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A Probabilistic Multi-class Classifier for Structural Health 
Monitoring 
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Abstract. In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage 
detection, localization, and quantification in smart mechanical structures. As these structures can face damages 
of different severities located at various positions, multi-class classifiers are naturally needed in that context. 
Furthermore, because of the lack of available data in the damaged state and of environmental effects, the 
experimentally obtained damage sensitive features may differ from those learned offline by the classifier. A multiclass 
classifier that provides probabilities associated with each damage severity and location instead of a binary decision is 
thus greatly desirable in that context. To tackle this issue, we propose an original support vector machine (SVM) 
multi-class clustering algorithm that is based on a probabilistic decision tree (PDT) and that produces a posteriori 
probabilities associated with damage existence, location, and severity. Furthermore, the PDT is here built by 
iteratively subdividing the surface of the structure and thus takes into account the actual structure geometry. The 
proposed algorithm is very appealing as it combines both the computational efficiency of tree architectures and the 
classification accuracy of SVMs. The effectiveness of this algorithm is illustrated experimentally on a composite 
plate instrumented with piezoelectric elements on which damages are simulated using added masses. Damage 
sensitive features are computed using an active approach based on the permanent emission of non-resonant Lamb 
waves into the structure and on the recognition of amplitude disturbed diffraction patterns. On the basis of these 
damage-sensitive features, the proposed multi-class probabilistic classifier generates decisions that are in excellent 
agreement with the actual severities and locations of the simulated damages. 
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1 Introduction 

Structural health monitoring (SHM) is an emerging technology designed to automate the 
inspection process undertaken to assess the health condition of structures. In a smart structure, 
SHM systems may automatically process data, state regarding structural conditions, and highlight 
any need for human intervention [1]. The output of any SHM process should provide information 
regarding the type, the location, and the severity of the damage. Thereby, the SHM process is 
classically decomposed into four sequential steps: detection, localization, quantification, and 
prognosis. SHM involves many disciplinary fields (material science, structural analysis, signal 
processing, data mining, fracture mechanics, fatigue life analysis…) and has been the topic of 
extensive research efforts over the last thirty years. This technology is now progressing toward 
operational service and recent surveys have shown that even reluctant industry areas are now 
convinced that SHM is the key technology that will enable the transition from schedule-driven 
maintenance to condition-based maintenance [2]. Rresearchers are now exploring ways to adapt 
information technologies in order to reduce system monitoring costs while simultaneously 
broadening their functional capabilities. In this paper, we address the detection, localization and 
quantification steps of the SHM process. 

1.1 Damage-sensitive features generated using Amplitude Disturbed Diffraction Pattern 

SHM system operational results can be classified into four different sequential levels: detection, 
localization, quantification, and prognosis [1]. Several different techniques that depend on the 
structure’s material, on the technology used for acting and sensing, on the position, size, and 
nature of damage may be employed to perform SHM [3]. They could be sorted in two main 
categories: global or local.  

Among others global SHM methods, we can highlight vibration based approaches [4, 5]. These 
methods are categorized based on the type and nature of measured data. Significant examples 
include: model updating [6]; statistical time series and modal analysis [4]. In those approaches we 
seek to track changes in global structural parameters (mass, stiffness, flexibility, damping) and 
modal parameters (modal frequencies, associated damping values and mode shapes) by analyzing 
changes induced in the global dynamic behavior of a structure. Experimental identification of 
these dynamic properties indeed gives insight on the structural damage conditions, see [7, 8, 9] and 
references therein. Multivariate techniques have been also used in global vibration-based SHM: 
examples are the PCA (Principal Components Analysis) [10] and ICA [11]. In the case of nonlinear 
damage, specific vibration-based approaches have also been developed recently by the authors 
using cascade Hammerstein models [12]. An extensive overview of nonlinear global vibration-
based SHM methods can be found in [13].  

