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Abstract: An approach for the prediction of surface profile in turning process 
using Radial Basis Function (RBF) neural networks is presented. The input 
parameters of the RBF networks are cutting speed, depth of cut and feed rate. 
The output parameters are Fast Fourier Transform (FFT) vector of surface 
profile for the prediction of surface profile. The RBF networks are trained with 
adaptive optimal training parameters related to cutting parameters and 
predict surface profile using the corresponding optimal network topology for 
each new cutting condition. A very good performance of surface profile 
prediction, in terms of agreement with experimental data, was achieved with 
high accuracy, low cost and high speed. It is found that the RBF networks 
have the advantage over Back Propagation (BP) neural networks. Furthermore, 
a new group of training and testing data were also used to analyse the 
influence of tool wear and chip formation on prediction accuracy using RBF 
neural networks. 
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1 Introduction 

The surface profile and roughness of a machined part are two of the most important 
product quality characteristics. The surface finish profile of a machined workpiece is 
affected by cutting conditions (parameters), tool geometry, workpiece material and other 
factors such as tool wear and vibrations. Surface roughness is a widely used index of 
product quality and in most cases a technical requirement for mechanical products. 
Achieving the desired surface quality is of great importance for the functional behaviour 
of a part. The process-dependant nature of the surface profile and roughness formation 
mechanism along with the numerous uncontrollable factors that influence pertinent 
phenomena, make it almost impossible to find a straight-forward solution and an 
absolutely accurate prediction model.  

The aim of this study is to only use cutting speed (vc), cutting depth (ap), feed rate (f) 
and Radial Basis Function (RBF) neural networks to investigate the possibility of surface 
profile and roughness prediction with high speed, online and low cost. 

2 Review of literature 

A brief review of the present research on the prediction of surface roughness and profile 
is discussed based on the work that Benardos and Vosniakos (2003) have investigated. 
The classification of current literature is not easy due to the reason that many papers 
combine and blend different methodologies into a single approach. Therefore, no single 
classification would be entirely accurate. Considering the above, three major categories 
are created to classify the approaches. These are: 

1 pure modelling 

2 signals plus modelling 

3 Artificial Intelligence (AI). 

Here, the selected representative papers are introduced as below. 

2.1 Pure modelling 

Grzesik (1996) used the minimum undeformed chip thickness to predict surface 
roughness in turning. The study (Baek et al., 2001) presented a surface roughness model 
for face-milling operations considering the profile and run out error of each insert. The 
modelling technique developed in Chen et al. (1998) could represent the spectrum of 
surface topography ranging over shape, waviness and roughness. A surface roughness, 



waviness and shape error model was obtained by the B-spline curve fitting of regenerated 
roughness. Ehmann and Hong (1994) introduced a ‘surface-shaping system’, which 
modelled the machine tool kinematics and cutting tool geometry, to represent the surface 
generation process in the simulation of 3D topography of a peripherally milled surface. 
Feng and Wang (2002) included six parameters, namely the hardness, feed rate, tool 
point angle, depth of cut, spindle speed and cutting time to build a model for 
finishing turning operations. Feed rate was identified as the most important factor along 
with cutting time. The work in Fuh and Wu (1995) investigated the influence of tool 
geometry and cutting conditions on machined surface quality. Investigation of the 
above factors in relation to the residual stresses was also carried out. The innovation 
with the work was that Response Surface Methodology (RSM) and Taguchi method 
were combined. 

Remark 1: These studies have simulated the cutting process in terms of kinematics, 
cutting tool properties and cutting parameters. Additional factors, such as cutting forces, 
vibrations, wear and deflection of the cutting tool or certain thermal phenomena were 
also included to more accurately depict the phenomenon. The drawbacks are that a lot of 
factors contributing to the roughness formation mechanism need to be considered and 
integrated for a high accuracy, and that it also need to solve and update those 
complicated mathematic equations that may not have a satisfactory accuracy under some 
circumstances. 

2.2 Signal plus modelling-based approach 

It includes: 

1 optics and computer vision 

2 sound signal, Acoustic Emission (AE), ultrasound 

3 vibration signal. 

These approaches, based on cutting forces, sound and vibration, laser scanners, vision 
systems and computer tomography, have the merit of independence of complicated 
mathematic modelling. On the other hand, there are still some drawbacks: some signals 
may be redundant; measuring errors are not easy to be avoided, resulting in inaccurate 
prediction and measuring cost is relatively high. 

2.2.1 Optics and computer vision 

Lee and Tarng (2001) proposed the use of computer vision techniques to inspect surface 
roughness. A polynomial network using a self-organising adaptive modelling method 
was applied to the construction of relationship between the extracted feature of surface 
image and the actual surface roughness. An optical profilometer using lateral effect 
photodiode to measure the relative height of the surface was developed by Lemaster and 
Taylor (1999). Fuchs (1997) used the application of computer vision and pattern analysis 
for the inspection of wooden materials, such as X-ray Computed Tomography (CT). 
Faust (1987) correlated camera images with stylus tracing and visual classification. 
However, the inspection speed is constrained by the complexity of the computing 
algorithm. The high cost of devices and their sophisticated designs make them unsuitable 
for industrial real-time application. 



