EVC (°CA ATDC) 42 

Minimum Intake Valve Law 

Maximum Valve Lift, MVL (mm) 1.165 

Intake Valve Opening, IVO(°CA ATDC) 19 

Intake Valve Closing, IVC (°CA ABDC) 29 

Maximum Intake Valve Law 

Maximum Valve Lift, MVL (mm) 8.275 

Intake Valve Opening, IVO (°CA BTDC) 15 

Intake Valve Closing, IVC (°CA ABDC) 73 

NB. Exhaust and intake valve law parameters are given for a 0.2 mm reference lift. 

As it is shown in Figure 1 and Table 1, the minimum intake valve law features a relatively LIVO 

(i.e., the intake valve opens after TDC) and an earlier closing with respect to the maximum law. Figure 2 

shows the structure of the experimental set-up developed at the University of Pitesti. 
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Figure 2. Schematic diagram of the experimental set-up. 

 

 

The engine was equipped for acquiring the instantaneous in-cylinder, intake and exhaust manifold 

pressures in correlation with crankshaft rotation. Due to the inherent characteristics of the in-cylinder 

pressure piezoelectric transducer, it is necessary to reference its output to absolute pressure, i.e., the 

measured pressure must be referenced to a known absolute pressure at some point in an engine cycle. 

This is what is usually known as pegging. Reference [24] presents the pegging methods with their 

influence on the indicated calculated parameters. For our study, the cylinder pressure data were pegged 

by assuming that the in-cylinder pressure at 10 °CA after the intake BDC (±2°) was equal to the mean 

intake manifold absolute pressure. This method appears to be the best suited for low speeds and an 

untuned intake system, as is our case [24]. 

Data acquisition and analysis of cycle-related parameters were performed with AVL’s Indimodul 

621 Hardware and Concerto software. Engine testing was conducted over 100 complete engine cycles 

for each sampling session. A p-V diagram displayed in real time was used to visually monitor 

combustion quality, which was judged statistically with the coefficient of variance (CoV) applied to 

some of the cycle parameters, as it will be shown later on. 

During the experiments, the engine coolant temperature was maintained at 80 °C. 95 RON gasoline 

fuel was injected into the intake port towards the intake valves by a Siemens Deka two-hole injector at 

a constant gauge pressure of 3 bar. Fuel was injected onto a closed valve in order to take advantage of 

warm engine components. The fuel injection ended at mid-exhaust stroke, which was thought to 

provide enough time for the majority of fuel to vaporize and enter the cylinder as gas. 

The engine’s injection and ignition management system parameters were modified in order to 

optimize the engine operation in stoechiometric conditions (λ = 1), in accordance with the new intake 

valve law employed. A linear oxygen sensor (with an accuracy of 1.5%) mounted in the exhaust pipe 

was used to ensure precise monitoring of the air-to-fuel ratio. Mapping, data acquisition and analysis 
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were performed with INCA software. Since the experimental investigations were performed at idle 

operation where engine stability is the key issue, especially for obtaining a reliable engine calibration 

map, the alternator was disabled, so that the periodic battery charging cycles did not affect engine 

stability. In order to provide the necessary electric energy to the engine, a stabilized controlled voltage 

source connected at 220 V was used. 

2.2. Experimental Procedure 

In order to outline the characteristics of using minimum intake valve law at idle operation and 

stoechiometric conditions (λ = 1) on the PFI engine, the following methodology was used: first, a 

sweeping of the ignition advance was performed to find the best ignition timing for this particular case; 

the criteria used were: minimum fuel consumption and cyclic dispersion; then, for the best ignition 

timing, a thorough comparative analysis was performed: minimum intake valve law (Hmin) vs. 

maximum intake valve law (Hmax). For this approach, the engine stabilizing strategy at idle operation, 

consisting in continuous actuation of the idle motor valve, controlling the throttle air by-pass, was 

disabled. In fact, the throttle air by-pass duct was also disabled/blocked. The dynamic setting of spark 

advance was also disabled. Thus, under all these conditions, the attainment of the idle speed target 

(800 rpm) was possible by manually actuation of the throttle plate. By doing this way, the precise flow 

area at the throttle plate is known for each of the approached cases. 

3. Results and Discussion 

3.1. Effect of Ignition Advance 

Figure 3 shows an arrangement of the ignition/spark advance (IA) sweeping. In both cases (Hmin 

and Hmax), it can be seen that when IA goes from the positive to negative values (positive values mean 

that spark is produced before TDC, negative values mean that spark occurs after TDC), this induces 

the opening of the throttle plate in order to attain the idle speed target.  

