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On the behavior of EMD and MEMD in presence
of symmetric a-stable noise

A. Komaty, A.O. Boudraa, Senior Member IEEE, J.P. Nolan and D. Dare

Abstract—Empirical Mode Decomposition (EMD) and its ex-
tended versions such as Multivariate EMD (MEMD) are data-
driven techniques that represent nonlinear and non-stationary
data as a sum of a f nite zero-mean AM-FM components referred
to as Intrinsic Mode Functions (IMFs). The aim of this work is to
analyze the behavior of EMD and MEMD in stochastic situations
involving non-Gaussian noise, more precisely, we examine the
case of Symmetric a-Stable (SaS) noise. We report numerical
experiments supporting the claim that both EMD and MEMD
act, essentially, as flter banks on each channel of the input signal
in the case of SaS noise. Reported results show that, unlike EMD,
MEMD has the ability to align common frequency modes across
multiple channels in same index IMFs. Further, simulations show
that, contrary to EMD, for MEMD the stability property is well
satisf ed for the modes of lower indices and this result is exploited
for the estimation of the stability index of the SaS input signal.

Index Terms—EMD, MEMD, f Iter banks, symmetric a-stable
noise.

I. INTRODUCTION

MPIRICAL mode decomposition (EMD) is a fully adap-
E tive data-driven approach for the decomposition of non-
stationary signals [1]. This technique decomposes any signal
into a linear combination of a f nite number of basis functions
called intrinsic mode functions (IMFs). Being proven eff cient
when dealing with deterministic signals of oscillatory nature,
EMD also reveals interesting properties when dealing with
random signals. Dealing with such signals, their properties,
their transformations, and their characterization in time and
frequency domains has gained enormous attention in the last
decade. Since a random signal is not repeatable in a predictable
manner, it may only be described probabilistically or in terms
of its average behavior. To be able to devise mathematical
tools for this purpose, one needs to assume a statistical model
which best describes the data. Evaluation of the performances
of such methods depends upon the ability to determine the
probability density function (pdf) of a function of the data
samples, either analytically or numerically. When this is not
possible, one must resort to Monte Carlo computer simula-
tions. Among various probability distributions, the Gaussian
distribution plays a predominant role in signal processing [2].
Many of the theorems of communications, estimation and
detection theory have been formulated based on the Gaussian
assumption thanks to the Central Limit Theorem (CLT), which
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holds for a large variety of distributions. Unfortunately, a broad
class of phenomena encountered in practice are undeniably
non-Gaussian and can be characterized by their impulsive
nature [3]. Random fuctuations of gravitational felds, un-
derwater acoustic noise of snapping shrimp, radar clutter,
economic market indexes, Internet traff ¢ or man-made noise
have been found to belong to this class. Signals of this
class are more likely to exhibit sharp spikes or bursts of
outlying measurements than one would expect from normally
distributed signals [4]-[6]. Impulsive perturbations of these
signals are commonly modeled by symmetric a-stable (SaS)
distributions. More precisely SaS distribution describes a large
class of impulsive random variables with heavy-tailed distri-
butions. This family possesses strong theoretical justif cations
according to the Generalized CLT (GCLT) which extends
the CLT to the case when the summands are heavy-tailed
[7]. Up to now the behavior of EMD has been analyzed
in presence of fractional Gaussian noise (fGn) [8] and its
extended version, Multivariate EMD (MEMD) [9], in white
Gaussian noise case [10]. But much less attention has been
paid to situations involving processes that generate impulsive
signals or noise bursts using such decompositions. Thus, for
more real world applications, it is important to investigate how
such signal decompositions behave in the presence of SaS
noise. Because Gaussian and stable non-Gaussian distributions
are invariant under linear operations, they are very important
in signal processing. Hence the importance of studying their
characteristics when decomposed using EMD and MEMD.

1I. BAsics oF EMD AND MEMD

EMD: Standard EMD breaks down any real-valued sig-
nal z(t) into a reduced number of oscillating modes (AM-FM)
called Intrinsic Mode Functions (IMFs) and a residual r(t)
consisting of all local trends [1]. By construction, each IMF is
a zero-mean waveform whose number of zero-crossings (ZCs)
differs at most by one from the number of its extrema. More
precisely, EMD ends up with an expansion of the form:

M
z(t) = Z em(t) +r(t) (1)
m=1
where ¢, (t) is the m*" IMF and M is the number of extracted
modes. The number of extrema of x(t) is decreased when
going from one residual to the next.