2.2.2 Sound signal, ultrasound, AE 

Mannan et al. (2000) proposed a surface texture analysis combining sensory data from 
image and sound analysis to investigate the correlation between tool wear and qualitative 
characterising machined surface and sound pattern. However, it could not give more 
quantitative prediction. Regarding the applications of ultrasound, there are few papers 
published. An ultrasound wave-based approach was conducted in Coker and Shin (1996) 
for in-process monitoring and control of surface roughness. An ultrasonic sensor 
connected to a PC, produced a pulse which was then reflected by the surface of 
workpiece and measured the amplitude of the returned signal. The main advantage is that 
it is not affected by cutting fluids and chips as is the difficulty of other in-process 
schemes. In Gui-jie et al. (2003), the online measuring of surface roughness was 
estimated by taking into account the power spectrum density of friction-induced AE. 
Diniz et al. (1992) conducted related experiments to monitor the change of surface 
roughness caused by the deterioration of tool wear, through the variation of AE in finish 
turning. 

2.2.3 Vibrations plus modelling-based approach 

Concerning vibration-based approach, most of published paper have incorporated 
modelling method or kinematics to obtain an accurate surface roughness evaluation. 

Lin and Chang (1998) incorporated the effect of the relative motion between cutting 
tool and workpiece with the effects of tool geometry, cutting parameters to simulate the 
surface geometry. It was also found that the effects of the radial direction vibrations on 
the surface roughness were much more significant than those of either the tangential 
direction vibrations or the axial direction vibrations. In Jang et al. (1996), the relative 
vibrations between tool and workpiece were superimposed onto the kinematic roughness 
calculated by tool edge radius and feed rate. It was found that the surface roughness 
contained specific frequency components determined by feed marks in the lower 
frequency range, and closely related to the natural frequencies of spindle–workpiece 
system in the high frequency range. 

In Ghani and Choudhury (2002), the vibrations were used for monitoring tool wear 
and verifying the correlation between tool wear progression and surface roughness. 
In Abouelatta and Madl (2001), the cutting speed, feed rate, depth of cut, tool nose 
radius, tool overhang, approach angle, workpiece length and workpiece diameter and 
the vibrations in both radial and feed directions were used for evaluating tool life and 
surface roughness. Luo et al. (2003) presented a novel approach of surface quality 
evaluation by online vibration analysis and feature extraction using an adaptive B-spline 
wavelet algorithm. The results showed that the amplitude in the selective frequency 
bands and the root sum square of wavelet power spectrum reflected the surface quality. 

Remark 2: This is the most conventional experiment – observation – conclusion strategy. 
Its advantage lies in the fact that it is not difficult to implement. Regarding its 
disadvantages, the obtained conclusions have little or no general applicability. It must 
be pointed out that, it is very easy for an experiment to obtain the unexpected results 
since there are various errors in experimental environment. Here, all factors affecting 
surface quality are listed as in Table 1, mostly based on the review summarised by 
Benardos and Vosniakos (2003). 



Table 1 Factors affecting surface profile and roughness 

Classification Factors affecting surface profile and roughness 

Cutting parameters Feed rate, cutting speed, depth of cut, process kinematics 

Tool properties Tool wear, tool angle, tool nose radius, tool shape, tool material, 
run out errors, tool deflection 

Workpiece properties Workpiece diameter, length, hardness, defect in the material 

Machining equipment Chatter, vibrations, noise, cutting forces 

Machining environment Cooling fluid, friction in cutting zone, chip formation, temperature 

2.3 AI approach 

AI has been implementing in surface quality prediction through the development of 
Artificial Neural Network (ANN) models, Genetic Algorithms (GAs), fuzzy logic and 
knowledge-based expert systems, which simulate the way in which human beings 
process information and make decisions. 

Risbood et al. (2003) used cutting speed, feed rate, depth of cut, radial components 
of cutting force and acceleration of radial vibration of tool holder to train different 
Back Propagation (BP) ANN models for the prediction of surface roughness and 
dimensional deviation for dry and wet turning, as well as for turning by HSS and carbide 
coated tools. Benardos and Vosniakos (2002) presented a BP ANN model trained with 
the Levenberg–Marquardt (L–M) algorithm for the prediction of surface roughness in 
face milling. The considered factors were depth of cut, feed rate, cutting speed, cutting 
forces, the engagement and wear of cutting tool, the use of cutting fluid. Ezugwu et al. 
(2005) developed a three-layered BP ANN model for the analysis and prediction of the 
relationship between cutting conditions and process parameters. The inputs of ANN were 
the cutting speed, feed rate, depth of cut, cutting time and coolant pressure. The outputs 
were tangential force, axial force, spindle motor power, machined surface roughness, 
average flank wear, maximum flank wear and nose wear. Azouzi and Guillot (1996) 
proposed an intelligent sensor fusion technique based on statistical tools and neural 
network to estimate surface finish and dimensional deviation. It was found that feed, 
depth of cut and radial force components provided the best average effect on surface 
quality. In Varghese and Radhakrishnan (1994), a sensor fusion approach incorporating 
ANNs was also described. The RMS value of the capacitive, inductive and fibre-optic 
sensors along with the type of manufacturing process were coded in binary format and 
then used to train an ANN. Mainsah and Ndumu (1998) developed an online ANN-based 
3D surface characterisation/classification to place any new surface into its corresponding 
manufacturing process group and different roughness categories.  