It was expected that inefficient combustion, generated by the increasingly later production of spark, 

would need to be compensated by more pronounced throttle openings. Moreover, over the whole range 

of IA variation, the throttle opening is lower for the Hmin, which could be a sign of a better efficiency 

of thermal and mechanical processes. 

It can also be observed that for both cases, the throttle opening has a minimum at IA = 30 °CA: 21.6° 

for Hmax and 20.8° for Hmin. The same observations hold for hourly fuel consumption (Ch). Since the 

tests were carried out in stoichiometric conditions (λ = 1), the volumetric filling efficiency has the 

same evolution as Ch. 



Energies 2013, 6 2880 

 

 

Figure 3. Results of ignition advance sweeping. (a) Maximum intake valve law (Hmax);  

(b) Minimum intake valve law (Hmin).  
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Figure 4 presents a comparative analysis of the fuel consumption evolution. It can be seen that the 

smallest values are obtained for IA = 30 °CA (0.398 kg/h, respectively 0.487 kg/h, i.e., passing from 

Hmax to Hmin caused a fuel consumption improvement of 18.2%). Certainly, the resulted fuel economy is 

the best we obtained under the given conditions. This is the reason why operation with this.  

Figure 4. Fuel consumption evolution over IA. 
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This is the reason why operation with this IA was taken as the reference situation to be used further 

on for outlining the advantages of using the minimum intake valve law at idle operation. 

As concerns the cyclic dispersion phenomenon, the coefficient of variation in indicated mean 

effective pressure (IMEP) and maximum pressure (PMAX) was used (Figure 5a,b). 

A significant reduction in the cycle-to-cycle variability of IMEP is observed (Figure 5a) when using 

Hmin. According to [18], vehicle driveability problems usually appear when CoVIMEP exceeds about 

10%. Unfortunately, at idle operation, there is not much information available on clear values for 

CoVIMEP under different engine configurations. Concerning the cycle-to-cycle variability of PMAX, 

an increase is recorded when using Hmin (Figure 5b). Later on, after developing the combustion 
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analysis further, some explanations will be provided. However, at this stage, it can be pointed out that 

the CoVPMAX parameter is no longer relevant when the spark fires late enough, so that maximum 

pressure is solely the result of “pure” compression, since the combustion process starts very late after 

TDC (amongst the engine processes, besides combustion, the others are repeatable, and can therefore 

be considered not to influence the cyclic dispersion): IA = [−15, 15] °CA for Hmax, respectively 

IA = [−15, 5] °CA for Hmin. 

Figure 5. Cyclic dispersion analysis. (a) CoVIMEP; (b) CoVPMAX. 
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The evolution of IMEP when modifying the ignition advance is shown in Figure 6. For IA = 30 °CA, a 

reduction of IMEP is recorded when using Hmin. This is due to some negative loops appearing at the 

end of the expansion stroke. Figure 7b shows that these negative loops occur until IA = 0 °CA (starting 

from the blue colour, corresponding to 30 °CA IA, till the grey one, corresponding to 0 °CA IA). 

However, as seen from Figure 6, they cease to have a negative influence on IMEP for IA ≤ 15 °CA. 

Figure 6. IMEP vs. IA. 
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In order to explain these negative loops, a connection with the fuel consumption evolution (see 

Figures 3 and 4) and exhaust valve opening moment (EVO = 73 °CA BBDC, see Table 1) was made. 

This shows that the disappearance of the negative loops is related to the increase in fuel consumption.  

Consequently, for IA = 30 °CA one can say that since the in-cylinder air-fuel mixture is the 

smallest, the expansion, corroborated with the well advanced EVO, causes the intense fall in pressure 

even in the sub-atmospheric domain. 

Concerning the pumping work, Figure 7 also presents the PMEP obtained through calculation of the 

low loop area thanks to the accurate determination of the intersection point between the two usual 

loops of the indicated diagram. However, due to the experimental methodology (the attainment of the 

idle speed target imposed different throttle openings, see Figure 3), it was not possible to isolate or 

separate the effect of the intake valve law upon the pumping work. We will therefore not dwell on this 

point here, as it will be dealt with in a forthcoming paper. 

Figure 7. Pumping loops for all IA taken into consideration. (a) Hmax; (b) Hmin. 

