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Kossel microdiffraction in a scanning electron microscope enables determina-

tion of local elastic strains. With Kossel patterns recorded by a CCD camera and

some automation of the strain determination process, this technique may

become a convenient tool for analysis of strains. As for all strain determination

methods, critical for the applicability of the Kossel technique is its strain

resolution. The resolution was estimated in a number of ways: from the simplest

tests based on simulated patterns (of an Ni alloy), through analysis of sharp

experimental patterns of Ge, to estimates obtained by in situ tensile straining of

single crystals of the Ni-based superalloy. In the latter case, the results were

compared with those of conventional X-ray diffraction and synchrotron-based

Kossel diffraction. In the case of high-quality Ge patterns, a resolution of 1 �
10�4 was reached for all strain tensor components; this corresponds to a stress of

about 10 MPa. With relatively diffuse patterns from the strained Ni-based

superalloy, under the assumption of plane stress, the strain and stress resolutions

were 3 � 10�4 and 60 MPa, respectively. Experimental and computational

conditions for achieving these resolutions are described. The study shows

potential perspectives and limits of the applicability of semiautomatic Kossel

microdiffraction as a method of local strain determination.

1. Introduction
Understanding local stresses in crystalline materials is of

importance for the comprehension of material properties and

for selecting optimal processing conditions. Various techni-

ques are used to determine such stresses. Most measurements

are performed at the macroscopic scale (Ruud, 1982).

However, in the presence of local microstructural inhomo-

geneities, stress heterogeneities arise at the microscopic scale

(Barbe et al., 2001). The microstructure of most engineering

materials is made up of distinct crystallites having specific

sizes, shapes, crystallographic orientations and neighborhoods.

When crystallites are deformed as part of an aggregate, their

anisotropy gives rise to strain incompatibilities. As a result,

second- and third-order stresses appear: the stress state in

each crystallite is distinct, as it depends on the crystallite’s

ability to accommodate the deformation imposed by the

aggregate. Furthermore, stress heterogeneities are introduced

by grain boundaries and the surface.

To measure representative local stress states in poly-

crystalline materials with typical grain sizes (1–100 mm),

adequate methods need to be applied. There are two crucial

factors determining the quality of a technique of local stress

measurement. These are the spatial resolution and the stress

(or strain) resolution. High spatial resolution of the order of a

few micrometres or better is indispensable for investigating

stresses and stress gradients inside individual crystallites. Also,

the accuracy of strain/stress determination is of critical

importance. In most applications, strain variations of about

one part per ten thousand are of interest, and consequently,

only methods providing at least this level of accuracy are of

use. Stress states can be estimated via numerical models, but

experimental data are still needed as reference and for veri-

fication of the models.

Several experimental techniques are available to study local

stress states. Laue diffraction using a microfocused synchro-

tron beam is being developed in a number of beamlines

around the world (e.g. Tamura et al., 2005), but access to this

technique is limited. Micro-Raman spectroscopy is a powerful

tool for the analysis of semiconductors (e.g. De Wolf et al.,

1999), but it relies on assumptions about strain state, and it is

not applicable to metallic samples. Convergent beam electron

diffraction in a transmission electron microscope allows for

strain measurements at a submicrometre scale (e.g. Krämer et

al., 2000), but since thin foils are used, the issue of stress

relaxation arises (Clément et al., 2004). Another technique,

which seems to be more accessible, is high-resolution electron

backscatter diffraction (EBSD), but only the third-order

stresses can be deduced from EBSD patterns (e.g. Wilkinson et

al., 2009).

In this situation, it is worth considering local stress deter-

mination using Kossel microdiffraction. Kossel interference

was first observed in 1934 (Kossel et al., 1935). In the 1960s,



with the use of electron probe microanalysers, the Kossel

technique was considerably advanced (Tixier & Waché, 1970).

Then, it was adapted to scanning electron microscopy (SEM)

(Dingley, 1975); this enables the recording of diffraction

patterns while the microstructure of the specimen is observed.

Nowadays, with the application of digital cameras for pattern

acquisition (Pesci et al., 2006; Böhling & Bauch, 2007), the

analysis of SEM-based Kossel patterns can be automated to a

considerable extent. For a review of Kossel diffraction and its

applications, see Lider (2011).