Some researchers also focus on the application of a knowledge-based extrapolation 
system for surface roughness prediction. Abburi and Dixit (2006) developed a 
knowledge-based system for the prediction of surface roughness in turning using neural 
network and fuzzy set theory. Knowledge obtained from the experiments was used to 
train the neural network that provided a number of data sets. All data sets were then 
imported into a fuzzy-set-based rule generation module to generate IF-THEN rules. 

Remark 3: It is obvious that the aforementioned ANNs approaches can produce very 
good results and simultaneously offer the possibility for online monitoring and/or control 
of the process.  



Compared with classic programming, the main advantages of ANNs are: 

1 there is no need to explicitly formulate the solution algorithm or to write code 

2 the process of information is distributed over the neurons which operate in 
parallel 

3 models created by AI seem to be the most realistic and accurate, and this 
approach can be used in conjunction with other conventional techniques 
including signal analysis, kinematics, knowledge reasoning, etc. 

The most obvious drawbacks of the ANNs are: 

1 a large number of experimental data sets are demanded for training a high 
accuracy of neural network 

2 low generalisation ability markedly results in high errors for those inputs that 
are not in the range of training data set 

3 network training easily falls into over-fitting area due to inappropriate training 
settings. 

Optimisation of cutting parameters for a certain surface roughness is another focus that is 
being given more attentions. GA and other optimisation algorithms (simulated annealing, 
ANT algorithm, etc.) could be ideally used in conjunction with the developed models. 

3 Description of prediction of surface profile and roughness  
using RBF ANN 

In this study, an ANN modelling approach was developed for predicting surface profile 
and roughness. As the aforementioned, BP neural networks have been popularly used. 
However, BP algorithms have some inherent disadvantages, such as low rate of 
convergence, easily falling into local minimum point, weak global search capability, etc. 
Improved BP algorithms mainly introduce adaptive learning rate, momentum factor or 
train networks with gradient descent, quasi-Newton or resilient BP algorithm, etc. GA is 
also a good choice to search the optimal network topology. But BP ANNs still have some 
drawbacks that could not be avoided, such as low generalisation and over-fitting 
phenomena. 

Considering the dynamic behaviour of machining process, the combination of cutting 
parameters and feature parameters extracted from vibrations and sound using Fast 
Fourier Transform (FFT) or wavelet, could give a reasonably accurate evaluation of 
machined surface roughness. The more the number of cutting parameters and feature 
vectors is, the higher the prediction accuracy will be. However, many random and 
experimental errors seem to be unavoidable when signals are measured. Furthermore, 
feature extractions need corresponding sensors including dynamometer of cutting force, 
piezoelectric accelerometer, acoustic sensor, eddy current displacement sensor, CCD 
camera, etc., resulting in the increase of measuring cost as well as the inconvenience of 
installing sensors under some environment. Due to the drawbacks of BP ANNs, other 
suitable ANNs should be recommended as complementary choices. In this study, 
Gaussian function-based RBF ANN was used, which has a higher performance over BP 
ANN. Cutting parameters (f, ap, v) were used to train network for the prediction of 
surface profile and roughness. 



3.1 The structure of RBF ANN for prediction of surface profile  
and roughness 

The suggested RBF ANN has an input layer, an output layer and a hidden layer 
composed of RBF neurons. The input space can be either an actual or a normalised 
representation. The network structure is shown in Figure 1. Here, inputs x1, x2,…, xm 
composing an input vector x, are applied to all neurons in the hidden layer. The hidden 
layer is composed of n RBFs that are connected directly to all the elements in the output 
layer. Detailed descriptions of RBF networks can be found in Zhang and Zhang (2004), 
Park and Sandberg (1991), Bi et al. (2002) and Schalkoff and Robert (1997). A node in 
the hidden layer will generate a greater output when the input pattern is close to its 
centre. The output of such a node will decrease as the distance from the centre increases. 
Thus, for a given input pattern, only the neurons whose centres are close to the input 
pattern can generate non-zero activation values. 

Figure 1 The structure of RBF neural network 

The RBF for the jth hidden node is often defined by a Gaussian exponential function 
shown in Equation (1): 
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where jσ  is the spread (width) of the jth corresponding Gaussian function. Usually the 

spread ( 0)jσ > should be not more than the possible maximum distance between the 

input vector and the centre of the RBF, and it is determined by experiments. jv is defined 

by the Euclidean norm of the distance between the input vector and the centre calculated 
as Equation (2): 
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where x = [x1, x2,…, xm]T, Cj is the centre of the jth RBF unit, which has the same 
dimensional size with the input vector. 