For local inspection, we can employ electro-mechanical impedance or displacement/strain as 
features indicating the presence of damage [3]. As these methods are local, their sensibility is 
strongly linked to the position of the sensors. In that category, we can also highlight acoustic 
emission or high frequency wave-based approaches that have the advantage to be sensitive to very 
small damages and offer the capability of propagation over a significant distance [14]. Evaluation 
of wave propagation on solids is one of the most successful techniques for damage monitoring 
[15]. One piezoelectric actuator emits periodic burst pulses exciting Lamb waves in the structure 
under inspection, and a set of sensors records signals, representing the respective structural 
responses. These signals are processed in order to extract damage related information such as 



location, size, orientation, type among others [14]. One of the outstanding advantages of using 
Lamb waves for SHM is that such waves can travel over relatively long distance and can be used 
to monitor various types of damage (as delamination, disbonds, fiber breaking, impact,...) [16].  

To construct measurements that are sensitive to the damage, we use in this work an active SHM 
approach based upon a correlation technique that relies on wave diffraction patterns recognition. 
Damage-sensitive features are generated thanks to the Amplitude Disturbed Diffraction Pattern 
(ADDP) phenomenon observed using permanent emission of selected non-resonant Lamb waves 
in the structure. ADDP assesses the disturbances that damage brings to the acoustic wave 
propagation in the structure. These disturbances depend upon the damage severity and position as 
well as on the frequency of the exciting signal. With an appropriate calibration procedure, it is thus 
possible to detect, localize, and quantify the damage using ADDP. This process has already been 
successfully used as a multi-touch sensing approach to tactile sensing [17]. The formulation of this 
process as a damage location one has been presented in [18]. In this paper, the ADDP process will 
be used to generate the damage-sensitive features that will allow detecting, localizing, and 
quantifying the damage. 

1.2 The need for a probabilistic multiclass classification tool in SHM 

The extraction of damage-sensitive features from measurements is a process that is most 
powerful when it is followed by pattern recognition [19]. Indeed, in a statistical pattern recognition 
paradigm for SHM, it is usually rather difficult to obtain data from damaged structures because of 
cost and of practical constraints. However, when such data are available, a whole new range of 
algorithms can be used [19] and the problem of damage detection, localization, and quantification 
can be cast as one of classification [20, 21] .  

As the structures under study can face damages of different severities located at various 
positions, multi-class classifiers are naturally needed. Furthermore, because of the lack of available 
data in the damaged state and of the environmental effects, the experimentally obtained damage-
sensitive features may differ from those learned offline by the multi-class classifier. A multiclass 
classifier that provides probabilities associated with damage existence and with each damage 
location and severity instead of a binary decision is thus greatly desirable for SHM. With such a 
classifier, damage locations can for example be ranked from the most probable to the least one, 
thus providing helpful guidance for the inspection task. Indeed, the reliability assessment of SHM 
systems is the key issue in ensuring their successful implementation. For example in aerospace 
maintenance procedure minimizing structural teardown to access regions to be monitored is one of 
the claimed benefits in using SHM rather than classical nondestructive evaluation (NDE) systems. 
Moreover, given that the diagnosis (class assignment) will be made on the basis of measured data, 
it is important that the chosen pattern recognition algorithm is able to accommodate a degree of 
imprecision commensurate with expected levels of measurement error and noise. This requires that 
the damage detection, localization and quantification SHM outputs' have to be assorted with a 
probability. This probability is then considered as a level of the trust in the SHM systems results.  

In this work, where a statistical pattern recognition paradigm for SHM is considered, we propose 
to provide a metric helping the condition-based maintenance decisions for in-service structures. 
This is possible by capturing during the training phase a part of the effect of environmental 
variability. This will represent the probability of how likely are SHM system outputs. Moreover, to 
ease the practical implementation, by simply thresholding these a posteriori probabilities at each 
node, the soft-decision approach can be converted to the conventional hard-decision approach.  



1.3 Towards probabilistic binary decision trees 

Formally, we seek for an algorithm able to solve a multi-class data classification problem in a 
manner that produces confidence probabilities associated with each class. This algorithm should 
also ideally take into account some a-priori knowledge related to the structure (geometry, 
material…) in order to speed up the diagnostic. Moreover, in this work, we propose to use pre-
defined class hierarchy. That means that the internal (non-leaf) nodes of the structured tree are 
chosen based on data where we built the hierarchy during training and then classify new samples 
by using the hierarchical tree. 