MEMD: Standard EMD considers only 1D signals and
the local mean is calculated by averaging the upper and
lower envelopes obtained by interpolating between the local
maxima and minima respectively. MEMD has been developed



to process a general class of multivariate signals having an
arbitrary number of channels [9]. For an n-dimensional signal
the local mean cannot be def ned directly, and thus the multiple
n-dimensional envelopes are generated by projecting the signal
along different directions in n-variate spaces. The calculation
of the local mean can be considered as an approximation of
the integral of all the envelopes along multiple directions in an
n-dimension space. MEMD uses a vector-valued form of (1)
to decompose a n-variate signal x(¢) as follows:

M

D em(t) +r(t)

m=1

X(t) = @)
where M is the number of extracted n-variate modes,
{en }M_, contains scale-aligned intrinsic joint rotational
modes and r(t) is the n-variate residue.

III. SaS DISTRIBUTIONS

There is no closed-form for the pdf of the SaS distribution,
but it is represented by its characteristic function: ¢(0) =
exp(jo6 — ~]6]*), where § is the location parameter and
a € (0,2] is called the stability index. « is the most important
parameter of the SaS distribution because it controls the
density’s tail heaviness and + is the dispersion parameter that
controls the width of the bell curve [4]. This scale parameter,
similar to variance of the Gaussian distribution, determines
the spread of the distribution around 9. The bell curve’s tails
get thicker as « falls from 2 to near 0. For a € (1,2], ¢
corresponds to the mean of the SaS distribution while for
0 < a < 1, § corresponds to its median. The only known
closed-form SaS pdfs are the thin-tailed Gaussian with o = 2
(less impulsive) and the thick-tailed Cauchy with o = 1 (more
impulsive). The SaS distribution is the only distribution that
verif es the GCLT:

GCLT: X is a-stable if and only if X is the limit in

distribution of the sum S, = XatXotdXn _ 3 \where

An
X1, Xo,... X, are independent and identically distributed
(iid) rv’s,n — 00, b, € R and a,, € N
Therefore the a-stable distribution is more general than the
Gaussian distribution, and has a stronger justif cation since it
covers the class of signals that does not satisfy the classical
CLT.

IV. PROPERTIES IN PRESENCE OF SaS NOISE
A. Filter bank structure

A quantitative appreciation of the flter bank structure of
EMD and MEMD, in presence of SaS noise, can be done
by measuring the mean frequency content of each IMF.
Measuring the average number of ZCs is a meaningful way of
characterizing its mean frequency, and the way this varies from
mode to mode is an indication of the hierarchical structure of
the flter bank [8]. Thus, it has been shown, by analyzing
the graphical representation of the average number of ZCs as
function of the IMF index, that output of EMD exhibits a
dyadic flter-bank structure for fGn [8] and that MEMD acts
as a dyadic flter-bank for multivariate white noise input [9].
Figure 1 shows that this property also holds for a SasS i.i.d.

process decomposed into IMFs by MEMD and EMD. For both
EMD and MEMD, the standard stopping criterion described
in [20] is used. The SaS noise is generated using the MatLab
STABLE toolbox [21]. The number of channels of MEMD is
set to 16 and the number of realizations is set to 1000. EMD
is applied to each channel separately. For sake of readability,
only the curves corresponding to 6 values of « are plotted. As
evidenced in this f gure, the logarithm (base 2) of the average
number of ZCs is a decreasing function of the mode index
m for both decompositions. For MEMD this f gure suggests
a functional relation of the form: Z,[m] o< p~™, with p close
to 1.8. While for EMD the corresponding relation depends on
the stability index « as follows:

3)

where p, = 52¢%, 3 = 2172 and C is a constant step equal
to 0.2. Figure 1 reveals similar results to those obtained in
presence of fGn [8], where a slope of —1 means an ideal
dyadic flter-bank structure, indicating a quasi-dyadic flter
bank structure for EMD and MEMD when facing a SasS i.i.d.
process. Although EMD produces a more pronounced dyadic
flter than MEMD for « €]1.2;2], they have almost the same
slope for a ~ 1.2 and MEMD becomes more dyadic for
a € [1;1.2]. Tt is also worth noticing that the slope of the line
in the MEMD case is =~ —0.84 and is the same regardless
of the coeff cient o, while in the EMD case, the slope varies
from —1 in the Gaussian case (o = 2) to —0.80 (o = 1).

Zalm] o< p;"

ss —0.84

Fig. 1. Logarithm of average number of ZCs as a function of m. Slopes of
the ftted lines are approximately equal to —0.84 when using MEMD (dashed
lines), and varying from —1 (o = 2) to —0.8 (a = 1) when using EMD
(solid lines). For sake of readability MEMD curves are shifted upwards by
one unit.