The network output Y is formed by a linearly weighted sum of the RBFs in the 
hidden layer. The values for the output nodes can be calculated as 
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k jk j
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y w h
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where ky  is the kth element of the Y, is the output of the kth node in the output layer, 

jkw is the weight from the jth hidden layer neuron to the kth output layer neuron and jh is 

the output of the jth node in the hidden layer. The transform from the input layer to the 
hidden layer is non-linear, and the output of the network is a linear combination of the 
RBFs computed by the hidden layer nodes. 

3.2 RBF network training and testing 

The RBF ANN has two operating modes, namely training and testing. Training an RBF 
network involves determining the number of RBFs, the corresponding centres and the 
output layer weight matrix. The criterion is to minimise the Sum of Squared Errors (SSE) 
defined as 
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where i
kt is each target value of the network output layer when the network is trained 

with input vector iX , N is the number of training samples. 
The details of the training procedure would be out of the scope of this paper, but 

could be found in other references. Once the centres and the widths (spreads) have been 
chosen, a supervised learning algorithm is applied to train the weights between the 
hidden and the output layer nodes. The output layer weights are usually trained using the 
Least Mean Squares (LMS) algorithm. In summary, there are basically three steps for 
creating a RBF network: 

calculate the number n of the hidden layer 

calculate the centres and the widths of the hidden layer 

determine the weights of the output layer. 

When the above steps are completed, an RBF neural network is fully obtained. Then it 
can calculate the output result for each new input vector through Equations (1)–(3). 

3.3 Comparison between RBF ANN and BP ANN 

As multilayer feed-forward networks, RBF ANNs are superior to BP ANNs though the 
latter have been popularly applied (30–31). Generally, RBF ANNs store knowledge 
locally in neurons whereas BP ANNs globally. In RBF ANNs, the optimal number of 
hidden neurons can be obtained during the training process, however, for BP ANNs, the 
number of hidden neurons has to be prior determined before the training process, and it is 
also difficult to determine the optimal number of hidden neurons. In RBF ANNs, the 
maximum number of iterations cannot be more than the number of training samples and 
the output error reaches zero when the number of hidden neurons exceeds the number of 



training samples. BP ANNs use gradient descent method to minimise the error and the 
error might converge very slowly, moreover, the residual error might be unacceptable. 
Furthermore, a BP ANN trained with same parameters at different time would always 
have different topologies due to its random initial weights and biases, resulting in 
different training and simulation results, but the RBF ANN does not have this drawback. 
Besides, BP ANNs might fall into a local optimum, which has to be given up. Compared 
with BP ANNs, RBF ANNs can be created rapidly with convergence and accuracy 
guaranteed. Consequently, RBF neural network models would be suitable for the surface 
profile and roughness prediction. A trained RBF network structure could also be quickly 
readjusted and retrained online for higher accuracy. 

4 Experimental conditions and procedure 

4.1 Experimental set-up and conditions 

Machining tests were conducted on a CNC turning lathe. Stainless steel 304L with a 
diameter of 95.5 mm was used as workpiece. The workpiece was machined using carbide 
coated inserts CNMG120404-MF. Cutting conditions in the experiments are shown in 
Table 2. The experimental set-up is shown in Figure 2. 

Table 2 Cutting conditions 

Cutting speed level (m/min) 220, 260, 300 

Feed rate level (mm/rev) 0.1, 0.15, 0.2 

Depth of cut level (mm) 0.3, 0.8, 1.3 

Coolant condition Dry turning 

Cutting tool insert CNMG 1204 04-MF 

Tool holder PCLNL 2525M12 

Figure 2 Experimental set-up (see online version for colours) 

For generating the training data for RBF neural networks, three levels of cutting speed, 
feed and depth of cut were taken as shown in Table 2. Thus 27 cases were combined into 
the training data set of RBF ANNs each case includes vc, ap, f and the measured 
roughness Ra, as shown in Table 3. 



Table 3 Training data set for RBF neural networks 

Case no. v
c
 (m/min) a

p
 (mm) f (mm/rev) R

a
 (�m) 

1 220 0.3 0.1 0.612 

2 220 0.3 0.15 1.195 

3 220 0.3 0.2 1.606 

4 220 0.8 0.1 0.547 

5 220 0.8 0.15 1.583 

6 220 0.8 0.2 1.998 

7 220 1.3 0.1 0.563 

8 220 1.3 0.15 1.004 

9 220 1.3 0.2 1.268 

10 260 0.3 0.1 0.636

11 260 0.3 0.15 1.183

12 260 0.3 0.2 1.581

13 260 0.8 0.1 0.871

14 260 0.8 0.15 1.705

15 260 0.8 0.2 2.160

16 260 1.3 0.1 0.655

17 260 1.3 0.15 1.010

18 260 1.3 0.2 1.269

19 300 0.3 0.1 0.634

20 300 0.3 0.15 1.194

21 300 0.3 0.2 1.469

22 300 0.8 0.1 1.100

23 300 0.8 0.15 1.645

24 300 0.8 0.2 2.185

25 300 1.3 0.1 0.623

26 300 1.3 0.15 0.983

27 300 1.3 0.2 1.327

Additionally, 10 cases designed randomly within and outside the range of cutting 
parameter levels of training data set were employed as testing data set (Table 4). The 
testing data set did not participate in the training process (namely, not presented to the 
neural networks), but it was used to test the trained ANNs and search the optimal 
topology among different ANN topologies. 