Generally speaking, there exist two main types of classifiers: hard and soft [22]. Hard classifiers, 
such as support vector machine (SVM) [23] , build a frontier between classes. They only label new 
unknown points with the class associated to the side of the frontier in which they fall, without 
giving any idea of the certitude of the decision or the degree of membership to that class. These 
classifiers are very appealing, because in general they tend to give very accurate predictions. The 
formulation of bi-class SVMs finds the hyperplane that separates the two classes by ensuring the 
largest margin with respect to each of the class. Extending this formulation directly to more than 
two classes is generally avoided due to the complex optimization equation that it leads to. Instead, 
the multi-class SVM problem is often dealt with by using an ensemble of two-class SVMs. Various 
strategies exists to achieve such combinations, the most popular ones being "one-against-one" [24, 
25], "one-against-all" [23, 26] and Error-correcting output codes (ECOC) [27]. A less known 
approach consists in dividing the problem in a hierarchical way where classes which are more 
similar to one another are grouped together into mata-classes, resulting in a Binary Hierarchical 
Classifier [28, 29]. Regarding hierarchical classification [30] where classes are organized in tree or 
a DAG-like structures (Directed Acrylic Graph), the damage localization classification problem 
can be naturally cast as a hierarchical classification problem where the classes to be predicted are 
organized into meta-classes (for example subdividing geometric zones to be monitored) hierarchy 
as a tree.  

Considering a local classifier per node approach [30], Madzarov [31] has come up with a simple 
and intuitive method based on building a binary SVM decision tree. Actually, a class binarization 
is the mapping of a multiclass problem into several two-class problems in a way that allows the 
derivation of a prediction for the multiclass problem from the predictions of the two-class 
classifiers. By selecting specific features, such as the distance between gravity centers of the 
different classes, an automatic graph is generated where at each node a bi-class SVM is trained 
[31].. However, such multi-class hard classifiers only provide one predicted class without any 
associated score indicating the confidence of the classification. On the opposite, soft classifiers 
like Logistic Regression (LR) [32] are able to build probability estimations for the belonging of an 
incoming example to all the classes, and then with this information they choose the most likely 
class. However, their classification performances are in general poorer than the hard classifiers 
ones. We are thus interested, in a multi-class context, by the probabilities estimation offered by 
soft classifiers while keeping the hard classifiers proved performances [33]. Standard SVMs do not 
provide such probabilities, but solutions to this issue were proposed. In a bi-class context, Platt [28] 
proposed a method to compute the probabilities 𝑝(𝑐𝑙𝑎𝑠𝑠|𝑖𝑛𝑝𝑢𝑡)  from SVM outputs. The 
approach consists in training the parameters of a sigmoid function to map the SVM outputs into 
probabilities. The underlying idea of this so-called Probabilistic SVM classifier (PSVM) is that 
when the distance from an example to the frontier is large, the example will very likely belong to 
that class. However all these works were developed for the bi-class problem only. By adapting 



Platt’s method to a multi-class context by means of a binary decision tree, it is thus in principle 
possible to extract probabilities from SVMs outputs while keeping the demonstrated performances 
of hard classifiers.  

This approach has been developed previously by the authors and successfully applied to 
automotive repairing backdrop [34]. Using damage-sensitive features generated through ADDP, 
this approach is extended here to detect, localize and quantify damages. Moreover, by assuming 
that the structure has an Euclidean geometry and topology (which is not restrictive as the structure 
can be subdivided in areas that satisfied this property), we propose to construct the decision tree by 
iteratively partitioning the structure along affine hyperplanes. By doing so, each leaf of the tree, 
represent, a geometric zone of the structure. This leads to a new algorithm: SVM geometric 
probabilistic decision tree (SVM-GPDT), where a multi-class probabilistic classifier is then built 
on the basis of this decision tree. Therefore, using this topological a priori knowledge, the SVM-
GPDT will provide fast classification (logarithmic complexity) along with associated posterior 
probabilities 𝑝(𝑐𝑙𝑎𝑠𝑠|𝑖𝑛𝑝𝑢𝑡). In a SHM context, this approach is very appealing because due to 
restrictions upon actually damaging structures, few data are usually available to train the classifier, 
and few data are needed to train this one. Furthermore, it is sufficient in several applications to 
only locate the most likely damaged area. For example, in aeronautical structures, it is satisfactory 
to give the damaged panel and an estimate of damage severity and then to use precise 
nondestructive testing and evaluation procedures. This algorithm thus offers an original and 
practical way to generate probability information related to the presence and severity of damage in 
each structural zone to be monitored. 