B. Mode alignment property

The Hilbert transform produces meaningful instantaneous
frequency (IF) only for mono-component data. Thus, accurate
IF estimation requires that extracted modes by EMD or its
extended versions be mono-component and locally orthogonal.
A cue to identify such modes is to look at the cross-correlation
(CC) coeff cients between modes [16]. The schematic repre-
sentation of CC values (correlograms) allows us to check if
IMFs extracted from the input signal are aligned and have the
same information at the same level of decomposition. It should
be noted that mode alignment corresponds to fnding a set of
common scales/IMFs across different components (variates) of
a multivariate signal, thus ensuring that the modes are matched



both in the number and in scale properties [17]. The higher
the CC, the less signifcant the splitting in separate IMFs.
Thus, CC between normalized IMFs (leakage between sub-
bands) may cause blurred time-frequency estimates such as
IF. Using this quantitative evaluation, it has been shown that
EMD and MEMD generate approximately mono-component
and locally orthogonal data-driven basis functions in presence
of white Gaussian noise (o = 2) [12]. Figure 2 shows CC
of IMFs averaged over J=1000 realizations of SaS 2-channel
process of length L=1000 samples using EMD (channel-wise)
and MEMD. The CC estimates O[m,m’] are calculated for
IMFs obtained from MEMD and EMD as follows:

@Jmm]

O[m,m'] = %

J[m, m]|QI[m’, m’]

i

OI[m,m'] =

“

&=

k=
By def nition, we have 0 < ©[m,m’] < 1.

(@) EMD a = 1.2 () EMD o = 1.4 () EMD a = 1.8

(f) MEMD o = 1.8

(d) MEMD o = 1.2

Fig. 2. CCs of IMFs for a bivariate SaS distribution using (a-c) EMD
(channel-wise) and (d-f) MEMD.

(¢) MEMD o = 1.4

We report in Fig. 2 alignment results of three typical values
of «. Figures 2(d)-2(f) show that, on average, MEMD has
almost the same behavior for all o € [1, 2]. Larger values along
the diagonal (m = m’) suggest that the IMFs in MEMD are
well aligned. For a = 1.8 and a = 1.4, both decompositions
produce correlograms with diagonal-dominant elements while
being more pronounced in the case of MEMD. For o = 1,
unlike MEMD, EMD does not exhibit a pronounced diagonal
dominance, concluding that EMD does not produce same
index IMFs with the same scale when o deviates from 2.
As shown in Fig. 2(c), for more impulsive cases, signif cant
values of CC estimates are observed off-diagonal (m # m')
indicating missaligned IMFs. This suggests that standard EMD
is not well suited for decomposing signals of high impulsive
nature.

C. Stability test

EMD or MEMD are data-driven projections of a signal
on some space, thus it is important to check if the stability
property is preserved or not using these decompositions. As
with any other family of distributions, it is not possible to
prove that a given set is or is not stable, even for normal-
ity this is still an active research feld [11]. A solution to

this problem is to check whether or not data are consistent
with stability hypothesis. More precisely, for plausibly stable
smoothed density of data (Fig. 3(a),3(c)) the ftted distribution
is compared to data using Quantile-Quantile (Q-Q) plot as
shown in Figs. 3(b) and 3(d). Q-Q plot is designed to show the
closeness of two distributions [11]. If the ftting is consistent,
stability parameters (a, 3,7,d) are estimated. Four methods
are used: Maximum Likelihood (ML) [19], Quantile, Empiri-
cal Characteristic Function (ECF) and Fractional Lower Order
Moments (FLOM). Developing these estimation methods goes
beyond the scope of this paper, and the reader is referred
to [4],[13]-[15] and [19] for more details. If the estimates
(d,B,ﬁ,S) differ signif cantly, the data are considered not
stably distributed. While non-Gaussian stable distributions are
heavy-tailed, most heavy-tailed distributions are not stable.
In many cases, it is not appropriate to ft heavy-tailed data
with a stable distribution. As shown in Fig. 3, the pdf of
the frst extracted IMF (averaged over 150 realizations) by
EMD is bimodal, while the corresponding one of MEMD
is unimodal. However, in both cases, an «-stable ftting is
used to approximate the frst mode even though, for the EMD
case, this ftting is not accurate (one cannot ft a bimodal
distribution using a unimodal stable one). Nevertheless, this
test was made to prove that, even if the frst IMF is not
stable, when ftted using a stable distribution, its estimate &
is approximately equal to the original index «. The Q-Q plot
of Fig. 3 shows that this ftting is more consistent in MEMD
than in EMD. However, estimates (&, 8,4, 5), averaged over
150 realizations, reported in Table 1 for the frst IMF results
in a signif cantly different results using the four methods in
the case of EMD, but the parameters retrieved in MEDM are
on the average the same and close to the true parameters
(¢ = 15,8 = 0,y = 1,5 = 0). Therefore, these results
support the claim that, in frst approximation, stability is more
preserved by MEMD than by EMD and more particularly the
stability index «.
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(b) EMD: Q-Q plot of stable distribution vs Data.

