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On the behavior of EMD and MEMD in presence
of symmetric α-stable noise

A. Komaty, A.O. Boudraa, Senior Member IEEE, J.P. Nolan and D. Dare

Abstract—Empirical Mode Decomposition (EMD) and its ex-
tended versions such as Multivariate EMD (MEMD) are data-
driven techniques that represent nonlinear and non-stationary
data as a sum of a f nite zero-mean AM-FM components referred
to as Intrinsic Mode Functions (IMFs). The aim of this work is to
analyze the behavior of EMD and MEMD in stochastic situations
involving non-Gaussian noise, more precisely, we examine the
case of Symmetric α-Stable (SαS) noise. We report numerical
experiments supporting the claim that both EMD and MEMD
act, essentially, as f lter banks on each channel of the input signal
in the case of SαS noise. Reported results show that, unlike EMD,
MEMD has the ability to align common frequency modes across
multiple channels in same index IMFs. Further, simulations show
that, contrary to EMD, for MEMD the stability property is well
satisf ed for the modes of lower indices and this result is exploited
for the estimation of the stability index of the SαS input signal.

Index Terms—EMD, MEMD, f lter banks, symmetric α-stable
noise.

I. INTRODUCTION

EMPIRICAL mode decomposition (EMD) is a fully adap-
tive data-driven approach for the decomposition of non-

stationary signals [1]. This technique decomposes any signal
into a linear combination of a f nite number of basis functions
called intrinsic mode functions (IMFs). Being proven eff cient
when dealing with deterministic signals of oscillatory nature,
EMD also reveals interesting properties when dealing with
random signals. Dealing with such signals, their properties,
their transformations, and their characterization in time and
frequency domains has gained enormous attention in the last
decade. Since a random signal is not repeatable in a predictable
manner, it may only be described probabilistically or in terms
of its average behavior. To be able to devise mathematical
tools for this purpose, one needs to assume a statistical model
which best describes the data. Evaluation of the performances
of such methods depends upon the ability to determine the
probability density function (pdf) of a function of the data
samples, either analytically or numerically. When this is not
possible, one must resort to Monte Carlo computer simula-
tions. Among various probability distributions, the Gaussian
distribution plays a predominant role in signal processing [2].
Many of the theorems of communications, estimation and
detection theory have been formulated based on the Gaussian
assumption thanks to the Central Limit Theorem (CLT), which
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holds for a large variety of distributions. Unfortunately, a broad
class of phenomena encountered in practice are undeniably
non-Gaussian and can be characterized by their impulsive
nature [3]. Random f uctuations of gravitational f elds, un-
derwater acoustic noise of snapping shrimp, radar clutter,
economic market indexes, Internet traff c or man-made noise
have been found to belong to this class. Signals of this
class are more likely to exhibit sharp spikes or bursts of
outlying measurements than one would expect from normally
distributed signals [4]-[6]. Impulsive perturbations of these
signals are commonly modeled by symmetric α-stable (SαS)
distributions. More precisely SαS distribution describes a large
class of impulsive random variables with heavy-tailed distri-
butions. This family possesses strong theoretical justif cations
according to the Generalized CLT (GCLT) which extends
the CLT to the case when the summands are heavy-tailed
[7]. Up to now the behavior of EMD has been analyzed
in presence of fractional Gaussian noise (fGn) [8] and its
extended version, Multivariate EMD (MEMD) [9], in white
Gaussian noise case [10]. But much less attention has been
paid to situations involving processes that generate impulsive
signals or noise bursts using such decompositions. Thus, for
more real world applications, it is important to investigate how
such signal decompositions behave in the presence of SαS
noise. Because Gaussian and stable non-Gaussian distributions
are invariant under linear operations, they are very important
in signal processing. Hence the importance of studying their
characteristics when decomposed using EMD and MEMD.

II. BASICS OF EMD AND MEMD
EMD: Standard EMD breaks down any real-valued sig-

nal x(t) into a reduced number of oscillating modes (AM-FM)
called Intrinsic Mode Functions (IMFs) and a residual r(t)
consisting of all local trends [1]. By construction, each IMF is
a zero-mean waveform whose number of zero-crossings (ZCs)
differs at most by one from the number of its extrema. More
precisely, EMD ends up with an expansion of the form:

x(t) =

M
∑

m=1

cm(t) + r(t) (1)

where cm(t) is themth IMF andM is the number of extracted
modes. The number of extrema of x(t) is decreased when
going from one residual to the next.