There are various claims on the spatial resolution of the

SEM-based Kossel technique (Dingley, 1975; Böhling &

Bauch, 2007). It is believed to be in the broad range from 1 to

10 mm. Therefore, the technique can be used for investigating

elastic strains inside sufficiently large individual crystallites,

but there is an essential question about the levels of strain that

can be measured. Strain determination is linked to lattice

parameter determination. Taking this into account, various

sources on the accuracy of the Kossel technique can be quoted

(Tixier & Waché, 1970; Dingley, 1975; Lamaze & Despujols,

1976; Cunningham & Ashbee, 1990; Böhling & Bauch, 2007;

Langer & Daebritz, 2010; Lider, 2011), and the estimates of

strain resolution vary from 5 � 10�4 to 1 � 10�6. However,

most of the strain or lattice parameter determination methods

require special crystal orientations or particular configurations

of Kossel lines. These requirements are not satisfied when

grains in polycrystalline materials are investigated. Moreover,

for stresses measured in individual crystallites, one must take

into account the crystal anisotropy, i.e. multiple components of

stress tensors need to be determined.

The purpose of the present paper is to estimate the strain

resolution in the case of SEM-generated digitally recorded

Kossel patterns originating from crystals of arbitrary orien-

tation. Such patterns are routinely collected at LEM3 from

various materials, but here the focus will be just on results

related to the strain resolution. First, the experimental setup

for recording Kossel patterns in a scanning microscope and the

method for acquiring the strain and the stress tensors are

briefly described. Then, limits of the strain resolution of the

technique are estimated by analyzing simulated patterns for a

nickel alloy and high-quality experimental patterns of

germanium. Finally, results for loaded crystals of the nickel-

based alloy analyzed in situ by SEM are presented. The results

are compared with similar data obtained from Kossel patterns

generated by a microfocused synchrotron beam and with data

from classical X-ray diffraction. These measurements

demonstrate the applicability of the Kossel technique to cases

of practical importance. The study also shows the limits of

semiautomatic SEM-based Kossel microdiffraction as a

method of strain determination; these limits are crucial for

decisions about investing in the development of automatic

Kossel-based strain determination systems.

2. Recording Kossel patterns using SEM

The Kossel patterns are produced in a scanning electron

microscope and captured by an X-ray-sensitive two-dimen-

sional detector. Fig. 1 shows the experimental setup for the

acquisition of Kossel patterns. A focused electron beam

excites atoms and causes X-ray emission. Within the geometric

description of X-ray diffraction, a stack of crystallographic

planes with interplanar spacing exceeding half of the wave-

length of the X-ray radiation leads to a Kossel cone with the

apex at the point where the electron beam hits the specimen.

The cone axis coincides with the normal to the diffracting

planes, and the semi-apex angle of the cone equals 90� minus

the Bragg angle. A Kossel pattern consists of a set of conics:

intersections of the Kossel cones with a planar detector. The

X-ray interference originating from the crystal generates light

on a fluorescent screen. Patterns are recorded by a CCD

coupled to the screen through a fiber-optic taper. Digitally

recorded patterns can be directly analyzed by appropriate

software.

The scanning microscope used in this study was a JEOL

5800 with a thermionic emission tungsten filament operating at

a voltage of 30 kV. It was equipped with an 11 megapixel high-

resolution 12-bit Peltier-cooled CCD camera (‘VHR-11’,

Photonic Science Ltd) with an optical pixel size of 9 mm.

Tensile tests were carried out directly in the microscope using

a 5 kN tensile/compression module (MicroMecha).

Kossel patterns have a low signal-to-background ratio

(Bauch et al., 2000). In order to obtain patterns with suffi-

ciently strong contrast, multiple frames (five to 20) are

blended into one by averaging pixel-to-pixel intensities. Then,

the background (collected in the scanning mode) is subtracted.

The acquisition time depends very much on the required

quality of the pattern and the microscope operating condi-

tions. For the patterns used below, 20 frames were collected to

be blended into a single pattern, and the acquisition time per

frame was 10–30 s. The time per frame is selected on the basis

of a gray-level histogram; the point is to have the widest

distribution possible without saturating the detector. The

number of frames is selected by observing line profiles; the

Figure 1
Schematic of the Kossel microdiffraction experimental setup. D is the
specimen-to-detector distance; O marks the pattern center and � denotes
the Bragg angle.



goal is to have an optimal signal-to-noise ratio. The ratio is

improved by increasing the number of frames, but it can

deteriorate with increasing time per frame because of thermal

noise in the camera. The acquisition time depends on the

sample-to-detector distance. The camera body is supported by

a powered linear stage which allows for adjusting the distance

during an imaging session while maintaining vacuum. With

decreasing distance, the exposure time also decreases, and

concurrently, the acceptance angle and the number of conics

intercepted by the detector increase. Therefore, it is advan-

tageous to have a small sample-to-detector distance and a

large field of view. The distance used in this study was about

40 mm, and the field of view of the camera on the fluorescent

screen was 36 � 24 mm.