The machining length along the workpiece for each case was taken as 10 mm. The 
surface roughness of the machined workpiece was measured by a SOMICRONIC 
SURFASCAN S-M3 and a stylus with a radius of 10 µm, angle 60°. Readings were 
taken three times and the average value was recorded. The surface roughness evaluation 
length in each case was taken as 5.6 mm. Considering the influence of tool wear, the 
cutting tool insert was replaced by a new insert at No. 10, No. 19 for training data and at 
No. 6 for testing data, respectively, so the cutting tool insert was supposed not to 
be worn. 



Table 4 Testing data set for prediction of surface profile and roughness 

Case No. v
c
 (m/min) a

p
 (mm) f (mm/rev) R

a
 (�m) 

1 350 1.5 0.25 1.465

2 300 1.2 0.18 1.411

3 230 1.2 0.16 1.140

4 230 1.2 0.2 1.384

5 260 0.9 0.15 1.193

6 260 0.8 0.19 1.688

7 220 0.8 0.12 0.795

8 220 0.75 0.12 0.857

9 290 0.35 0.16 1.234

10 290 0.3 0.19 1.490

4.2 Preparation and preprocessing of training data set 

4.2.1 Construction of training data set 

The prediction and generalisation capabilities of neural networks are essentially 
dependent on: 

1 the selection of the appropriate input/output parameters 

2 the training data set should be representative values for each input/output 
parameter 

3 the distribution of the training data set 

4 the format of the presentation of the training data set. 

The aim of this research is to predict surface profile and roughness using RBF ANNs 
with the three main cutting parameters.  

Both of the two tasks used the three cutting parameters (as shown in Table 3) to 
compose the input matrix ( 3 27× ) of a RBF ANN, namely, the number of nodes in the 
input layer was 3. For the prediction of surface roughness, Ra was taken as the output 
vector (1 27× ) for each corresponding combination of cutting parameters, namely, the 
output layer has 1 node. 

As for the prediction of surface profile, a new method to define the output matrix of a 
RBF ANN was tried, based on the method proposed by Poulachon et al. (1998). It is 
illustrated as following: 

1 surface profile data measured by a stylus is first performed a 1024-point FFT 

2 real and imaginary parts in the FFT complex vector are separated to construct a 
new 2048 × 1  target (output) vector, in which the real part lies in the first 1024 
elements and the imaginary part in the latter 1024 elements 

3 the above steps are repeated for each profile in the training data set 

4 after the training of the RBF network, each testing input vector is simulated, and 
a 2048 × 1 vector, which contains the real and imaginary parts of FFT predicted 
by the trained RBF network, is output 

5 perform an inverse FFT (iFFT) to reconstruct the output profile, which is 
actually a transform form spatial-frequency domain to spatial domain. 



In this experiment, each 2048 × 1 FFT target (output) vector of 27 training cases, 
together with the corresponding 3 × 1 input vector were used to train a RBF network for 
the prediction of surface profile. For the surface profile prediction, the training data set 
was composed of the 3 × 27 input matrix and 2048 × 27 target (output) matrix. For the 
surface roughness prediction, the training data set was composed of the 3 × 27 input 
matrix and 1 × 27 output matrix. 

4.2.2 Normalisation of training data set 

Prior to training the network, the input P and target T were normalised within the range 
of 1± , using the function [pn, minp, maxp, tn, mint, maxt] = premnmx(P, T) in Matlab. 
The algorithm is as below: 

2 ( min )
1

(max min )

P P
pn

P P

× −
= −

−
(5)

2 ( min )
1

(max min )

T T
tn

T T

× −
= −

−
(6)

However, for the prediction of surface profile, premnmx is not suggested to normalise 
the 2048 × 27 target matrix. It was found that, the mints were equal to maxts in several 
lines of matrix T, which resulted in a zero value in denominator. The reason should be 
that, the 27 values in several lines were the same after FFT transform, namely, the real 
parts or imaginary parts were the same at some spatial frequency locations. Therefore, a 
global mint and maxt of the whole matrix T (FFT matrix) were employed, not from each 
line of T. Then, the normalised values were calculated using Equation (6). 

4.3 Training and parameter optimisation for RBF neural networks 

The training and simulation were conducted using the neural network functions in 
Matlab (Anonymous, 2006), which include newgrnn ( ), newrbe ( ), sim ( ) and mse ( ). 
The data acquired from the turning process was divided into the training data set 
comprising 27 cases and the testing data set comprising 10 cases. 

