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Abstract.

This paper provides an investigation of the structure of the stable manifold of the

lower branch steady state for the plane Couette flow. Minimal energy perturbations

to the laminar state are computed, which approach within a prescribed tolerance

the lower branch steady state in a finite time. For small times, such minimal-

energy perturbations maintain at least one of the symmetries characterising the

lower branch state. For a sufficiently large time horizon, such symmetries are

broken and the minimal-energy perturbations on the stable manifold are formed by

localized asymmetrical vortical structures. These minimal-energy perturbations could

be employed to develop a control procedure aiming at stabilizing the low-dissipation

lower branch state.
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1. Introduction

A thorough theory of the stability for wall-bounded shear flows is still lacking despite

the fact that this kind of flows are ubiquitous in Nature (Hof et al. 2004, Schmid &

Henningson 2001). Scientists have been working on it for 130 years since the seminal

work of Reynolds (Reynolds 1883); due to the evident complexity of the matter, they

often attack the problem resorting to simple flow configurations such as the plane

Couette flow (pCf). For such a flow the laminar solution is linearly stable, so that

the onset of a chaotic state cannot be connected to an infinitesimal perturbation of

the laminar velocity profile. Instead, transition can be achieved by a sufficiently

high-amplitude perturbation for large enough values of the Reynolds number. From

a dynamical-system viewpoint, the laminar state is a fixed point in the state space

surrounded by its basin of attraction. The boundary of this basin, also called laminar-

turbulent boundary or edge of chaos (Skufca et al. 2006), is the topic of this paper since

its complex structure becomes relevant for understanding the mechanism of transition.

In fact, the trajectories starting beyond this boundary evolve towards a disordered state

that, in general for the pCf, is a chaotic saddle with a constant probability of decay

(Eckhardt et al. 2007). This means that ”almost” all trajectories in the state space

end up in the fixed point: some of them, starting inside the basin of attraction, relax

smoothly; others follow a more or less long disordered route and eventually escape

towards the laminar attractor. But there are some trajectories which evolve towards

a relative attractor lying on the laminar-turbulent boundary which is called edge state

(Skufca et al. 2006).

For the case of the pCf in a small box, at a Reynolds number Resn, a saddle node

bifurcation appears. At the bifurcation point, the upper branch (UB) state is stable

and the lower branch (LB), first found by Nagata (1990), Clever & Busse (1992), has

only one unstable direction (Waleffe 2003, Wang et al. 2007). Increasing Re beyond

a certain threshold, the UB experiences secondary bifurcations leading to a disordered

trajectory in the state space; whereas, the LB maintains a single unstable direction only

(Schneider et al. 2008). The stable manifold of the LB state divides the state space

into two regions: initial conditions from one side decay smoothly to the laminar profile;

initial conditions on the other side flow through a disordered dynamics (see the discussion

about turbulence lifetimes in Schneider et al. (2010)). This suggests that the laminar-

turbulent boundary coincides with this stable manifold and the LB state coincides with

the edge state (Schneider et al. 2008). Since the stable manifold of the LB state has

an intermediate dissipation rate between turbulent and laminar states, exploring its

structure is important for designing a control strategy aiming at avoiding transition

to chaos. A control strategy exploiting the dynamics of a codimension-one periodic

orbit on the laminar-turbulent boundary has been developed by Kawahara (2005) for

inducing relaminarization of a Couette flow. Moreover, perturbations approaching the

lower branch solution and evolving along its stable manifold have been investigated by

Viswanath & Cvitanović (2009) for a pipe flow. The authors used a linear combination of
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rolls together with the two unstable modes of the concerned travelling wave (see Pringle

& Kerswell (2007)) for hitting such unstable solution starting from the laminar state.

However, such studies haven’t investigated the minimal energy threshold characterizing

the perturbations on the stable manifold of the concerned unstable solution. An insight

on such minimal energy thresholds may be crucial for the establishment of effective

control strategies.

Starting from the 90’s, the problem of finding a lower bound in terms of perturbation

energy/amplitude for reaching transition in shear flows has interested many researchers.