MEMD: Standard EMD considers only 1D signals and
the local mean is calculated by averaging the upper and
lower envelopes obtained by interpolating between the local
maxima and minima respectively. MEMD has been developed
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both in the number and in scale properties [17]. The higher
the CC, the less signif cant the splitting in separate IMFs.
Thus, CC between normalized IMFs (leakage between sub-
bands) may cause blurred time-frequency estimates such as
IF. Using this quantitative evaluation, it has been shown that
EMD and MEMD generate approximately mono-component
and locally orthogonal data-driven basis functions in presence
of white Gaussian noise (α = 2) [12]. Figure 2 shows CC
of IMFs averaged over J=1000 realizations of SαS 2-channel
process of length L=1000 samples using EMD (channel-wise)
and MEMD. The CC estimates Θ[m,m′] are calculated for
IMFs obtained from MEMD and EMD as follows:

Θ[m,m′] :=

∣

∣

∣

∣

1

J

J
∑
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Θj[m,m′]
√

Θj [m,m]Θj[m′,m′]
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Θj[m,m′] :=
1

L

L
∑

k=1

cjm(k)cjm′(k) (4)

By def nition, we have 0 ≤ Θ[m,m′] ≤ 1.

(a) EMD α = 1.2 (b) EMD α = 1.4 (c) EMD α = 1.8

(d) MEMD α = 1.2 (e) MEMD α = 1.4 (f) MEMD α = 1.8

Fig. 2. CCs of IMFs for a bivariate SαS distribution using (a-c) EMD
(channel-wise) and (d-f) MEMD.

We report in Fig. 2 alignment results of three typical values
of α. Figures 2(d)-2(f) show that, on average, MEMD has
almost the same behavior for all α ∈ [1, 2]. Larger values along
the diagonal (m = m′) suggest that the IMFs in MEMD are
well aligned. For α = 1.8 and α = 1.4, both decompositions
produce correlograms with diagonal-dominant elements while
being more pronounced in the case of MEMD. For α = 1,
unlike MEMD, EMD does not exhibit a pronounced diagonal
dominance, concluding that EMD does not produce same
index IMFs with the same scale when α deviates from 2.
As shown in Fig. 2(c), for more impulsive cases, signif cant
values of CC estimates are observed off-diagonal (m 6= m′)
indicating missaligned IMFs. This suggests that standard EMD
is not well suited for decomposing signals of high impulsive
nature.

C. Stability test
EMD or MEMD are data-driven projections of a signal

on some space, thus it is important to check if the stability
property is preserved or not using these decompositions. As
with any other family of distributions, it is not possible to
prove that a given set is or is not stable, even for normal-
ity this is still an active research f eld [11]. A solution to

this problem is to check whether or not data are consistent
with stability hypothesis. More precisely, for plausibly stable
smoothed density of data (Fig. 3(a),3(c)) the f tted distribution
is compared to data using Quantile-Quantile (Q-Q) plot as
shown in Figs. 3(b) and 3(d). Q-Q plot is designed to show the
closeness of two distributions [11]. If the f tting is consistent,
stability parameters (α, β, γ, δ) are estimated. Four methods
are used: Maximum Likelihood (ML) [19], Quantile, Empiri-
cal Characteristic Function (ECF) and Fractional Lower Order
Moments (FLOM). Developing these estimation methods goes
beyond the scope of this paper, and the reader is referred
to [4],[13]-[15] and [19] for more details. If the estimates
(α̂, β̂, γ̂, δ̂) differ signif cantly, the data are considered not
stably distributed. While non-Gaussian stable distributions are
heavy-tailed, most heavy-tailed distributions are not stable.
In many cases, it is not appropriate to f t heavy-tailed data
with a stable distribution. As shown in Fig. 3, the pdf of
the f rst extracted IMF (averaged over 150 realizations) by
EMD is bimodal, while the corresponding one of MEMD
is unimodal. However, in both cases, an α-stable f tting is
used to approximate the f rst mode even though, for the EMD
case, this f tting is not accurate (one cannot f t a bimodal
distribution using a unimodal stable one). Nevertheless, this
test was made to prove that, even if the f rst IMF is not
stable, when f tted using a stable distribution, its estimate α̂

is approximately equal to the original index α. The Q-Q plot
of Fig. 3 shows that this f tting is more consistent in MEMD
than in EMD. However, estimates (α̂, β̂, γ̂, δ̂), averaged over
150 realizations, reported in Table 1 for the f rst IMF results
in a signif cantly different results using the four methods in
the case of EMD, but the parameters retrieved in MEDM are
on the average the same and close to the true parameters
(α = 1.5, β = 0, γ = 1, δ = 0). Therefore, these results
support the claim that, in f rst approximation, stability is more
preserved by MEMD than by EMD and more particularly the
stability index α.
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(a) EMD:Density plot of stable distribution vs Data. (b) EMD: Q-Q plot of stable distribution vs Data.
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(c) MEMD:Density plot of stable distribution vs Data. (d) MEMD: Q-Q plot of stable distribution vs Data.

Fig. 3. Density plot and Q-Q plot of the f rst IMF for a SαS i.i.d. signal
with α = 1.5 and a data length of 10000 samples.
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