4.3.1 Training for surface profile and roughness 

It was found that newgrnn ( ) and newrbe ( ) are suitable for the prediction of surface 
profile and roughness, respectively, each of which can obtain a satisfactory prediction 
result. Furthermore, compared with BP neural networks, RBF neural networks 
self-adaptively add the number of neurons in hidden layer until the error goal is met. 

newgrnn ( ) was used in the training of RBF network for the prediction of surface 
roughness. 

net = newgrnn(P, T, spread), designs a generalised regression neural network. Where 
P, T, spread and net are matrix of input vectors, matrix of target vectors, spread of 
RBFs and returned network structure, respectively. Generalised regression neural 
networks are a kind of radial basis network that can be used for function approximation 
between the three cutting parameters and predicted surface roughness. The larger that 
spread is, the smoother the function approximation will be. To fit data closely, use 
a spread smaller than the typical distance between input vectors. To fit the data more 
smoothly use a larger spread. 



newrbe ( ) was used in the training of RBF network for the prediction of surface 
profile. 

net = newrbe(P, T, spread). Where P, T and spread, net are input vector, target vector, 
spread of RBF and returned network structure, respectively. The newrbe very quickly 
designs an exact radial basis network with zero error. 

4.3.2 Simulation and testing of a trained RBF neural network 

Function Yt = sim(net, pt); where pt, Yt are the input and simulated result of testing data 
set, respectively. 

4.3.3 Performance evaluation 

The performance of a RBF network, namely generalisation ability for testing data set 
outside the range of training data set, can be evaluated using Mean Squared Error 
(MSE). Suppose, Z = Yt − Y, the MSE is calculated by function mse(Z) in Matlab. The 
smaller the return value is, the better the generalisation ability of a trained neural 
network is. 

4.3.4 Searching and determination of optimal training parameters 

It has been found that, a RBF network trained with different spread values always returns 
different performances. Figure 3(a) is the measured profile with vc = 260, ap = 0.8, 
f = 0.19 which lies in the testing data set in Table 3, Figure 3(b) is the surface profile 
predicted by a RBF network trained with spread = 0.14 and Figure 3(c) is the surface 
profile predicted by a RBF network trained with a default spread = 1. It is shown 
that Figure 3(b) has a better correlation with the measured profile than Figure 3(c), and 
that the spread parameter, which is used in the training of the RBF network, can 
significantly influence the trained network on the accuracy of prediction and 
generalisation ability. 

Therefore, prior to determining the final spread for the training of a RBF network, it 
is suggested to train the RBF network with different spreads to find the optimal spread 
for the testing data set. In this experiment, the testing data set (Table 4) was used to 
evaluate the performance of all candidate networks trained with different spreads, and 
find out the optimal network with the least MSE. 

A total of 116 RBF network topologies were trained using the training data set 
(Table 3) and 116 different spreads ranging from 0.05 to 1.2 with a step of 0.01, then 
sim( ) and mse( ) were employed to evaluate the prediction performance for the given 
testing data set. 116 MSE values between the predicted and measured profiles for the 
whole testing data set were obtained respectively, as shown in Figure 4. It can be seen 
that the optimal spread value was 0.16 and the corresponding MSE was 4.3904, namely, 
when the training parameter spread was 0.16, the trained RBF network could give the 
least prediction error for the whole testing data set. 

Similarly, for the prediction of surface roughness, the same approach was applied to 
search an optimal spread of newgrnn. The optimal spread value was found to be 0.78 at 
which the MSE was 0.0128, and the correlation coefficient between the predicted and 
measured roughness was 0.976. 



Figure 3 Simulation of surface profile: (a) measured profile, (b) predicted profile, spread = 0.14 
and (c) predicted profile, spread = 1 (see online version for colours) 

Figure 4 Spreads versus MSE for the whole testing data set (see online version for colours) 



4.3.5 Online retraining and readjusting of RBF network using  
a dynamic spread 

However, for the prediction of surface profile, the aforementioned spread was only a 
global optimal value for the whole testing data set. It might not be a local optimal value 
for each case within the testing data set. It was found that, for some cases, the best 
correlation of profile shape and amplitude between the measured and predicted profiles 
were attained using the RBF network trained at a spread value near 0.16, such as 0.15, 
0.135, etc. Therefore, the determination of local optimal spread value needs a coarse- and 
fine-adjusting procedure, and it should take into account not only MSE performance but 
also the correlation degree of shape and amplitude. 

It was also found that, for each case in the testing data set, the depths of cut (ap) were 
significantly related to the local optimal spreads. Namely, ‘a RBF network trained with a 
fixed spread parameter would not guarantee the optimal prediction or best generalisation 
ability for all profile prediction cases’. 

It is suggested that, at each new prediction, the RBF network trained by prior optimal 
spread parameter should be online retrained and updated using a new optimal 
spread training parameter for high accuracy. The new optimal spread can be found from 
the correlation mapping between ap and optimal spread values. In this experiment, 
under the specified machine, workpiece, cutting conditions as shown in Table 2, for the 
given training and testing data sets in Tables 3 and 4, the correlation mapping between ap 
and optimal spreads was established for online retraining a RBF neural network, as 
shown in Figure 5. 

Figure 5 Correlation between depth of cut and corresponding optimal spread (see online  
version for colours) 



The online retraining of a RBF neural network using a dynamic spread parameter can be 
summarised as the following steps: 

1 Suppose, there is a new given case (vc, ap, f) to be predicted its surface profile. 

2 Select an appropriate optimal spread value according to the correlation 
mapping. Then, train a RBF network using the optimal spread parameter and  
the original training data set. 