The first attempt for determining such threshold amplitudes has been performed by

Reddy et al. (1998) which have provided a neutral curve for streak instability using

linear stability analysis. Some years later, Cossu (2005) has determined lower bounds

for transition using the Waleffe (1997) toy model, whereas Duguet et al. (2010) have

computed minimal-energy perturbations inducing transition using a combination of a

finite number of linear optimal modes. However, relying on low-dimensional models

or on expansions on a basis of modes, such analyses could not accurately describe the

minimal seed for turbulence transition, i.e., the perturbation of minimal energy which

is able to induce transition in the considered flow. Very recently, a more thorough

attempt has been made to search for the perturbations of minimal energy on the laminar-

turbulent boundary for the pipe (Pringle & Kerswell 2010, Pringle et al. 2012), the

boundary layer (Cherubini et al. 2010, Cherubini et al. 2011) and the pCf (Monokrousos

et al. 2011, Rabin et al. 2012, Cherubini & De Palma 2013, Duguet et al. 2013) flows.

To determine the initial condition of minimal energy leading eventually to the edge

state (i.e., the minimal seed of turbulent transition), these authors optimize at a large

target time a functional linked to the turbulent dynamics (the perturbation kinetic

energy (Pringle & Kerswell 2010, Cherubini et al. 2010, Pringle et al. 2012, Rabin

et al. 2012, Cherubini & De Palma 2013, Cherubini et al. 2011) or the time-averaged

dissipation (Monokrousos et al. 2011, Duguet et al. 2013)), and then bisect the initial

energy of such ”optimal” perturbation until reaching the laminar-turbulent boundary.

The outcome of these works shows some similarities among different shear flows: a

localized disturbance characterized by large values of the three components of the

velocity and composed by staggered vortices has been found in all of the cases. However,

some differences have been also recovered. For instance, some of these minimal seeds

show a symmetry in the spanwise direction, such as for the case of the boundary layer

flow. Concerning the plane Couette flow, some of these minimal perturbations have been

found to reach the steady lower branch solution (Duguet et al. 2010, Rabin et al. 2012),

whereas some others don’t, probably due to the larger Reynolds number considered

(Monokrousos et al. 2011, Duguet et al. 2013).

Thus, such a procedure has been shown to be able to find the perturbation of minimal

energy which brings the flow in the neighborhood of the edge of chaos in a rather large

time and then to turbulence. However, there can be perturbations able to reach the edge

in a much shorter time, which may have an initial energy larger but comparable with

the ”asymptotic” minimum one. Such perturbations may be the key for a shear-flow
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Figure 1. Sketch of the plane Couette flow.

control strategy based on the stabilization of unstable states with low dissipation rate,

such as the edge state, exploiting the sensitivity of the system to small disturbances

(Pyragas 1992).

The aim of this work is to look for the minimal-energy perturbations to the laminar

state lying on the laminar-turbulent boundary using the time as a parameter. Thus, we

sample in a systematic way the structure of the laminar-turbulent separatrix, extracting

low-energy disturbances to the laminar state from different regions of the phase space.

The method used to compute such perturbations is detailed in section 2, whereas the

results are given and discussed in section 3. The last section provides a summary of the

main results of the work.

2. Problem formulation

Let us consider the flow between two parallel plates separated by a distance 2h,

translating with opposite velocities ±Uw, as sketched in Figure 1. Between such plates,

a laminar flow in the x direction is established, known as plane Couette flow, having

linear profile:

U(y) = Uw

y

h
, (1)

where y is the wall-normal direction, whereas the spanwise direction is indicated with

z. Dimensionless variables are defined with respect to half of the velocity difference

between the two walls, Uw and half of the distance between the plates, h, so that the