The paper is organized as follows: Section 2 describes the original SVM based multi-class 
classification approach proposed here, including the geometric approach used to generate the 
damage decision tree. Section 3 validates the proposed approach for damage detection, localization, 
and quantification experimentally. Concluding remarks and future perspectives are drawn in the 
last sections. 

2 A probabilistic multi-class classification algorithm 

2.1 Optimized soft margins Support Vector Machines with Gaussian kernels 

Classic support vector machines (SVMs) have proved to be very effective classification methods 
[35]. They are binary linear classification techniques which search for the hyperplane (in the 
hyperspace of attributes) that separates two classes in a training set. This hyperplane is found by 
maximizing the so-called margin, which is the distance from the hyperplane to the closest points, 
denoted support vectors. A common variant of classic SVM, is called soft margin and it consists of 
admitting some misclassified points in the training set to prevent the over fitting problem. 
However, we want to avoid too many points being misclassified. Thus we impose a penalty 𝐶 
that will penalize every misclassified example. 𝐶 can take values in the range 0 < 𝐶 ≤ ∞. A high 
value of 𝐶, means a strict classifier that doesn’t admit many misclassified points. On the opposite, 
a small 𝐶 means a very flexible classifier.  
Formally, we have a training set {(𝒙𝟏, 𝒚𝟏),… , (𝒙𝒏, 𝒚𝒏)}, where every point 𝒙𝒊 = (𝒙𝒊𝟏, … , 𝒙𝒊𝒎)
has 𝑚 attributes and one of the two possible labels 𝒚𝒊 = {−1 ,1}. A soft margin SVM classifier
will label a new unknown point 𝒙𝒕 according to the decision function:



 

 𝑦(𝐱𝑡  ) = 𝑠𝑔𝑛((𝒘. 𝒙𝑡  ) + 𝑤0)   (1) 
 
where 𝒘 and 𝑤0 are the hyperplane parameters to find on the basis of a training set.  

In SVM, kernels can be used to project the data into a virtual space where it might be easier to 
separate them [23]. The main advantage of kernel functions is that the only operation needed to be 
defined in the new virtual space is the inner product  𝜅(𝒙𝑖, 𝒙𝑗) = ⟨𝒙𝑖, 𝒙𝑗⟩

 . Applying a kernel 
function together with the soft margin, a soft margin SVM classifier will label a new unknown 
point 𝒙𝒕 according to the new decision function [36]:  

 
 𝑦(𝐱𝑡) = 𝑠𝑔𝑛(𝑓(𝒙𝒕)) (2) 

where 𝑓(𝒙) is defined as: 

 

 𝑓(𝒙) =∑𝛼𝑖𝑢𝑖𝜅(𝒙𝑖, 𝒙) +  𝑤0

𝑚

𝑖=1

 (3) 

 

The values of 𝛼i and 𝑢𝑖 are found by solving the following constrained optimization problem on 
the basis of the training examples: 

 

 

{
 
 

 
 max

𝛼𝑖
[∑ 𝛼𝑖 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑢𝑖𝑢𝑗𝜅(𝒙𝒊, 𝒙𝒋) 

𝑚

𝑖,𝑗=1

𝑚

𝑖=1
]

 

 

0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1,… ,𝑚

∑ 𝛼𝑖𝑢𝑖
𝑚

𝑖=1
= 0

 (4) 

 
In the case of Gaussian kernel the only tuning parameter is  𝜎2. A small value of  𝜎2  will lead 

to curved hyperplanes and a high value will constrain the hyperplanes to be straighter. In [37] it is 
shown that for some combinations of the hyperparameters (𝐶, 𝜎2), the Gaussian kernel tends 
towards the linear kernel, which makes the Gaussian kernel the most general method and one that 
would work for a large range of datasets. The hyper parameters (𝐶, 𝜎2) have to be optimized for 
every classification problem. In this work we used Lin's approach to optimize the choice of the 
coefficients (𝐶, 𝜎2) [37]. 

