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a b s t r a c t

In this paper we consider the hermitian extension of the cross-ΨB-energy operator that
we will denote by ΨH. In addition, cross energy terms are formalized through multivariate
signals representation. We investigate the connection between the interaction energy
function of ΨH and the cross-power spectral density (CPSD) of two complex valued
signals. In particular, this link permits to use this operator for estimating the CPSD. We
illustrate the interest of ΨH as a similarity between a pair of signals in frequency domain
on synthetic and real data.

1. Introduction

Since its introduction, the cross-ΨB-energy operator [1]
has been used in different domains, including time series
analysis [2], gene time series expression data clustering
[3], wave equation [4], transient detection [5], time delay
estimation [6] or time–frequency analysis [7]. These appli-
cations show that ΨB, which is a complex and symmetric
version of the cross-Teager–Kaiser energy operator [8],
is well suited for processing of non-stationary signals.

In this paper, we introduce an hermitian version of ΨB

that we denote by ΨH. In particular, it contains all the
information in ΨB and has a more compact expression.
In addition, its hermitian structure makes it quite natural
for handling complex signals. Then, we establish the
connection between ΨH and the cross-power spectral
density (CPSD). This function is a fundamental and power-
ful tool to investigate an unknown second order relation-
ship between two signals (or time series) in the frequency
domain [9]. This connection involves an interesting

relationship and a simple way to estimate the CPSD and
its second order power moment. Note that all the results
presented here for ΨH also hold for ΨB.

2. Cross spectral density and ΨH operator

For two complex-valued signals xt and yt, ΨB operator
is defined as follows [1]:

ΨB½xt ; yt � ¼
1
2
½ _xn

t _yt þ _xt _y
n

t �−
1
4
½xt €yn

t þ xnt €yt þ yt €x
n

t

þ yn

t €xt � ð1Þ

where :n denotes complex conjugation. Alternatively, we
define the ΨH operator as

ΨH½xt ; yt � ¼ _xt _y
n

t −
1
2
½xt €yn

t þ €xtyn

t �: ð2Þ

Clearly ΨH½yt ; xt � ¼Ψn
H½xt ; yt � and ΨB½xt ; yt � ¼ RefΨH½xt ; yt �g,

where Ref�g denotes the real part. Both ΨB and ΨH quantify
the strength of coupling or interaction between xt and yt.

We also introduce the following multivariate extension
of the energy operator: letting z1 and z2 denote two
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complex valued vector functions defined on R, we let

ΨH½z1t ; z2t � ¼ _z1t _z
H
2t−

1
2
½z1t €zH2t þ €z1tzH2t � ð3Þ

where :H denotes hermitian conjugation, that is, transposi-
tion plus conjugation. In particular, when z1 ¼ z2 ¼ z, with
z¼ ½x; y�T , we get

ΨH½zt ; zt � ¼
ΨH½xt ; xt � ΨH½xt ; yt �
ΨH½yt ; xt � ΨH½yt ; yt �

" #
ð4Þ

The cross terms in the matrix ΨH½zt ; zt � measure the
coupling between xt and yt at time t.

The averaged ΨB interaction energy has been defined
in [6] for finite energy signals. It follows that we can
similarly define, for finite power signals, the multivariate
average interaction for ΨH in terms of time average as

EHz1z2 ðτÞ ¼ lim
T-∞

1
2T

Z T

−T
ΨH½z1t ; z2;t−τ� dt: ð5Þ

Function EHz1z2 ðτÞ measures how similar z1 and z2 are at lag
τ.

As before, letting z1 ¼ z2 ¼ z, with z¼ ½x; y�T , we get the
matrix expression of EH zzðτÞ in the form

EHzzðτÞ ¼
EHxxðτÞ EHxyðτÞ
EHyxðτÞ EHyyðτÞ

" #
: ð6Þ

In particular, the cross-interaction between x and y is
defined by

EHxyðτÞ ¼ lim
T-∞

1
2T

Z T

−T
ΨH½xt ; yt−τ� dt: ð7Þ

EHxyðτÞ quantifies the average coupling between xt and the
delayed signal yt−τ .