Reynolds number is Re = Uwh/ν, ν being the kinematic viscosity. At the walls, the no-

slip boundary condition is prescribed, whereas in the spanwise and streamwise direction

periodicity is imposed for the three velocity components. In the case considered here, a

small computational box with Lx×Ly ×Lz = 4π×2×2π has been considered, which is

the same domain used in Schneider et al. (2008) for the computation of the edge state,

and in Monokrousos et al. (2011) for the computation of the minimal perturbation

reaching the edge of turbulence. In this domain, the Navier-Stokes (NS) equations
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are discretized on a 201 × 100 × 61 points grid by a finite-difference fractional-step

method with second-order accuracy in space and time (Verzicco & Orlandi 1996). The

code has been validated by computing, using an edge tracking procedure, the steady

lower branch solution of Schneider et al. (2008), at Re = 400. The typical solution is

characterized by a bent streaky structure flanked by streamwise vortices, characterized

by two symmetries: a finite translation symmetry on the spanwise direction, and a

shift-reflections symmetry in the streamwise one (Gibson et al. 2009).

2.1. Minimization method

In the present work we use an minimization procedure to sample the minimal energy

perturbations of the laminar state lying on the stable manifold of the edge state. Thus,

we seek for the initial perturbation of the laminar state having minimal energy and lying

at the minimum distance from the edge state at a given target time. To determine this

distance, we first have to define a scalar product:

〈u,v〉 =

∫

V

u · vdV (2)

where u = (u, v, w)T is the perturbation velocity vector, and V indicates the whole

computational domain. Then, we have to construct an objective function taking into

account the initial energy of the perturbation, namely:

E0 =
1

2
〈u0,u0〉 , (3)

where u0 is the perturbation to the laminar state at the given time t = 0. Even if in

general the edge states are time-dependent (either chaotic or periodic solutions) and are

characterized by more than one unstable direction, in the chosen configuration the edge

state is the lower branch exact solution of the NS equations uLB, which is steady and

of codimension-one (see Nagata (1990), Schneider et al. (2008)). Thus, it is possible to

define in the following way the distance of the perturbation at target time T to the edge

state uES = uLB (expressed as a perturbation of the laminar fixed point):

d = 〈(u(T )− uES), (u(T )− uES)〉 . (4)

The objective function thus reads:

ℑ = 〈u0,u0〉
〈(u(T )− uES), (u(T )− uES)〉

〈uES,uES〉
, (5)

the first term on the numerator accounting for the initial energy, the second one for

the distance from the edge state at the chosen target time, whereas the term on

the denominator is a renormalization w.r.t. the edge state energy. The objective

functional is minimized using a Lagrange multipliers technique, where the incompressible

NS equations in a perturbed formulation have been imposed as constraint using the
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Lagrange multipliers (u†, p†), giving the following functional:

L = ℑ−

∫ T

0

〈

p†,∇ · u
〉

dt−

∫ T

0

〈u†, {
∂u

∂t
+ u · ∇U

+U · ∇u+ u · ∇u+∇p−
∇2u

Re
}〉dt,

(6)

where U(y) is the Couette base flow.

In order to find the minimum of the functional, its first variation with respect to

all of the variables must be set to zero. In particular, zeroing the first variation of the

functional with respect to the direct and adjoint variables provides the direct and the

adjoint equations, as well as the following compatibility conditions:

2u′

E0

− b = 0 ,
2v′

E0

− c = 0 ,
2w′

E0

− d = 0 , for t = T. (7)

Since the NS equations are non-linear, the adjoint equations are linked to the direct

ones by the presence of direct variables in the advection terms; thus, the whole direct

field needs to be stored at each time step, requiring a very large storage capacity. The

direct and adjoint equations are parabolic in the forward and backward time direction,

respectively, so that they can be solved by a coupled iterative approach. Moreover, since

the output of the minimation is a perturbation at t = 0, the gradient of L with respect

to the initial disturbance u0 has to vanish within a reasonable number of iterations. In

order to achieve convergence efficiently, a conjugate gradient algorithm is used, similar

to that employed in Cherubini et al. (2011). The initial perturbation is updated in the

steepest descent direction, denoted as ∇u0
L, namely:

∂L

∂u0
= −2u0

〈(u(T )− uES), (u(T )− uES)〉

〈uES, uES〉
+ u†(0),

∂L

∂v0
= −2v0

〈(v(T )− vES), (v(T )− vES)〉

〈vES, vES〉
+ v†(0),

∂L

∂w0

= −2w0
〈(v(T )− vES), (w(T )− wES)〉

〈wES, wES〉
+ w†(0),

(8)

with an adjustable step length α, so that u
(n+1)
0 = un

0 − αn∇u0
Ln. After the first

iteration in the steepest descent direction the successive steps are taken along a conjugate

direction, Λu0, which is computed on the basis of the gradient at two consecutive

iterations according to Λu
(n+1)
0 = ∇u0

L(n+1)+β(n+1)Λun
0 . In the present work the value

of the parameter β(n+1) is computed by means of the Polak–Ribière formula (Polak &

Ribière 1969). Periodically, this value should be reset to zero in order to avoid conjugacy

loss (which corresponds to updating the solution in the steepest descent direction). The

step length α has been chosen small in order to ensure convergence to the edge state at

the target time, as described below. Moreover, in order to keep the perturbation on the

laminar-turbulent boundary, a threshold value for the distance to the edge state has been

chosen, namely, 10−5. When such a threshold is exceeded, the last iteration is repeated

multiplying the gradient term by a factor 0.5. Essentially, to keep the perturbation at

such a small distance from the edge state, the initial perturbation has been updated in
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the conjugate gradient direction by a very small amount at each iteration, so that nearly

40000 iterations are needed to reach convergence at a given target time, making the

problem very computationally expensive. When convergence is achieved, the minimal

initial perturbation umin
T is on the stable manifold of the edge state, reaching it at time

T within a distance of at most 10−5. Varying the time horizon, we are able to sample

the stable manifold by characterizing the local minima of disturbance kinetic energy.

The optimization procedure for a chosen target time T can be summarized as

follows:

(i) The initial guess for the initial condition, u0, is given by the edge state itself.

(ii) The direct problem is integrated up to t = T .

(iii) The adjoint variables, (u†, p†) are provided by the compatibility conditions (7).

(iv) The adjoint problem is integrated backward in time from t = T to t = 0.

(v) At t = 0, the initial direct variables are updated in the direction of the conjugate

gradient with step length α and β computed according to the Polak–Ribière formula

(β = 0 is imposed at the first iteration).

(vi) The objective function E(T ) and the distance d from the edge are evaluated:

(a) if the gradient ∇u0
L is smaller than a chosen threshold, the loop is stopped,

otherwise the procedure is continued from step (ii);

(b) if the distance d is larger than a chosen threshold, d > 10−5, the value of α is

halved, the value of β is set to zero, and the procedure is continued from step

(ii) using the gradient computed at the previous iteration.

3. Results

The minimal energy perturbations on the stable manifold of the LB solution for

Re = 400 are computed for 6 target times, T = 5, 20, 40, 60, 80, 100. The top-left

frame of Figure 2 shows the value of the minimal energy versus the target time. As

shown by the solid blue line in the inset, the minimal energy tends to an asymptotic

value for large target times. Plotting the curve on a double logarithmic scale, a linear

slope is recovered (black dotted line). Thus, it appears that, for small enough target

times (5 < T < 100), Emin varies with T following a power law, whose best fit is given

by Emin ∝ T− 7

4 . We have verified that for a larger target time, T = 200, the initial

minimum energy computed by using the method in Pringle & Kerswell (2010) follows the

same power law. However, this law cannot be valid for T → ∞, since the flow is linearly

stable. The shape of the minimal perturbations is given in figure 2, in the subframes

from (b) to (e) for T = 5, 20, 60, 100, respectively. For the smallest target time, T = 5,

the minimal perturbation obviously preserves the symmetries that characterize the LB

state. For T = 20, the shift-reflection symmetry is broken, but the perturbation is still

invariant with respect to a finite translation in the spanwise direction. Moreover, the

streamwise perturbation velocity (blue and pink for negative and positive values) begins



Minimal perturbations approaching the edge of chaos in a Couette flow 8

Figure 2. Minimal perturbation energy versus target time in a double logarithm scale:

the triangles are the results of the minimisation procedure, the dashed line represents

the most accurate power fit, whereas the asymptotic value of E0 is shown in the inset.