2.2 Probabilistic Support Vector Machines (PSVM) 

As stated before, SVM produce a value that is not a probability. Indeed, SVM only give a class 
prediction output that will be either +1 or −1. In order to extract the associated probabilities 
from SVM outputs, several approaches have been proposed [23, 28]. We will focus on Platt’s 
approach [28] who proposed a technique that has been largely used in the literature. He builds a 
sigmoid function between the outputs 𝑓(𝒙) of the SVM and the probability of membership 
𝑝(𝑦 = 𝑖|𝒙) to a class  𝑖, given the attributes of 𝒙. A simple bi-class example is shown in Fig. 1. 
The sigmoid will have the following parametric expression: 





 

2.3 From bi-class to multi-class problems 

SVM were originally designed for bi-class classification problems and the passage to multi-class 
problems is still an on-going research area [39, 40, 41, 42]. There are two major approaches to 
solve this type of problems. The first and intuitive one named "All-together", consists in 
formulating a cost function with 𝑄 (the number of classes in our problem) hyperplanes [43, 44]: 
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𝑚
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 (8) 

 
This optimization problem, with so many variables, is in general difficult to solve [39, 44]. 

Therefore, an alternate approach consists in dividing the multi-class problem in several binary sub-
problems. There are numerous methods that perform this subdivision. The most popular are One 
against one [24, 25, 45], One against all [23, 26], and Error-correcting output codes (ECOC) [27, 
46].  

Yet another approach for tackling the multiclass classification problem utilizes a hierarchical 
division of the output space i.e. the classes are arranged into a hierarchical structure: Directed 
Acyclic Graph (DAG) [33], or Binary decision Trees (BDT) [31]. In the tree structure, The tree is 
created such that the classes at each parent node are divided into a number of clusters, one for each 
child node. The process continues until the leaf nodes contain only a single class. For sake of 
shortness, we will only focus on the BDT method, because it is the one we will use in the sequel. It 
is important to note that the BDT processing time is smaller than the other methods because the 
depth of the decision tree is of order log2(𝑄)  since at every level the tree eliminates 
approximately half of the remaining classes.  

 
In [31], it is proposed to build a binary decision tree in which at every node the remaining 

classes are separated in two subgroups 𝑔1 and 𝑔2. A SVM classifier decides to which subgroup 
the new point belongs to, and hence in which direction to move. In order to build the tree (the first 
step in the classification procedure) a clustering algorithm divides all the 𝑄 classes into sub-
groups 𝑔1 and 𝑔2. The algorithm calculates the gravity centers of all classes. The two classes with 
the biggest Euclidean distance from each other are assigned to each of the sub-groups. Then the 
algorithm checks the closest class to one of the sub-groups, this class is assigned to that sub-group, 
their gravity center is recalculated with the new points that have just been added. This is repeated 
until all classes have been assigned to one of the groups. For each sub-group the clustering 
algorithm is repeated until there is no more than one class per sub-group. 











 

The strategy retained here consists in monitoring the acoustic wave propagation (or the energy 
carried out by the Lamb wave) that can be affected by impact damages. Considering that the 
energy propagation is disturbed by the presence of damage, the diffraction signal can then provide 
the information needed to locate and quantify it. Following this observation, we use an active 
damage monitoring process based on the Amplitude Disturbed Diffraction Pattern (ADDP) 
phenomenon observed using the permanent emission of selected non-resonant Lamb waves (>
20). Lamb waves at different frequencies have different propagating velocities and ratios between 
the normal and the shear components. Therefore, they provide distinct diffraction behaviors when 
damage occurs on the plate. With an appropriate analysis and calibration procedure, we are able to 
locate the damage position and to quantify it. 