In the following, we are going to highlight the relation-
ship between EH and the correlation function. The cross-
correlation between multivariate signals z1 and z2 is defined
by

Rz1z2 ðτÞ ¼ lim
T-∞

1
2T

Z T

−T
z1tzH2;t−τ dt: ð8Þ

Thus, for z1 ¼ z2 ¼ z¼ ½x; y�T we have

RzzðτÞ ¼
RxxðτÞ RxyðτÞ
RyxðτÞ RyyðτÞ

" #
: ð9Þ

Note that RyxðτÞ ¼ Rn

xyð−τÞ.
Now, let us recall the following straightforward

property: for two positive integers l and m, we have

∂lþm

∂τlþm
Rz1z2 ðτÞ ¼ ð−1ÞðmÞRzðlÞ1 zðmÞ

2
ðτÞ ð10Þ

where zðmÞ is the mth derivative of z. For conciseness zð1Þ

and zð2Þ are simply denoted by _z and €z as above. Then, we
can state that

Proposition 1.

EHz1z2 ðτÞ ¼ 2R _z1 _z2
ðτÞ ð11Þ

In particular, for scalar signals x and y, we get EHxyðτÞ ¼
2R _x _y ðτÞ.

Proof. Using relation (10), we get

EHz1z2 ðτÞ ¼ lim
T-∞

1
2T

Z T

−T
_z1t _z

H
2;t−τ

−
1
2
½ €z1tzH2;t−τ þ z1t €z

H
2;t−τ� dt:

¼ R _z1 _z2
ðτÞ−1

2
½R €z1z2 ðτÞ þ Rz1 €z2

ðτÞ�
¼ 2R _z1 _z2

ðτÞ □ ð12Þ

The cross-spectrum density of z1 and z2 will be denoted by
Sz1z2 . It is defined as the Fourier transform of Rz1z2 ðτÞ:
Sz1z2 ðf Þ ¼F ½Rz1z2 ðτÞ�. In particular, for z1 ¼ z2 ¼ z¼ ½x; y�T ,
we get

Szzðf Þ ¼
Sxxðf Þ Sxyðf Þ
Syxðf Þ Syyðf Þ

" #
ð13Þ

where it is clear that Syxðf Þ ¼ Snxyðf Þ, since RyxðτÞ ¼ Rn

xyð−τÞ.
Then, we get the following result:

Proposition 2.

F ½EHz1z2 ðτÞ� ¼ 2S _z1 _z2
ðf Þ ð14Þ

In particular, for scalar signals x and y, we get F ½EHxyðτÞ� ¼
2S _x _y ðf Þ.

Proof. From Proposition 1, EHz1z2 ðτÞ ¼ 2R _z1 _z2
ðτÞ. Then,

F ½EHz1z2 ðτÞ� ¼ 2F ½R _z1 _z2
ðτÞ� ¼ 2S _z1 _z2

ðf Þ. □

It is well known that the derivation operator amounts to a
filtering operation by a filter with frequency response
ĥðf Þ ¼ 2iπf . Then, for a scalar signal x, we get F ½ _x� ¼ ĥðf Þ
F ½x�. More generally, if z1 and z2 are Cn valued complex
signals we obtain

F
_z1
_z2

" #
¼ ĥðf Þ � F z1

z2

" #
ð15Þ

Then, the average interaction EHz1z2 can be expressed from
the cross spectrum Sz1z2 as follows:

Proposition 3.