In Kossel microdiffraction, X-rays are emitted isotropically,

and therefore Kossel patterns can be obtained regardless of

the magnitudes of specimen tilt and working distance. These

two parameters can be chosen to have the most curved Kossel

lines in the diffraction pattern; the higher the Bragg angle, the

better the strain sensitivity. However, when the tensile stage is

used, the margins for specimen movements become small. In

this case, a working distance of about 20 mm and a tilt angle of

40� were used.

The Kossel technique requires relatively high probe

current, comparable to that of wavelength-dispersive X-ray

spectroscopy. This causes a local rise of temperature of the

investigated material and thus influences the lattice para-

meters. A previous study showed that in conductive materials

the temperature rise is too small to affect the strain

measurement (Bouscaud et al., 2012).

The camera was run in distortion correction mode, with

optical distortions in the image removed using a custom map

file containing the per-pixel correction data specific to the

particular camera. The accuracy of a similar approach was

estimated to be greater than 0.25 pixels (Barna et al., 1999).

Before final analysis, the recorded patterns were consolidated

using 4 � 4 binning. Thus, the optical distortions in the

analyzed (consolidated) patterns are expected to be smaller

than 0.25/4 pixels.

3. Analysis of experimental Kossel patterns

The recorded Kossel patterns were analyzed using a dedicated

software package (KSLStrain; Morawiec et al., 2008; a demo

version of the program can be downloaded from http://

imim.pl/personal/adam.morawiec/A_Morawiec_Web_Page/

downloads.html). The input data are the microscope settings

(the sample tilt angle, the detector pixel size, approximate

location of the pattern center and approximate sample-to-

detector distance) and the material properties (crystal struc-

ture and X-ray wavelength). The main task of the operator is

to provide locations of Kossel lines, and this needs to be done

with the highest possible precision. The Kossel lines are

marked manually using a computer mouse. The intensity

profile in the direction perpendicular to the Kossel line

(averaged over a short segment of the line) is used to refine

positions of the markers with a resolution of 1/10 of the pixel

size (Fig. 2). For every marker, the best position is chosen

according to the rules described below. The software also

calculates deviations of marked points from the corresponding

ideal conic lines. This check of the data consistency is an

important tool for improving the accuracy of marker locations;

imprecisely located markers are identified by large deviations,

and their locations can be corrected.

Kossel lines exhibit various intensity profiles: they are

bright or dark depending on the line intensity with respect to

the background. A profile can also be more complex, with

bright and dark parts (‘helldunkel Struktur’). Fig. 3 shows the

three types of profiles. The two maxima noticeable on the

bright profile of Fig. 3(a) are due to the K�1–K�2 splitting

clearly visible for high hkl reflections.

Precise determination of the locations of Kossel lines is a

critical point of the strain analysis. The difficulty lies in the

positioning of the marking points. The maximum of the

intensity profile does not always fit the location given by the

geometric theory of diffraction. In order to deal with the

complex line profiles, the following guidelines for marking the

conics have been developed: In the case of bright lines,

marking points are located at the maximum intensity of the

K�1 reflection (i.e. on the convex side of the conic). Since the

contrast of (relatively rare) dark lines is poor, they are not

used for strain determination (although they can be used for

indexing of the patterns). In the case of bright–dark conics,

marking points are located at the inflection points of the

intensity profile. This particular location has been verified by

comparing line profiles with simulated patterns obtained after

having marked only bright lines. The above rules combined

with a geometric description of diffraction are a substitute for

a complicated exact simulation of pattern intensities.

Using the input parameters and locations of the markers,

the Kossel lines are automatically indexed by the package

KiKoCh (Morawiec, 1999) integrated into KSLStrain. The

final stage consists in the refinement of lattice parameters and

thus the determination of the full strain tensor ". The refine-

ment is based on an optimization procedure matching the

marked experimental Kossel conics to corresponding conics in

simulated patterns. The matching is performed using KLEBS,

an optimization procedure minimizing deviations between

marked locations on experimental lines and lines in kinema-

tically simulated patterns. The objective function is based

directly on the formal equation of the Kossel lines. The

KLEBS algorithm is described in detail by Morawiec (2007).