3 Once the training goal is met, dynamically update the RBF network with the 
new weights and biases and then simulate (predict) the given case, obtaining  
the predicted surface profile. 

4 The procedure is repeated for any new case. Since a RBF network designs and 
creates a new topology very quickly, it is very feasible to online retrain a RBF 
network and predict. 

5 Results and discussion 

Ten cases of testing data set were used to evaluate the two RBF neural networks that 
performed the prediction of surface profile and roughness, respectively. 

5.1 Experimental results of surface profile prediction 

Due to limit of pages, part of 10 predictions of surface profiles is shown from 
Figures 6 to 8. The corresponding cutting condition, the MSE between the predicted 
profile and the measured profile are given, and the spread which was selected adaptively 
for each profile prediction is also listed as below. In each figure, the horizontal axes 
denotes the 1200 data points along the axial direction of workpiece surface and the 
vertical axes is the amplitude values of surface profile. 

Figures 6–8 show that the predicted profiles have a good correlation with the 
measured profiles in terms of profile shape, trend and amplitude range. After selecting an 
appropriate optimal spread value, each testing profile was predicted using the RBF neural 
network trained with this spread. The MSE value in each testing case might not be the 
least value, however, the corresponding spread is just the optimal training parameter and 
the corresponding predicted profile has the best correlation with the measured actual 
profile than those spreads with other MSEs. 

From the results, it is found that, the predicted profiles are still at small variance with 
the measured profiles in terms of amplitude, shape and initial phase consistency. 
The reason should be the presence of a lot of disturbing factors in the turning process, the 
factors might involve stochastic vibrations of spindle–workpiece, vibrations of lathe, 
vibrations of tool holder, chatter phenomena of lathe, disturbance of chip formation, etc. 

More ANN input parameters, extracted from sensors of cutting forces, vibrations 
of spindle–workpiece, displacement signals of tool holder, etc., should theoretically 
improve the accuracy degree of surface profile prediction. Moreover, spatial frequency 
domain (wavelet or wavelet packet) information extracted from those signals might be an 
ideal approach to adjust the initial phase position. However, the above improvement 
would increase not only the cost of measuring systems but also the complexity that might 
import other noises and experimental errors, as well as influence the online prediction 
speed due to the task of signal processing. 



   

Figure 6 (a) Predicted profile and (b) measured profile (v
c 
= 220, a

p 
= 0.8, f = 0.12,  

MSE = 2.2616, spread = 0.133) (see online version for colours) 

Figure 7 (a) Predicted profile and (b) measured profile (v
c 
= 230, a

p 
= 1.2, f = 0.2,  

MSE = 4.3842, spread = 0.15) (see online version for colours) 



 Figure 8 (a) Predicted profile and (b) measured profile (v
c 
= 260, a

p 
= 0.8, f = 0.19,  

MSE = 17.7826, spread = 0.14) (see online version for colours) 

These same surface profiles were also predicted by a trained BP neural network for 
comparing the performance with the well-trained RBF neural network. A number of BP 
network topologies with different training parameters and weights were tried for 
searching a topology that could provide minimum error. Finally, an improved BP 
network with 2 hidden layers and 10 neurons in each hidden layer, 3 input neurons and 
2048 output neurons (3–10–10–2048), trained with {traingdx, learngdm} and {learning 
rate: 0.05, momentum: 0.9, minimum gradient:1e-20}, was chosen as the optimal 
network to predict the surface profiles. The tangent sigmoid transfer function ‘tansig’ and 
linear transfer function ‘purelin’ were used in the hidden and output layers, respectively. 
Figure 9 shows the predicted profile by the selected BP network for one case in the 
testing data set. Figure 9(a) is the predicted profile and Figure 9(b) is the measured actual 
profile under vc = 260, ap = 0.8, f = 0.19. 

It is evident from Figure 9 that the profile predicted by the BP network contains a lot 
of chaotic noises and severely distorted from the actual surface profile. It is also 
concluded that a BP network does not suit such a prediction involving a large number of 
output nodes (2048), and that a complicated BP network topology could lead to low 
generalisation capability and easily falling into over-fitting. 

It was also found that compared with the RBF network, the search procedure for the 
optimal BP network topology took a very long time. Under a PC simulation platform of 
1.6 GHz CPU with a memory size of 512 M, for BP neural network, it took about 
1900 sec to obtain the best one from 30 BP topologies, whereas RBF network took only 
about 7 sec to reach the best one from 116 candidates. Therefore, it is proved that RBF 
neural network is very competent for the surface profile prediction that demands 
high-dimensional output vector (neurons) and has a significant advantage over BP 
network. 



 

Figure 9 Surface profile under v
c 
= 260, a

p 
= 0.8, f = 0.19 predicted with BP network:  

(a) predicted profile and (b) measured profile (see online version for colours) 

5.2 Experimental results of surface roughness prediction 

The results of surface roughness prediction for the testing data set (Table 4) are shown in 
Table 5. Here, the results predicted by the RBF network are compared with those 
predicted by a Conventional Mathematic Equation (‘CME’ used in the following) used in 
surface roughness calculation (as shown in Equation (7)) and a selected BP neural 
network. 