For our application, an excitation signal composed of 31 frequency components distributed from 
20 kHz to 100 kHz has been constructed with a sampling frequency of 2 MHz and duration of 
1 ms as depicted in Fig. 6. The number of the chosen frequencies is a tuning parameter selected to 
discriminate between features at numerous predefined damage positions. The reliability of this 
process depends highly on this choice. Following the approach developed in [48], we use the 
contrast value of the ADDP image as a criterion to validate a particular frequency excitation. In the 
sequel, we propose to use as damage features, the FFT (Fast Fourier Transform) of the signal 
received by each sensor 𝑅1 and 𝑅2.  

Given that each sensor perceives different parts of the information, we have concatenated the 
signals coming from both sensors, obtaining a vector containing 400 attributes. 

 
𝑥𝑖 = [ 𝑓1(𝑅1), 𝑓2(𝑅1),… , 𝑓200(𝑅1), 𝑓1(𝑅2),… , 𝑓200(𝑅2)]   𝑖 = {1,… , 𝑛} 

 
In terms of SVM (see Section. 2.1), the labels 𝑦𝑗 associated with the examples 𝑥𝑖 will be the 𝑄 
zones in which the plate is divided (𝑄 = 16 or 32), as shown in Fig. 5. 

3.3 SHM framework and SVM-GPDT classification architecture 

The damage detection, localization and quantification algorithm proposed here is a sequential 
process that can be described by three main steps: calibration, learning and identification (Fig. 7). 
In the proposed framework, the first step consists in training the system. Then, when damage is 
detected, we first quantify its severity and then locate it. The general architecture of the classifier 
is illustrated in Fig. 8. 

 
Fig. 7: The SHM classification based framework 















 

4.3 Multi class or multi-label classification problem? 

The purpose of the present paper is to derive an original answer to the problem of damage 
detection, localization and quantification. A question that can be raised is whether a multi-class 
formulation of this problem is more appropriate than a multi-label formulation. The difference 
between the notions of class and label lies in the fact that an example can belong to only class, but 
can have multiple labels. Multi-label classification is thus an extension of multi-class classification 
where data can have one or more labels [52]. Due to its great potential applications, multi-label 
learning has now been receiving more and more attention from many fields [53, 54, 44]. 
According to [55, 30], in the context of hierarchical classification, most approaches could be called 
multi-label. Indeed, if we recall the tree class structure presented in Fig. 3b, and suppose that the 
output of the classifier is the class {1}. Then it's natural to say also that the classifier have 3 
outputs because class {1} belongs to classes {1  3} and {1 3 5 7} too. Therefore, with this 
simple definition, any hierarchical classification could be considered multi-label in this sense. 
Hierarchical multi-label classification algorithm is still a challenging problem and most 
approaches consider the case where it can be assigned more than one class at any level of the tree 
[56].  

Going back to the SHM problem, the output of SHM systems is a vector with 3 features: (i) 
damage zone, (ii) damage severity, (iii) damage type. The definition of each features is 
straightforward: several damage locations, several severity levels (BVID , VID) and different 
damage types (impact, debonding, delamination, …). With that in mind, it comes out that a class 
can be defined in a unique manner: one zone, one severity level and one type. With this class 
definition, the only overlapping examples are those lying along the frontier between two classes 
for a given feature. For example, damage could be located at the frontier between two zones or 
having a severity level between two pre-defined levels. These overlapping examples are thus a 
direct consequence of the a priori discretization of the features location and severity that are, in 
reality, continuous and not an intrinsic property of the problem under study. From the authors point 
of view, the SHM problem can therefore be naturally cast as a multiclass problem and not as a 
multi-label one. From that point of view, the proposed classification algorithm can be seen as an 
implicit probabilistic multi-label method where labels exist at the frontiers between classes. 
However, another point of view would be to define classes in relation to the different features. 
Following that idea, there will be one class for each damage location, one class for each damage 
type, and one class for each damage severity. Knowing this, there is a natural overlap between the 
different classes: for example, damages located in a given zone can be of distinct types and of 
severities. So with this definition of class, classes are indeed labels and the problem to face is a 
multi-label one. In Section 4.1, the consequence of spatial discretization is studied. It is shown that 
if the localization result has an ambiguity between neighborhood zones then by looking to the 
node just above in the decision tree, a macro-damaged zone can be defined. This is still a helpful 
guidance for the inspection task as afterwards the damage location can be refined by using 
traditional inspection techniques. 