The crystallite orientation, the location of the pattern center

and the sample-to-detector distance are refined alongside the

lattice parameters. The computation of the strain tensor is

carried out in the crystal coordinate system. If needed, the full

stress tensor � is calculated using Hooke’s law, � = C", where

C is the elastic stiffness tensor of the crystal. Knowing the

crystallographic orientation and the specimen tilt, the

components of the strain and stress tensors in the sample

coordinate system are computed.

Unless a user imposes extra restrictions, the minimization

involves 12 parameters (six strain components, three orien-

tation parameters, two pattern center coordinates and the



sample-to-screen distance). The program shows

one-dimensional sections through the objective

function and outputs correlation coefficients

between fitted parameters. In the considered

cases, at the scale of 10�4, these sections did not

exhibit any local minima. The particular values

of the correlation coefficients depend on the

case under study, but generally, most of the

correlations between strain tensor components

and other parameters are weak (with absolute

values below 0.5); some are stronger, but they

rarely exceed 0.7. There is always a strong

correlation between rotation about the x axis (y

axis) and the y coordinate (x coordinate) of the

pattern center. This is expected because the

impact of a small rotation of a crystal is nearly

the same as that of a small shift of the pattern

center. This is of little importance because the

pattern center and rotation parameters are

auxiliary variables.

The KSLStrain software also allows for

calculating the strain tensor components in the

crystal coordinate system under the assumption

of plane stress in the sample coordinate system

(i.e. with �13 = �23 = �33 = 0, where the axis ‘3’ is

perpendicular to the free surface). If applicable,

this assumption reduces the number of fitted

parameters, and it improves the resolution when

the number of conics in the pattern is small.

As the goal is to determine absolute stress

tensors, the reference lattice parameters a were

obtained from the assumption that the stress in

the direction normal to the free surface of the

specimen is equal to zero (�33 = 0) owing to the

low X-ray penetration depth. This approach is

standard when stresses are determined in poly-

crystalline materials using the sin2 method [see

x2.11 of the book by Hauk (1997)]. The same

principle can be applied in analysis of single

crystals (Ortner, 2005). The parameters

obtained from X-ray diffraction (XRD) data

were intended for XRD experiments and those

from Kossel data for Kossel experiments, but

actually the same values were found with the

accuracy to the fourth significant digit, and these

values were used. Such obtained reference

parameters are also affected by errors, but since

this is just one parameter per measurement, the

errors are much smaller than those arising when

multiple components of the strain tensor are

fitted.

4. Strain resolution

There are several factors influencing the strain

resolution. Assuming sufficient quality of the

recorded patterns, the resolution depends on the

Figure 2
(a) Experimental Kossel pattern obtained from a copper crystal. (b) Conics marked on the
pattern. The numbers represent magnitudes (in 1/10 of the pixel size) of the deviations of
each marker from the corresponding ideal conic. Also, an intensity profile of a line at the
indicated point is shown. (c) The corresponding simulated pattern after the strain
calculation.



solid angle covered by the pattern, the number of lines used in

calculations and the magnitudes of the corresponding Bragg

angles. For a given material and experimental setup, only the

latter factor can be controlled. The influence of the number of

lines on strain resolution has not been examined previously. It

is, however, an important aspect of the strain determination

procedure. Its influence was checked using Kossel line

patterns simulated from data for a nickel alloy (cf. x5). These

results are supported by recovering known lattice parameters

from a sharp experimental pattern of Ge.

4.1. Strain resolution from simulated patterns

The simplest test to estimate the achievable strain resolu-

tion is to simulate a diffraction pattern for some parameters

and then attempt to recover these parameters through the

analysis devised for experimental patterns. Such a test was

carried out with diffraction patterns of an Ni

alloy. The patterns were simulated using

KSLStrain. The lattice constant a was set at

3.595 Å, and the assumed microscope settings

were as in the experimental setup. The patterns

were analyzed according to the procedure

described in x3. For instance, for the pattern

shown in Fig. 4(a) with the [001] direction

perpendicular to the detector, the maximum of

17 Kossel lines were marked. In all considered

patterns, the lines were one pixel wide. The

strain components were repeatedly fitted on the

basis of a decreasing number of marked conics.