 
(a) 

 
(b) 
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3.2. Comparative Analysis for the Reference Ignition Advance 

In order to proceed further with the comparative analysis (Hmax vs. Hmin), Figure 8 presents the 

averaged indicated diagrams over 100 cycles for the reference situation at 30 °CA of ignition advance. 

One reason for the higher pressure peak in the case of Hmin (the blue curve) is the higher effective 

compression ratio (ECR = VIVC/Vcc) caused by an earlier intake valve closing (EIVC) during the 

compression stroke, see Table 1. Calculations revealed an 8.1 ECR for Hmin, versus 5.8 for Hmax. 

Another reason is a higher heat release rate (dQ) for Hmin, which also generates an earlier end of 

combustion (EoC), as shown in Figure 9. The heat release calculation is based on the first law of 

thermodynamics and EoC was conventionally taken as the first zero crossing of dQ.  

Figure 8. Indicated diagrams. 

 

Figure 9. Rate of heat release at IA = 30 °CA. 
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The faster heat release rate obtained with Hmin can be attributed to the cumulative effects of  

the following: 

1. Improved mixture homogenization thanks to an increased turbulence, caused by the increased 

intake flow velocity; 

2. Reduced residual gas fraction, as a result of a reduced degree of internal exhaust gas 

recirculation (IEGR). 

Concerning the latter, it is known that the residual gas acts as a diluent. A direct consequence of this 

is a substantial reduction in the burning velocity, which can be seen in Figure 9. 

The following presents an attempt to quantify the gas exchange, and hence the IEGR degree. This is 

based on the analysis of the in-cylinder (PCYL), exhaust (PEXH) and intake (PMAN) manifolds 

instantaneous pressure evolutions. Figure 10 is used for the analysis of exhaust gas flow, from EVO 

(EVO = 73 °CA BBDC or 107 °CA in Figure 10) up to the end of the exhaust stroke (360 °CA in 

Figure 10). 

Figure 10. Evolution of PCYL and PEXH between EVO and TDC. (a) Hmax; (b) Hmin. 

(a) (b) 

An intense normal flow of the burned gases from the cylinder to the exhaust manifold is revealed at 

Hmax up to 140 °CA (PCYL > PEXH); it is then followed by a slight backflow, as well as by a normal 

flow (Figure 10a). For Hmin, the normal flow (not as intense as before) manifests itself up to about  

110 °CA, after which an intense backflow occurs (this is actually the negative loop mentioned 

previously—see also Figure 8), which generates a subsequent increase in the backpressure during the 

remaining exhaust stroke (compared to the Hmax situation; Figure 10b). 

Figure 11 shows the same pressure evolutions between intake TDC (−360 °CA in Figure 11) and 

exhaust valve closing (EVC = 42 °CA ATDC or −318 °CA in Figure 11). As seen in Figure 11a, for 

Hmax, over the whole range considered, there are conditions for backflow (PEXH > PCYL), which 

also has the effect of reducing the in-cylinder pressure decreasing rate. For Hmin (Figure 11b), only 

between TDC and about −350 °CA, the flow is toward the exhaust manifold; this induces a decrease in 

the in-cylinder pressure. 

To summarize the flow phenomena through the exhaust port, presented in Figures 10 and 11, it can 

be considered that when operating with Hmin, the residual burned gas mass generated is lower than 

when using Hmax. 
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Figure 11. PCYL and PEXH between TDC and EVC. (a) Hmax; (b) Hmin. 

(a) (b) 

Concerning the IEGR through the intake port, Figure 12 presents the instantaneous in-cylinder and 

intake manifold pressure evolutions. Figure 12a shows that for Hmax, the IVO with an advance  

(IVO = 15 °CA BTDC) allows some burned gas to enter the intake manifold (PCYL > PMAN). This 

does not occur for Hmin, as the IVO is produced after the intake TDC (IVO = −341 °CA, Figure 12b,d). 

This also explains the difference in in-cylinder pressures at TDC: 0.995 bar at Hmin and 0.922 bar at 

Hmax, Figure 12b. 

Figure 12. PCYL and PMAN evolutions. (a) Hmax, (IVO − TDC) angular range;  

(b) Hmin vs. Hmax; (c) Hmax, (TDC − IVC) angular range; (d) Hmin, (IVO − IVC) angular range. 