(a) EMD:Density plot of stable distribution vs Data.
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(c) MEMD:Density plot of stable distribution vs Data.

Fig. 3. Density plot and Q-Q plot of the frst IMF for a SasS i.i.d. signal
with o = 1.5 and a data length of 10000 samples.
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(d) MEMD: Q-Q plot of stable distribution vs Data.



_TABLE 1
ESTIMATED PARAMETERS (&, /3,4, 0) OF THE FIRST IMF FOR EMD AND
MEMD USING ML QUANTILE, ECF AND FLMO.

EMD MEMD
ML (1.52, 0.000, 1.21, 0.013) | (1.48, 0.000, 0.74, 0.002)
Quantile | (1.63, 0.101, 1.28, 0.019) | (1.49, 0.005, 0.73, 0.007)
ECF (1.48, 0.046, 1.16, 0.001) | (1.50, 0.014, 0.73, 0.005)
FLOM (1.80, 0.000, 1.56, 0.000) | (1.50, 0.000, 0.73, 0.000)
o}

2

1.5

1

Fig. 4. & values for input signal with different o (EMD: dashed lines- MEMD:
solid lines).

D. Estimation of the stability index

The most important parameter for the stable family is the
stability index « that can be estimated from observations [18].
We decompose an input SaS noise with « values ranging
from 1 to 2 into IMFs by EMD and MEMD. For sake of
clarity, only fve typical values of « are presented. Estimates
&, using the method developed by McCulloch [14], are plotted
as function of m in Fig. 4. As evidenced in Fig. 4, the
stability property is mostly satisf ed for modes of lower indices
(m < 5) in MEMD, which capture the sharp spikes and
tail heaviness of the original data. These modes, when ftted
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Fig. 5. Underwater acoustic signal (black) with « estimation per block using
ML (dashed red) and EMD-ML (solid blue).

to a stable distribution, have the same « parameter as the
input SasS signal. Thus satisfaction of this property, for such
modes, allows us to estimate the a parameter of the input
SaS signal. Note that for higher indices (m > 5), but
with o < 1.6, the stability is moderately satisfed. When
going from the last IMFs to the residue, the distribution of
these modes approaches a Gaussian distribution. For EMD,
the stability property only holds for o« = 2 (white noise).
We illustrate the relevance and the importance of our study
on a real underwater acoustic signal containing: background
underwater noise, propeller noise, Dolphin’s sounds and sonar
pings (Fig. 5). On can notice that outliers occurred more than
frequently in this signal. Thus, adopting the Gaussian model
is not relevant in such case. One way to study the statistical
model of the signal is to decompose the signal into blocks, and
estimate a statistical model for each block. It should be noted
that this signal is 6 million samples long. We decompose it into
blocks of length 10000 samples each (if we take fewer samples
per block, the estimation of the pdf will not be accurate,
and a larger block size will mitigate the effects of large
spikes). Then « is estimated on each block and if the block
could be modeled as Gaussian, then « should be close to 2,
otherwise « will deviate from 2. The ML estimation is plotted
in fgure 5 (dashed red). However, when EMD is applied
to each block before the estimation, then ML estimation is
performed using only the frst 4 modes, the result is plotted
in solid blue. It can be seen that using EMD, the estimator
captures almost all the regions where the signal experience
non-Gaussian phenomenon. Thus, EMD can be very useful for
such situations, where the data contains a-stable distribution
along with other types of distributions (Gaussian or simply
deterministic). In such cases, applying classical estimation
techniques such as the ML on the whole data is not eff cient
because the a-stable distribution presence will be attenuated
by the presence of other signals or distributions.

V. CONCLUSIONS

In this work we report on numerical experiments aimed at
supporting the claim that in presence of SaS noise, both EMD
and MEMD can be interpreted as flter bank on each channel
of this process. Moreover, the frst modes extracted by MEMD
could be accurately ftted using an «-stable distribution, unlike
original EMD, which produces bimodal modes that could not
be ftted using a stable distribution. Unlike EMD, for MEMD
the stability property is well satisf ed for the modes of lower
indices and this result is a new MEMD-based estimator of the
stability index « of the SaS input signal. The reported results
also show that MEMD aligns similar modes present across
multiple channels in same-index IMFs for varying values of
the stability index «. This property is crucial for real world
applications such as Instantaneous Frequency estimation, sig-
nals denoising or data fusion. However, mode alignment is
not achieved by standard EMD applied channel-wise and thus
is not well suited for decomposing signals of high impulsive
nature (small « values). As future work we plan to study the
behavior of MEMD and EMD with isotropic, elliptical and
other multivariate stable processes.
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