The low-index reflections having low strain

sensitivity were removed first. The largest

absolute value of the six strain components, i.e.

the maximum deviation of the resulting lattice

parameters from the data used in the simulation,

is plotted as a function of the number of marked

conics in Fig. 4(b).

By analyzing the ideal simulated case, one

obtains limits of the strain resolution. In other

words, when the above approach is applied to a

real material, its accuracy cannot be better than

the deviations shown in Fig. 4(b). The tests

demonstrate that, when the full stress state is

calculated for the considered material and

experimental setup, at least 11 Kossel conics

need to be taken into account to reach an

accuracy of 2 � 10�4. Under the plane stress

assumption, the same accuracy limit corre-

sponds to seven Kossel conics. With a very large

number of conics, the accuracy of individual

strain tensor components is bounded by 0.5 �
10�4.

4.2. Strain resolution from sharp experimental
patterns

More realistic estimates of strain resolution

can be obtained by recovering known lattice

Figure 3
Typical intensity profiles of Kossel lines (averaged over 20 pixel long
segments) and the corresponding (78 pixel wide) fragments of patterns
from Cu: (a) bright, (b) dark, (c) bright-and-dark line.

Figure 4
(a) Markers of conics superimposed on the simulated Kossel pattern of the Ni alloy; the
locations of markers are used in the calculations. (b) The largest strain deviation (in units
of 10�4) after the refinement for five simulated Ni alloy patterns and for an experimental
pattern of a Ge crystal versus the number of marked conics; both the full stress and the
plane stress cases are shown.



parameters from an experimental pattern. With this approach,

camera distortions, diffusivity of patterns and true line profiles

are taken into account. To carry out such tests, a germanium

single crystal was used. The specimen was cut out from a

microelectronic wafer. The case is still in a sense ideal, because

Kossel patterns of Ge contain numerous lines with relatively

sharp peaks in the line profiles. In practice, the strain sensi-

tivity can be better only for materials leading to high-Bragg-

angle conics.

The Kossel patterns were recorded at a random location of

the sample. In the analysis of the patterns, an effort was made

to maximize the number of used Kossel lines, but only bright

lines with a noticeable K�1–K�2 splitting were taken into

account; the dark-and-bright lines were not used. In the

particular pattern shown in Fig. 5, 16 conics were marked. The

reference lattice parameter was a = 5.658 Å. The elastic

stiffness components used for stress calculation are listed in

Table 1. The obtained full strain tensor and the corresponding

stress tensor, both in the sample coordinate system, were

" ¼
�7 1 �4

1 3

9

0
@

1
A� 10�5

and

� ¼
�21 0 �5

�11 3

0

0
@

1
A MPa:

In accordance with the method of determining the reference

lattice parameter, the resulting stress in the direction normal

to the free surface of the specimen is equal to zero (�33 = 0).

Like in the case of the simulated patterns of the Ni alloy, the

strain was repeatedly calculated on the basis of a decreasing

number of marked conics. The results are plotted in Fig. 4(b).

For reference, the same sample was also analyzed by

conventional XRD using a four-circle goniometer and the

method of Crostack et al. (1987). The full strain tensor and the

corresponding stress tensor, both in the sample coordinate

system, obtained by XRD were

" ¼
�6 �5 �1

�7 0

4

0
@

1
A� 10�5

and

� ¼
�20 �6 2

�20 3

0

0
@

1
A MPa:

The computation was based on 18 lattice planes {551} and

{711} corresponding to high Bragg angle (76�).

Despite very different spatial resolutions, the two methods

(Kossel microdiffraction and XRD) exhibit similar strain

resolutions. The gaps between corresponding stress compo-

nents are lower than 10 MPa. Both methods lead to normal

stress components slightly in compression and shear compo-

nents close to zero. The results are consistent with expecta-

tions for a macroscopically stress-free sample. On the basis of

the above, the strain resolution obtained from very sharp

experimental Kossel patterns and a large number of conics can

reach 1 � 10�4.

5. Stresses in a uniaxially strained nickel-based
superalloy

Finally, the Kossel technique was tested by measurement of

nonzero stresses in single crystals of a nickel-

based superalloy with a high yield stress.