EHz1z2 ðτÞ ¼ 8π2
Z
R

f 2Sz1z2 ðf Þe2jπf τ df ð16Þ

In particular, for scalar signals x and y, we get the expression
of EHxyðτÞ in terms of the cross-spectrum of x and y:

EHxyðτÞ ¼ 8π2
Z
R

f 2Sxyðf Þe2jπf τ df ð17Þ

Proof. From Eqs. (14) and (15), we get

S _z1 _z2
ðf Þ ¼ jĥðf Þj2Sz1z2 ðf Þ

¼ 1
2
F ½EHz1z2 ðτÞ� ð18Þ

Then, applying the inverse Fourier transform in the above
equation yields

EHz1z2 ðτÞ ¼ 2
Z
R

jĥðf Þj2Sz1z2 ðf Þe2jπf τ df

¼ 8π2
Z
R

f 2Sz1z2 ðf Þe2jπf τ df □ ð19Þ



Note that, up to the constant factor 8π2, EHz1z2 ðτÞ is the
second order power moment of Sz1z2 ðf Þ. Also, relation (18)
yields

Sxyðf Þ ¼ ð8π2f 2Þ−1F ½EHxyðτÞ� ð20Þ

This relation suggests possible use of EHxyðτÞ for CPSD
estimation purpose. In particular, the spectral coherence
function between two real valued stationary zeros mean
signals xt and yt is a normalized version of the cross power
spectral density Sxyðf Þ defined as

γSxyðf Þ ¼
jSxyðf Þjffiffiffiffiffiffiffiffiffiffiffiffi

Sxxðf Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Syyðf Þ

p : ð21Þ

γSxyðf Þ takes its values in [0,1]. It is interesting to measure
the correlation among x and y, up to a possible filtering.
Indeed, it is straightforward that γSxyðf Þ is left unchanged
through invertible filtering of x or y which is replaced by a
filtered version of itself. Clearly, from (20) γHxyðf Þ can be
rewritten as

γHxyðf Þ ¼
jF ½EHxy�ðf Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ½EHxx�ðf Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiF ½EHyy�ðf Þ

p : ð22Þ

Note that since ðγHxyðf ÞÞ2≤1, jF ½EHxy�ðf Þj2≤F ½EHxx�ðf Þ � F
½EHyy�ðf Þ.

When F ½EHxy�ðf Þ is equal to zero, xt and yt are uncorre-
lated at frequency f. At the opposite if F ½EHxy�ðf Þ is equal to
1, xt and yt are fully correlated.

3. Results

In this section an application of ΨH for non-stationary
signal analysis is presented. We show the efficiency of γHxy
to estimate similarity between a signal and its noisy
filtered version in the frequency domain. Let xt be some
known (AM–FM) signal

xt ¼ atejϕðtÞ

at ¼ 1þ κ cos ðωatÞ

ϕðtÞ ¼ ωct þ ωm

Z t

0
qτ dτ

� �
qt ¼ sin ðωqtÞ ð23Þ

where at is the time-varying amplitude, ωc the carrier
frequency, κ the AM modulation index, qt the frequency
modulating signal and ωm the maximum frequency devia-
tion. For simulation, the parameter values used are
ωq ¼ 0:63, ωa ¼ 0:63, ωc ¼ 1:57, ωm ¼ 0:94 and κ¼ 0:7.
Let yt denote the observed signal. yt is a noisy filtered
version of xt, where the filter impulse response is denoted
by gt:

yt ¼ ðgnxÞt þ nt ð24Þ
The additive noise nt is a complex circularly white Gaus-
sian noise. For the transfer function of the filter we choose

GðzÞ ¼ 1þ ∑
L−1

k ¼ 1
gkz

−k ð25Þ
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Fig. 1. Analysis of AM–FM signals.



