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h i g h l i g h t s

• A tolerance analysis approaches overview is proposed.
• A linearization procedure of the behavior model is required for both approaches.
• Some linearization strategies provide conservative probability of failure results.
• A confidence interval is obtained using two different linearization strategies.
• The order of magnitude of the probability has an effect on the convergence speed.

All manufactured products have geometrical variations which may impact their functional behavior.
Tolerance analysis aims at analyzing the influence of these variations on product behavior, the goal
being to evaluate the quality level of the product during its design stage. Analysis methods must verify
whether specified tolerances enable the assembly and functional requirements. This paper first focuses
on a literature overview of tolerance analysis methods which need to deal with a linearized model of the
mechanical behavior. Secondly, the paper shows that the linearization impacts the computed quality level
and thus maymislead the conclusion about the analysis. Different linearization strategies are considered,
it is shown on an over-constrained mechanism in 3D that the strategy must be carefully chosen in order
to not over-estimate the quality level. Finally, combining several strategies allows to define a confidence
interval containing the true quality level.

1. Introduction

Geometrical tolerances influence both design functional per-
formance and production costs, because their effects are felt at
all stages of the product life cycle, so these are key elements for
the design process. Appropriate design tolerances enable complex
mechanical assemblies, made up of several parts, to be assembled
and functional at low cost. Moreover, they enable the quality level
of assemblies to be increased and ensure a high mechanical reli-
ability of the product. To evaluate whether the design tolerances

are relevant to ensure the functionality of the product, a method-
ology such as tolerance analysis must be applied. The tolerance
analysis of mechanisms aims at verifying whether the specified
design tolerances allow to reach a given quality level of the prod-
uct during its design stage. The goal is to avoid the manufacturing
of non-functional mechanisms. Hence, tolerance analysis is a key
element [1]:

• to improve product quality,
• to reduce manufacturing costs,
• to manage and reduce waste in production.

Tolerance analysis can be divided into two approaches, whose
techniques to build the behaviormodel are different. A comparison
of both approaches is proposed in order to show their similarities
and differences. Although the formulations of the mathematical
models are different, both approaches need to deal with an ap-
proximated model coming from a linearization procedure in order
to perform the analysis method and compute a predicted quality
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level. Indeed, the analysis method is based on mathematical op-
erations which require a linear model: a Minkowski sum and lin-
ear optimization problem with constraints. For both approaches,
the linearizationprocedure implies simplifying the behaviormodel
and thus modifying the accuracy of the mathematical model. This
operation creates a model error which needs to be quantified. In
addition, depending on the type of linearization, the corresponding
error created may be different. It appears interesting to determine
the best linearization procedure in order to limit the approxima-
tion error.

This paper first proposes a brief comparison of tolerance anal-
ysis approaches to show why the linearization procedure is re-
quired for both techniques. Then the paper intends to show that
the linearization procedure has, of course, a real impact on the
predicted quality level and on the computer time to obtain the
information. However, a carefully chosen linearization procedure
strategy enables this impact to be reduced. Indeed, depending on
the considered strategy, the quality level may be under-estimated
or over-estimated, and the computing time can be greatly in-
creased. The analysis method must therefore take these parame-
ters into account when applying a linearization procedure.

The next section of this paper focuses on a literature overview
of both tolerance analysis approaches in order to show that a
linearization procedure of the behavior model is required for all
approaches. Section 3 presents the considered linearization strate-
gies of the behaviormodel. Themathematical operation for the lin-
earization of non-linear equations is detailed. Section 4 integrates
the mathematical description and the solution of a tolerance anal-
ysis problem based on the model proposed by Dantan and Qureshi
et al. [2,1]. Section 5 is devoted to an impact analysis of the lin-
earization procedure on an industrial application. Results of the
linearization impact are shownanddiscussed in this section. A con-
clusion ends the paper.

2. Tolerance analysis overview

Tolerance analysis aims at verifying the value of functional re-
quirements after tolerances have been specified on each compo-
nent of a mechanism. Three main issues exist [3]:

1. Modeling geometrical deviations due to the manufacturing
process and modeling gaps between features.

2. Building a mathematical model to simulate the behavior of the
mechanism, taking into account deviations and gaps.

3. Developing analysis methods to estimate the quality level.

2.1. Geometrical models

Modeling geometrical deviations and gaps are required in order
to perform items 2 and 3. Both deviation and gap characterize a
displacement between two surfaces of amechanism. The geometry
of the mechanism parts can be modeled in different ways:

• nominal surface: ideal surface whose dimensions and positions
match the design.