Strains in these crystals were determined

during uniaxial straining. With this approach,

the internal stresses measured by the Kossel

technique can be referred to the known values

of the applied stress. Results obtained from

Kossel patterns recorded using SEM were also

compared with stresses acquired by classical

XRD measurements and with results of

measurements by synchrotron-based Kossel

diffraction. Although the experiments were

carried out on different occasions, on different

specimens and with different loads, the mate-

rial was always the same, and also the same

tensile device was used in all three cases.

The alloy was provided by ONERA. Its

chemical composition (in weight %) was Ni

base, Cr 8%, Co 5%, W 8%, Mo 2%, Al 5%, Ti

1.5% and Ta 6%. The material consisted of two

coherent phases: Ni � matrix and [(Ni,Co,Cr)3-
Figure 5
Experimental Kossel pattern obtained from the Ge crystal with manually marked conics.

Table 1
Components of the elastic stiffness tensor for Ge and the Ni superalloy.

C11 (GPa) C12 (GPa) C44 (GPa)

Ge 128.5 48.3 66.8
Ni superalloy 247 161 127



(Al,Ti,Ta)] cubic � 0 precipitates (Durand-Charre, 1997) (see

Fig. 6). The crystal orientation in the specimen was near

{011}h611i. Dog-bone samples were machined and the gauge

areas were then polished (mechanically and electrolytically).

The strain–stress behavior of the material was investigated by

a conventional (macro) tensile test. The deformation was

elastic at the macroscale up to about 900 MPa, and therefore it

was assumed to be linearly elastic at the microscale at the level

of 750 MPa (the highest stress applied in subsequent tests).

The elastic stiffness tensor used for stress calculation was

determined from the temperature-dependent law given by

Gaubert (2009); components of this tensor are listed in Table 1.

The reference lattice parameter was a = 3.595 Å.

Using SEM, three different locations, several hundreds of

micrometres apart, were randomly selected in the center of

the specimen. Kossel patterns were recorded at the initial state

(no loading) and for two uniaxial applied stresses (400 and

680 MPa). In all cases, the patterns were more diffuse than

those of Ge, with blurred and relatively wide Kossel lines. An

example experimental pattern is shown in Fig. 7(a). Only ten

conics per pattern were used. As Fig. 4(b) indicates, fitting all

strain components to ten lines would inevitably lead to

considerable errors. Therefore, following Bauch et al. (2000),

to reduce the number of free fitting parameters, a biaxial stress

state was assumed. Two out of the ten conics used for the

refinement of lattice parameters were bright–dark. Fig. 7(b)

with geometrically simulated lines superimposed on the

experimental pattern shows the presence of some extra conics.

They correspond to Ni K� and to radiation emitted by other

elements (Cr K� and Co K�). As the wavelengths are

different from that of Ni K�, these additional reflections do

not affect the analysis of the pattern.

Kossel patterns were also obtained at the European

Synchrotron Radiation Facility in Grenoble (ESRF, ID13

beamline) using a monochromatic synchrotron beam. The

beam size was about 3 mm. The 9.4 keV photon energy was

chosen to be just above the K absorption edge of nickel. This

technique has the advantage of working in air so it is easier to

put a detector and a tensile device in a desired position, but

the exposure times had to be multiplied by a factor of five

compared to the times of the SEM measurements. Kossel

patterns were recorded at the initial state and for two uniaxial

applied stresses: 400 and 750 MPa. A single location was

analyzed. Also in this case, a biaxial stress state was assumed.

In the case of the XRD-based measurements, the mean

stress state was obtained from a volume much larger than that

of Kossel microdiffraction. The analyzed surface area was

about 1 mm2. The stresses were measured before loading and

for the applied stress of 650 MPa.

The stress results obtained by the three methods are

collected in Table 2. They are given in the sample coordinate

system with �11 corresponding to the loading direction. In the

case of SEM-based data, the final stress tensors were obtained

by averaging the three different measurements. The �11

Table 2
Stress tensors obtained by Kossel microdiffraction in a scanning electron
microscope, by Kossel diffraction using synchrotron radiation and by
single-crystal XRD during in situ uniaxial tensile straining.

The component �11 is along the tensile direction. All values are in MPa.

Kossel.

Applied stress 0 400 680

Stress tensor
�95 5 0

�15 0

0

0
@

1
A

360 �55 0

�45 0

0

0
@

1
A

635 �25 0

�35 0

0

0
@

1
A

Synchrotron.