The structure of the edge state (a) and of the minimal perturbations obtained for (b)

T = 5, (c) T = 20, (d) T = 60, and (e) T = 100 is provided. The white and black

surfaces represent the positive and negative streamwise component of the vorticity

perturbation (ωx = ±1.7, 1.7, 0.9, 0.4, 0.37 from (a) to (e)); pink and blue represent the

positive and negative streamwise velocity component (u = ±0.3, 0.3, 0.08, 0.045, 0.035

from (a) to (e)).
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to be more localized in the streamwise direction, showing alternated patches instead of

streaky structures. For T ≥ 40, also the spanwise translation symmetry is broken,

and the perturbation begins to localize also in the spanwise direction. In particular, a

repeated basic structure can be identified, which is characterized by scattered patches of

streamwise velocity with inclined streamwise vortices (black and white) on their flanks.

Further increasing the target time, a stronger localization in both the streamwise and

spanwise directions is observed, as shown in subframe (d) for T = 100. However, the

shape of the minimal perturbation remains characterized by a similar basic structure,

which strongly recall the minimal seed of turbulent transition found in Cherubini &

De Palma (2013) for pCf, and in Cherubini et al. (2010) for a boundary-layer flow. This

indicates that for large enough target times the minimal perturbations approach the

minimal seed, but they largely differ from it at short times.

The dynamics of the evolution of the minimal perturbations towards the edge state can

be analysed by looking at the trajectories on the energy input (I) versus dissipation rate

(D) plane (Kawahara & Kida 2001). All of the trajectories appear to have an origin close

to the bisector (dashed line), where Ė = I −D is close to zero, as shown in figure 3 for

umin
T=20,60,100. Then, the trajectories pierce into the top half of the I −D plane, strongly

increasing their dissipation, before relaxing towards the edge state represented by the

black circle on the bisector. As shown by the correlation values (Kerswell & Tutty 2007)

in the inset of figure 3, the trajectories spend a considerable amount of time close to the

edge (C ≈ 1), before escaping from it along its unstable manifold towards the top half

of the I −D plane, where D > I. Eventually, they reach the chaotic saddle, as shown

by the disordered trajectory around D ≈ I ≈ 2.5. Concerning the transition time, the

white symbols in figure 3 indicate time intervals of 10 units, from t = 0 to t = 250. One

can observe that each perturbation reaches the edge state, and then chaos, at a very

different time. However, the escape route from the edge is common (within a tolerance

level) to all of the computed trajectories, since the unstable manifold of the edge state

has codimension one.

The fact that all of the minimal energy perturbations strongly dissipate their energy

before reaching the edge state can be interpreted in terms of the coherent structures

produced during their evolution. It is known that the LB state is self-sustained by a

process based on the mutual generation of streaks and vortices (Wang et al. 2007). Thus,

the evolution of the energy associated with streaky and vortical structures may provide

some clues on the establishment of such a self-sustained process. Figure 4 provides the

evolution of the crossflow energy:

Ecf =
1

V

∫

V

(v2 + w2)dV (9)

associated with the vortices, versus the longitudinal energy:

El =
1

V

∫

V

u2dV (10)

associated with the streaks. At t = 0, Ecf is rather low, then it strongly increases in

a very small time and finally decreases to values comparable to the initial ones, when
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Figure 3. Trajectories of the minimal perturbations umin
T=20,60,100 in the dissipation-

rate versus energy-input plane. The white triangles, squares and diamonds indicate

time intervals of 10 units, from t = 0 to t = 250, for the minimal perturbations

determined for T = 20, 60, 100, respectively. The inset shows the correlation with the

edge state versus time corresponding to umin
T=100

.