2

a
18 3

f
R

Rε

≈ (7)

where Ra denotes surface roughness, f is feed rate, Rε is the radius of tool nose, here it is 
0.4 mm. 

Similarly, a BP neural network was also trained to predict the surface roughness. The 
optimal BP network was obtained from 200 candidate topologies with 2 hidden layers 
and 10 or 15 neurons in the hidden layers according to minimum MSE and maximum 
correlation coefficient (calculated by ‘postreg’ in Matlab) between the measured and the 
predicted roughness. The surface roughness was predicted using a 3–10–10–1 BP 
network trained by L–M algorithm with ‘tansig’ and ‘purelin’ transfer functions in the 
hidden and output layers, respectively. 

Due to the aforementioned shortcomings of BP networks, it is actually easy to fall 
into a local optimal topology instead of the global optimal one. Contrary to RBF neural 
networks, a BP network trained with same parameters at different time would give 



different outputs for same input vector since the initial weights and biases are random. 
Therefore, once a BP optimal topology is reached, it should be better to save the 
corresponding network topology including initial weights and biases for the subsequent 
predictions. The selected BP network might not be a global optimal, however, a global 
searching of BP would result in a huge searching spaces as well as block a desired fast 
speed on building ANN model. Consequently, it is suggested that RBF network should 
be adopted in high priority. 

Table 5 Surface roughness predicted by RBF, BP and conventional mathematic equation 

Case 
No. 

R
a
–CME 

(µm) 
Error–CME  

(%) 
R

a
–BP (µm) Error–BP 

(%) 
R

a
–RBF 

(µm) 
Error–RBF  

(%) 
R

a 
(µm) 

1 3.170 −116.362 1.696 −15.768 1.412 3.603 1.465

2 1.643 −16.456 1.514 −7.300 1.406 0.343 1.411

3 1.298 −13.886 0.987 13.421 1.239 −8.654 1.140 

4 2.029 −46.575 1.327 4.119 1.451 −4.835 1.384 

5 1.141 4.350 1.540 −29.086 1.365 −14.441 1.193 

6 1.831 −8.460 2.414 −43.010 1.702 −0.821 1.688 

7 0.730 8.138 0.818 −2.893 0.999 −25.709 0.795 

8 0.730 14.784 0.940 −9.685 1.003 −16.995 0.857 

9 1.298 −5.211 1.455 −17.910 1.364 −10.512 1.234 

10 1.831 −22.873 1.708 −14.631 1.532 −2.8183 1.490 

In Table 5, Ra, Ra–RBF, Ra–BP, Ra–CME are the measured actual surface roughness 
and the surface roughness predicted by the RBF network, BP network and CME, 
respectively. Error-RBF, Error-BP and Error-CME are respectively their corresponding 
percentage errors in the prediction. It can be seen that, compared with the other two 
methods, the RBF network could give the least degree of prediction error and the CME 
produces relatively high errors due to its simple model. 

Table 5 shows that, in nine cases, the error in RBF-based prediction is less than 20%. 
Only in one cases, error is more than 20%, with a maximum error of −25.709%. The 
MSE of the whole testing data set predicted by the RBF network is 0.0128. It is 
considered that less than 20% error is reasonable, considering the inherent randomness in 
metal cutting process. Figure 10 shows the measured actual surface roughness versus the 
predicted surface roughness using RBF network. A line inclined at 45° and passing 
through the origin is also plotted in the figure. For perfect prediction, all points should lie 
on this line. Here, it can be seen that most of the points are close to this line. 
The correlation coefficient between the predicted roughness of the RBF network and the 
measured actual roughness is 0.976. Hence, this RBF neural network provides reliable 
prediction and high accuracy. 



Figure 10 Correlation between the surface roughness predicted by the RBF network and 
measured actual surface roughness (see online version for colours) 

6 Conclusions 

The conclusions drawn from this paper can be summarised in the following points: 

1 The RBF neural network trained by newrbe with adaptive-adjusting spreads  
for different depths of cut was found to be the optimal network for the 
prediction of surface profile. 

2 The correlation between spread and depths of cut was also established to  
online adjust the training parameters for different cutting conditions.  
The shape, amplitude and trend of surface profile machined by turning  
process could be predicted with a good consistency with the actual  
profile.  

3 The RBF neural network trained by newgrnn with a searched optimal  
spread of 0.78 was found to be the optimal network for the prediction  
of surface roughness, with a high accuracy degree and correlation  
coefficient. 

4 Compared with an improved BP neural network, the RBF neural network is 
suitable for the prediction of surface profile with a markedly high accuracy 
degree and fast prediction speed. 

5 Concerning the prediction of surface roughness, the RBF network still has  
the significant advantage over a BP network and the CME. 



6 Generally, the developed RBF network models based on the three cutting 
parameters (vc, ap, f) can realise the prediction of surface profile and roughness 
with high accuracy, low-cost, high speed in turning process. 

7 Based on the reviews of the published research works and the research in this 
paper, it is evident that ANNs are a powerful tool, easy-to-use and have a good 
prospect for the future applications. 
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