4.4 Spatial resolution versus computational cost 

The performances of the classifier in term of spatial selectivity depend heavily on the method 
used to generate features and the availability of the damaged learning database. Increasing the 
spatial resolution will increase the training and testing times. The training time depends on the 





 

5 Conclusion 

In this paper, an original process for damage detection, localization and quantification on smart 
mechanical structures instrumented with piezoelectric active elements has been presented and 
validated experimentally. The SVM Geometric Probabilistic Decision Trees (SVM-GPDT) 
constitutes an original approach to the multi-class probabilistic damage classification problem. 
This algorithm takes advantage of the decision tree architecture and of the posterior probability 
provided by PSVM. At each node of the PDT, SVM classification associated with a sigmoid 
function is performed to estimate the probability of membership to each sub-group. A probability 
function is then built for each leaf by following the path that the PDT has generated for it. For each 
branch the outputs of all the nodes composing the branch are combined to lead to a complete 
evaluation of the probability when reaching the final leaf (representing the class associated with 
the branch). Formally, we thus presented and validated an interesting solution to solve a multi-
class data classification problem in a manner that produces confidence probabilities associated 
with each damage feature. Moreover, the availability of the damage posterior probability will 
facilitate embedded damage monitoring. The SHM process will be trained offline and assessed 
online by calculating in real time the probabilities of having damages.  

The approach has been tested experimentally on a composite plate, giving reliable predictions in 
terms of detection, localization and quantification. For real, applications, this approach is 
interesting as the chosen damage-sensitive feature is not very sensitive to border conditions, and 
the excitation with non-resonance frequencies will not accentuate the damage progression and 
impact the durability of the monitored structure. 

Regarding the classification performances of the prosed method, it first advantage lies in the fact 
that it allows not just for classification, but for classification with an associated posterior 
probability. The second one is that the classification procedure proposed here is relatively fast as it 
is of logarithmic complexity. The third one is that the notion of geometry is introduced to the 
classifier. Because SHM is a problem in the real space, we can help the classifier by giving it some 
a-priori information that might discard data that is not relevant in a particular classification process, 
reducing the data to be treated, the time for treating it and the possibilities of mistakes. The last 
advantage is that as it relies on SVM, relatively few examples are needed for training. Regarding 
drawbacks, the first one is that the proposed method is based on discrete classes and thus imposes 
quantification of the different data features. The second one concerns the fact that in order to train 
the method example of damaged states are needed, and such examples are in practice not widely 
available. Actually, it is well known, that the main issue when applying pattern recognition 
approaches to damage monitoring is to construct a database of damage conditions. Indeed, the 
damage diagnostic system will not perform better than the data used to build it. As we need to 
avoid damaging the structure, two approaches can be used: multi-physical modeling and/or 
simulation of damage effects. It's this last approach that was used in this work. Another drawback 
is related to training set of data and the classifier generalization performances. Every classifier has 
its limits regarding the generalization capacity. Further tests should be performed in order to have 
a more precise idea about its capacities. We think that this drawback might be mitigated thanks to 
the probabilistic output. When the classifier is completely lost, he should provide a low probability 
associated to the uncertain prediction. The last drawback is linked to the training stage. Indeed, 
there is in reality, two training stage: the training of the SVMs of each node, and the training to get 
the probabilities out of each node. Thus, the previously mentioned advantage of the method (which 
is the need of few training points) has to be evaluated by considering that drawback. 



Suppose now that actual data related to damaging locations are available to train the machine 
learning diagnostics. Then, another problem rise which is how to elaborate features that could 
reliably discriminate between damage and undamaged states. The ADDP process has been used 
within this paper but maybe some other damage-sensitive features will perform better.  

Another useful issue in a data mining is to have access to posterior probability associated with 
each damage classification. The approach presented throughout this work proposes a solution to 
the multi-class data classification problem in a manner that produces confidence probabilities 
associated with each damage feature. Each damage feature is classified from the most probable 
one to the least probable one. This is very interesting because this information can be valuable in 
the decision and prognostic steps and can help in improving the specification of robust bounds. 
Moreover, this knowledge could help the maintenance procedure by crossing with expert data.  
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