(a) (b) 

(c) (d) 
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To pursue this reasoning further, at Hmax, the burned gas still flows within the intake manifold 

between TDC and about −340 °CA (Figure 12c). By corroborating this observation with the relatively 

high flow area at the intake gap (Aiv), this explains why the in-cylinder pressure falls faster than at 

Hmin, where the intake valve is still closed (Figure 12b); in this situation (Hmin), the in-cylinder pressure 

decreasing rate is the consequence of the cylinder volume increasing rate and the flow taking place 

between the cylinder and exhaust manifold. For Hmin, the backflow from the cylinder to the intake 

manifold occurs over a relatively narrow range between IVO and about −310 °CA (Figure 12d); this 

contributes to an acceleration of the in-cylinder pressure falling with respect to the hypothetical 

situation when the intake valve remains closed. 

Thus, as seen in Figure 12c,d, the IEGR starts when the pressure difference DPa = PMAN − PCYL 

becomes positive. At Hmax, after about 35 °CA of backflow (Figures 12a,c) and a transition phase 

occurring about 38 °CA (Figure 12c), the normal flow begins; in the first part, the exhaust gases 

introduced within the intake manifold after the IVO enter the cylinder. For Hmin, according to Figure 12d, 

“exhausting” the burned gases in the intake manifold (the backflow) takes place about 33 °CA but this 

occurs when the flow areas within the intake valve gap are the smallest (when normal flow begins, the 

intake valve lift is barely 0.55 mm, see Figure 12d, compared to 2 mm or 5.3 mm, in the case of Hmax, 

see Figure 12c). 

In fact, for Hmax, the normal flow occurs at high intake gap flow areas but at very low pressure 

drops (see DPa of the order of a mbar in Figure 12c), while, conversely, at Hmin, it is the cumulative 

result of low flow areas at the intake gap and relatively high pressure drops (see DPa of the order of 

tens of mbar in Figure 12d). The pair (DPa − Aiv) governs the flow velocity at the intake gap, Wiv, 

while the pair (Wiv − Aiv) governs the gas mass flow passing through the intake port. In Figure 12b, 

the moments corresponding to the maximum piston speed and maximum flow area at the intake gap 

are marked, so that it can be said for Hmin, the cumulative effect of the above-mentioned factors is a 

high intake flow velocity, Wiv, which, as stated before, is desirable in order to overcome the reduction 

in flow velocity at the valve gap taking place with the reduction of engine speed. Precise reports 

supporting the previous statement on intake flow velocity and its benefits are given in [17,19,22].  

Thus, to summarize the flow phenomena through the intake port, presented in Figure 12, it can be 

considered that when operating with Hmax, the residual burned gas mass generated is greater than when 

using Hmin. This indicates that the IEGR has a lower intensity when using Hmin. In order to establish 

this beyond doubt, however, it would be necessary to obtain confirmation either by using exhaust gas 

analysis (HC and NOx measurements) or CFD numerical simulation.  

Another important aspect would be to differentiate between the positive effects mentioned when 

explaining Figure 9. At the present time, however, with the current experimentation and data, this is  

not possible. 

In order to have a more complete picture of the phenomena occurring when operating a PFI SI 

engine with low lift, we will now analyze the variability of the combustion process. While this analysis 

was applied above to some global parameters such as IMEP and PMAX (see Figure 5), in what follows 

it is the variability of the duration of different combustion phases which will be at issue (Figure 13). 

According to reference [18], as combustion occurs through a flame propagation process, its variability 

is mainly caused by the cycle-to-cycle changes in the development of the initial flame kernel under the 

action of turbulent mixture motion. Especially significant is mixture motion in the vicinity of the spark 
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plug at the time of spark discharge since it governs the early stages of flame development. In other 

words, when the flame is particularly small, it is very susceptible to the mixture motion.  

Figure 13. Statistical analysis applied on different combustion phases over 100 cycles.  

(a) MBF5 variability; (b) MBF50 variability. 

(a) (b) 

Because the early flame development period (e.g., MBF5—the angle at which 5% of the charge is 

burned) represents a significant fraction of the total combustion duration (e.g., 28.5% for Hmax,  

and 36.6% for Hmin), it is expected to make an important contribution to cyclic variations in the  

combustion process. 

So, these features explain the much higher variability of MBF5 for Hmin (CoV = 165.2%, while only 

40.3% at Hmax, Figure 13a). At the same time, as seen, turbulent flow generated by the intake events 

tends to accelerate the development of the flame kernel, leading to the reduction in different 

combustion phases (Figure 14). One explanation for this phenomenon is an intensification in 

convective heat transfer. 