relaxing on the edge state (see the plateau for El ≈ 6). Moreover, Ecf peaks almost at

the same time of the dissipation rate, meaning that the strengthening of the vortices

induces the increase of the energy dissipation. On the other hand, the longitudinal en-

ergy keeps increasing from t = 0 to T , since streaks are continuously fed by the vortices

due to the lift-up effect. Thus, it appears that, to keep the initial energy to a mini-

mum, a perturbation of the laminar state must be initially characterized by low values

of Ecf and El, but it should be able to strongly increase its crossflow energy in very

small times, in order to generate longitudinal energy in the form of bent streaks. The

structures created by the minimal perturbations can be observed in the subframe (a) of

figure 4 for umin
T=20 at t = 10, and in subframes (b) and (c) for umin

T=100 at t = 10 and 30,

respectively. Concerning umin
T=20, it appears that this perturbation maintains in time its
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Figure 4. Longitudinal energy (El) versus crossflow energy (Ecf ) for the minimal

perturbations computed for T = 5, 20, 40, 60, 80, 100. The squares indicate the times

at which the snapshots on the right have been extracted, namely: (a) t = 10, for

umin
T=20

, and (b) t = 10, (c) t = 30, for umin
T=100

.

t
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s

Figure 5. Evolution of vrms and wrms versus time for umin
T=20,40,100. The dotted lines

indicate that when wrms peaks, vrms shows a local minimum.

initial spanwise translation symmetry, and reaches at t = 10 the shift-reflect symmetry

which characterizes the edge. On the other hand, umin
T=100 follows a very different route

towards the edge state, since no symmetry is reached until the perturbation gets very

close to the edge (see subframe (c) for t = 30). It is worth noticing that the route

followed by the minimal perturbations which preserves at least one of the symmetries of

the edge state (namely, umin
T=5,20 ) is different from the path followed by the other ones.

Figure 4 shows that the trajectories of umin
T=5,20 in the Ecf − El plane are very close to

each other; also, the trajectories of umin
T=40,60,80,100 have a very similar shape. As target

time decreases, their Ecf peak increases and is reached at sligthly larger values of El.
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For T = 20, the Ecf peak has a lower value and is reached for much larger values of El.

Such a different behaviour can be better observed in figure 5 where the rms values of

the wall-normal and spanwise components of velocity are plotted; they account for the

streamwise vortices and the bending of the streaks, respectively. For T ≥ 40 the vrms

curve has a double peak, whereas wrms has only one peak which is placed in correspon-

dence with the vrms local minimum. Moreover, the initial values of vrms and wrms are

comparable. On the other hand, for T < 40, vrms has an initial value larger than wrms

and shows only one peak. Finally, the maximum value of wrms does not correspond to

a local minimum of vrms. This confirms that minimal perturbations achieving the edge

in a very short time follow a very different route with respect to the ones which have a

larger time to reach it. Minimal perturbations for T < 40 have to maintain at least one

of the edge state symmetries to be able to reach it in a very short time. Therefore, they

cannot be localized in space and they are characterized by larger values of the velocity

components. In contrast, minimal perturbations for T ≥ 40 can be localized in space

and characterized by much lower values of the velocity components, relying on energy

growth mechanisms to reach the edge of chaos (Pringle & Kerswell 2010, Cherubini

et al. 2010). Although the route to turbulence of such minimal perturbations is very

different, we have found that their inital energy follows a power law with respect to the

target time. This allows to establish a threshold for the minimal initial energy needed

to reach the edge of chaos at a certain (short) given time.

4. Summary

In this work we have provided aninvestigation of the structure of the laminar-turbulent

boundary for the case of the plane Couette flow, using the time as parameter. These

results could be used to develop a control strategy based on the stabilization of the flow

on the edge state with very low-dimension unstable manifold (Wang et al. 2007). The

knowledge of the shape and energy of the minimal perturbation on the stable manifold

of the LB state could be employed to design a suitable control strategy, inspired by

the feedback approach for chaotic systems of Pyragas (Pyragas 1992), to stabilize the

low-dissipation LB solution using MEMS technology for sensors ad actuators. Future

works will aim at extending the present technique to time-dependent edge states, for

instance, using a Poincaré map formulation in the case of periodic orbits.
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