Applied stress 0 400 750

Stress tensor
15 �105 0

30 0

0

0
@

1
A

365 �25 0

�30 0

0

0
@

1
A

655 �15 0

80 0

0

0
@

1
A

XRD.

Applied stress 0 650

Stress tensor
0 45 �10

�105 10

0

0
@

1
A

585 40 �20

�40 10

75

0
@

1
A

Table 3
Values of �11 (in MPa) obtained by Kossel microdiffraction in a scanning
electron microscope for three locations and two applied stresses (400 and
680 MPa), and the standard deviations per loading.

Applied stress 400 680

�11 for spot 1 435 700
�11 for spot 2 340 585
�11 for spot 3 305 615

Average (standard deviation) 360 (65) 633 (60)

Figure 6
Microstructure of the Ni superalloy, showing a � matrix and cubic � 0

precipitates.



components were about 40 MPa lower than the applied stress,

and �22 and �12 were slightly in compression. Besides that, �11

had significant dispersion of about 60 MPa (Table 3). As for

the results of the experiments at ESRF, the local stress tensor

for the applied stress of 400 MPa was very close to that

obtained by SEM. However, for the 750 MPa state, a larger

gap (110 MPa) between �11 and the applied stress was

observed. The XRD results are similar to those of Kossel

microdiffraction: in the former case, �11 was slightly lower

than the applied stress (about 10% difference) and the other

components were negligible compared to �11. From the shear

stresses and the dispersion (Table 2), the stress resolution of

the Kossel microdiffraction in SEM can reasonably be esti-

mated to be about 60 MPa. For the investigated alloy, it is

equivalent to a strain resolution of about 3 � 10�4.

Besides the imprecision of the used methods, there are

other possible causes of deviations between the applied

stresses and the internal stress along the tensile direction. In

the loaded states, the gaps can be partly explained by the

experiment duration, which could allow for a relaxation of the

stress imposed by the tensile device. (The recording of Kossel

patterns in the scanning electron microscope took about three

minutes per pattern plus the time needed to adjust the

specimen and the electron beam. The XRD experiment took

several hours as the crystal was oriented before each

measurement of interplanar spacing.) The deviations could

also be linked to stress localization. Indeed, the SEM

measurements showed that �11 depends on the location. Some

deviations may be due to the composite microstructure of the

material and differences in the volumes analyzed in SEM-,

synchrotron- and XRD-based measurements, as the stress

values are averages over � and � 0 phases having different

mechanical properties. Also, heterogeneities caused by

surface preparation could contribute to the deviations. In fact,

residual stresses obtained in the initial (no

loading) states were significant.

6. Conclusions

A Kossel microdiffraction setup has been

assembled in a scanning electron microscope

for strain and stress analysis at the micrometre

scale. The strain resolution of Kossel micro-

diffraction was estimated using simulated

diffraction patterns. The effect of the number

of conics selected for the refinement was

investigated. The test provided the minimum

number of conics that must be marked on the

experimental pattern to achieve a given strain

accuracy. For the considered Ni alloy, if the full

strain tensor is calculated, in order to reach a

precision of 2 � 10�4, at least 11 Kossel conics

need to be taken into account. On the other

hand, the achievable strain resolution esti-

mated from a very sharp experimental pattern

was found to be about 1 � 10�4. The Kossel

technique was finally tested for determination

of nonzero stresses in single crystals of a nickel-

based superalloy during uniaxial straining.

Stress results obtained by Kossel micro-

diffraction (in SEM and with synchrotron

radiation) were compared with those collected

from X-ray diffraction. For this material, the

strain and the stress resolutions were estimated

to be about 3 � 10�4 and 60 MPa, respectively.

The strain resolution of the proposed approach

is constrained by the crystal structure, which

determines visible reflections and their Bragg

angles, and – intrinsically – by the use of a

simple geometric description of diffraction

lines in combination with empirical rules of

matching the geometric lines to experimental

lines (of finite thickness and complicated

profiles).

Figure 7
(a) Experimental Kossel pattern obtained from the Ni superalloy. (b) Geometric simulation
superimposed on the experimental pattern.



The strain resolution obtained for the Ni superalloy (3 �
10�4) demonstrates that the Kossel microdiffraction technique

can be effectively used for practical studies of moderate local

elastic stresses in polycrystalline samples with grain dimen-

sions of a few micrometres or more.
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