with gk∼0:1�N ð0;1Þ and L¼10. The signal to noise ratio
is set to 0 dB that is the mean power of gnx is equal to that
of the noise n. To detect the presence of filtered xt in yt a
spectral coherence function given by Eq. (21) or Eq. (22)
can be used. The spectra F ½EHxxðτÞ� and F ½EHyyðτÞ� of xt and
yt and their cross spectrum F ½EHxyðτÞ� can be derived from
the discrete Fourier transform. Applying Eq. (22) involves
the derivation of yt. When nt is a white noise, the finite
difference achieves poor estimation of the derivative.
There are several smoothing techniques in the literature
[10,11] that can be considered for derivating signals that
are corrupted by white noise. The definition of EH in Eq.
(5) involves the computation of ΨH, and thus derivatives,
but integration compensates for above mentioned difficul-
ties and we do not need to apply sophisticated derivation
techniques.

In Fig. 1(c)–(d) we plot the estimated γHxyðf Þ obtained
after averaging over 1 and 20 realization of data of the
experiment respectively. We can check that provided γHxyðf Þ
is averaged over sufficiently many experiments, it catches
well the spectral peaks of x (Fig. 1(a)) in spite of the low
signal to noise ratio (Fig. 1(d)). Due to its connection with
spectra it is clear that the resolution of the estimated
coherence increases with the length of averaged data
sets while its variance decreases as the number of
data sets used for its estimation increases. As for spectral
estimation, the limit to distinguish frequency peaks
depends on the SNR and on the amount of data available
for estimation. Compared to the corresponding averaged
spectra of y (Fig. 1(b)) and γSxyðf Þ (Fig. 1(e)) we see that
γHxyðf Þ achieves better spectral peaks detection since the
effect of filter is removed in the calculation of coherence

(Fig. 1(d)). We report in Fig. 1(e) the coherence function
calculated from signals spectra. This function is calculated
using the MatLab function mscohere.m with the same FFT
length as for the calculation from EH (Eq. (22)) and using
rectangular window. Although spectrum-based calculation
of coherence shows peaks that are often higher, the EH

based calculation shows higher resolution.
We also illustrate the interest of ΨH operator on real

aerodynamic data, recorded on an instrumented yacht
sailing upwind in a moderate head swell [12]. The wind
signal is recorded at the top of a mast by means of a 3D
acoustic anemometer that measures the instantaneous
Apparent Wind Speed: xt ¼AWS _θ ðtÞ. The boat pitch angle
is denoted by θðtÞ. The corresponding pitch angle velocity is
_θðtÞ. _θðtÞ is recorded by a central of attitude located at the
center of rotation of the boat. The pitch induces apparent
wind speed yt ¼ h _θðtÞ at the top of the mast, where h is the
height of the mast. Variations of the apparent wind speed
time series yt are related to the frequency of waves along
the boat trajectory. These variations are the reason for the
aerodynamic performance oscillation of the sail plan when
pitching. During a 20 s record (see xt and yt in Fig. 2), the
swell has shown different periods. This results from the
swell encountering waves at frequencies f1 and f2 equal to
0.73 Hz and 0.85 Hz respectively. We assume that xt and yt
are ergodic processes. Frequencies f1 and f2 are well
evidenced by F ½EHxy�ðf Þ (bottom plot) as common frequen-
cies of these two signals. As it can be seen in Fig. 2, the
peaks of F ½EHxy�ðf Þ at f1 and f2 show very strong correlation
of xt and yt at these two frequencies. This confirms that ΨH

is useful to show the similarities between two signals in the
frequency domain.
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Fig. 2. Analysis of aerodynamic signals.



4. Conclusion

In this paper we introduced the hermitian extension of
the cross-ΨB-energy operator, denoted by ΨH. Clearly, ΨH

supplies a framework to study cross-energy of complex-
values signals that is more natural than ΨB. Relationship
between ΨH and cross-power spectral density of two
complex valued signals has been established. Preliminary
results on synthetic and real signals have shown the
interest of ΨH as a similarity measure between signals. In
future works, it will be interesting to investigate the use of
ΨH for some applications where cross-energy or coherence
between complex-valued signals are involved.
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