Figure 14. Analysis of the combustion phases. 
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The next phase, corresponding to the fully developed flame phase, is positively influenced by the 

turbulence and mean velocity of the global mixture motion. Figure 13b shows that the variability of 

MBF50 decreased quite substantially in the case of Hmin, being even smaller than the one recorded at 
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Hmax (CoV = 17.7% compared to 21.4% at Hmax). This trend also holds for the rest of the  

combustion moments. 

Figure 15 presents the maximum pressure (PMAX) over the indicated mean effective pressure 

(IMEP) for the 100 cycles acquired. It can be seen that there is no misfire, since only positive IMEP 

feature on the chart. 

Figure 15. PMAX variability vs. IMEP variability. 

 

Finally, by summing up the explanations proposed so far, it appears that for the Hmin case, the 

increased variability of PMAX (Figure 5b) is caused by the “enormous” variability of MBF5  

(Figure 13a), while the reduced CoV of IMEP (Figure 5a) is a result of the reduced variability recorded 

for the rest of the combustion moments (e.g., MBF 50 in Figure 13b). Hence, the maximum pressure 

variation depends highly on changes in phasing of the burning process. 

4. Conclusions and Perspectives 

VVA seems set to become an industry standard. Generally used for improving global performances 

of SI engines, it offers new opportunities at low load and particularly at idle. In the current urban part 

of the NEDC driving cycle, idle operation totals 240 s, representing 31% of the total time. In real life 

congested city driving, idle operation could account for an even higher proportion. 

Our experimental study on the low lift idle operation of a PFI engine revealed a clear improvement 

in fuel consumption and cyclic variability. Low intake valve lifts could be employed at this operating 

point in order to overcome the reduction in flow velocity at the valve gap which could have a negative 

effect on combustion efficiency and stability. 

These gains could be even greater if a variable valve timing device or direct injection [10,12] were 

added to our engine. As seen in the paper, the gains are mainly generated by two factors: (1) an 

increased airflow velocity of the fresh mixture into the cylinders, causing an improvement in the  

fuel-air mixing process; and (2) a lower amount of residual burned gas as a consequence of a lower 

IEGR intensity. Finally, these two factors lead to a better and more repeatable combustion, as seen. 

Although not examined here, the reduction in friction and energy consumed to compress the intake 

valve springs while lifting the valves substantially lower also no doubt has a positive effect. 
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Additional studies are needed to better quantify the IEGR effects and a study dedicated to isolate 

the effect of the intake valve law upon the pumping losses is currently in progress. Also, in order to see 

the detailed phenomena occurring while injecting the fuel at idling, a CFD study concerning the 

airflow-fuel interaction has been launched. This study will also help to understand the mixture 

formation during cold start and idling when fuel vaporization is at issue. 
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Appendix  

Variable Valve Actuation Prototype Engines 

Two operational 4 in-line cylinder engine prototypes able to continuously vary intake valve lift are 

working on the test benches at the University of Pitesti: one is a side mounted camshaft and overhead 

valves version, 1.4 liters displacement, and the other is an overhead camshaft version, 1.6 liters. Both 

of them are port fuel injected and have two valves per cylinder. Experiments that also proved their 

ability for unthrottled operation were conducted on the engine test bench [5]. 

The VVA mechanism used on these prototypes is the subject of numerous patents. As seen from the 

figure below, the mechanism is of the push-rod/rocker type, able to adjust the intake valve lift thanks 

to an assembly consisting of an oscillating follower and a translational skate. The skate’s position on 

the follower is adjusted with the help of a connecting rod and a control lever, so that every intake valve 

lift can be achieved continuously between minimum and maximum values during operation. Currently, 

the control lever’s position is given by a hydraulic cylinder, fed with oil from the engine’s main oil 

gallery; the hydraulic cylinder is attached to the engine [23]. 

Figure A1. The VVA mechanism featuring side mounting camshaft and overhead valves. 

 
Minimum intake valve law Maximum intake valve law 
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Figure A2. The VVA mechanism featuring overhead camshaft and valves. 

 

Minimum intake valve law 

 

Maximum intake valve law 

As seen in the above figures, the valve train does not feature hydraulic clearance adjusters, which 

certainly has a negative influence on cycle-to-cycle variability. Therefore, the effect of the small valve 

clearance changes cannot be separated from the total effect. However, when performing the cyclic 

dispersion (Hmin vs. Hmax), the differences in CoVIMEP and CoVPMAX (see Figure 5) are really 

significant, so there is no doubt about the real cause. The development of these prototypes was 

supported by the Romanian Council for Scientific Research (CNCSIS) and the French Agency for 

Research (OSEO-ANVAR). 
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