• skin model: real manufactured surface.
• substitute surface: perfect surface associated with the skin

model where the form defects are neglected.

In the present paper the form defects are omitted, so the repre-
sentation of the geometrical deviations and the gaps is based on
substitute surfaces. It could be between two substitute surfaces or
between a substitute surface and a nominal surface [2]. Geometri-
cal deviations (situation or/and intrinsic deviations) are modeled
by random variables, written X = {X1, . . . , Xn}. Gaps are modeled
by free variables, written G = {g1, g2, . . . , gm}, which need to be
computed by the analysis method. Small displacements and kine-
matic displacements may be considered; they are used either to

model small mobilities of the mechanism due to deviations and
gaps, or kinematic displacements in joints.

Several representations are mentioned in the literature to deal
with displacements. They can be expressed using one of the
following techniques: kinematic formulation [4,5], small displace-
ment torsor (SDT) [6,7], matrix representation [8], vectorial toler-
ancing [9]. The analysis method formulation is based on the small
displacement torsors, see Section 4, but it is not limited to one of
these techniques; all representations are suitable.

2.2. Behavior models

Building a behavior model allows to know how features of a
mechanism interact, that is why relations characterizing its be-
havior have to be identified. In particular, these relations concern
dimensional chains, in order to link features in contact with each
other, with or without gaps. In addition, other relations have to be
considered to prevent features from penetrating into others when
there are gaps. Tolerance analysis can be divided into two dis-
tinct categories: displacement accumulation and tolerance accu-
mulation [1]. The first category defines constraints on parameters
[2,1] and the second one defines admissible volumes of variations
[10–13].
• The goal of displacement accumulation is to model the in-

fluences of the deviations on the geometrical behavior of the
mechanism. The relation uses the following form [14]:

Y = f (X,G) (1)

where Y is the response of the system (a characteristic such as a
gap or a functional characteristic). The function f represents the
deviation accumulation of the mechanism; it can be an explicit
analytical expression, an implicit analytical expression or a nu-
merical simulation. The difficulty in determining the function f
increases with the complexity of the studied system [15,2,16].

• The aim of tolerance accumulation is to simulate the com-
position of tolerances i.e. linear tolerance accumulation, 3D
accumulation. The admissible deviations aremapped using sev-
eral vector spaces in a region of hypothetical parametric space.
Tolerance accumulation uses relations between all domains to
characterize the geometrical behavior. The literature mentions
several techniques to represent geometrical tolerances or di-
mensioning tolerances, among which are T-maps R⃝ [10,17,11],
gap spaces [18,19] and deviation domains [12,13].

In both cases, several types of domains and constraints are de-
fined. Although the behavior model is based on different math-
ematical tools, an analogy between these types is possible. Both
representations of mechanical behavior have similarities; a brief
parallel of both approaches is presented in Table 1.

2.3. Tolerance analysis problem formulations

The tolerance analysis method must define a mathematical
formulation able to take into account all the characteristics of the
behaviormodel and to provide an accurate computed quality level.
A comparison of the quality level formulations is presented in
Table 2.

Different analysis method techniques exist, such as worst-case
analysis and statistical analysis [14,2]:
• The goal of statistical tolerance analysis is to compute the

probability that the requirement can be satisfied under given
individual tolerances [14,24,19].

• The worst case analysis method (also called deterministic or
high–low analysis method) involves defining the dimensions
and tolerances such that any possible combination of work-
pieces provides an admissible assembly of the mechanism. In
the examination of the functional requirement, the worst pos-
sible combination of each deviation is considered [25,26].



Table 1
Comparison of the behavior models between the displacement accumulation approach and the tolerance accumulation approach.

Displacement accumulation Tolerance accumulation

• Deviation constraints: • Deviation volume:
Probability distributions Vd(X,G)

Random variables whose distributions and parameter
values are known, e.g. X ∼ N (µX , σX ), [1].

Deviation space (T-Maps R⃝ [11,20], deviation domains [20]) representing the
admissible variations of a feature within its tolerance zone.

• Interface constraints: • Clearance volume:
Ci(X,G) ≤ 0 and Ci∗(X,G) = 0 Vc(X,G)

Characterize the non-interference or association
between substitute surfaces, which are nominally in
contact, by limiting gaps between them [1].

Hypervolume of admissible variations (i.e. without interference) of a frame with
respect to another [20]. Frequency distributions are also used in
T-Maps R⃝ approach [21].

• Functional condition: • Functional volume:
Cf (X,G) ≤ 0 Vf (X,G)

Limits the orientation and the location between
surfaces in relative displacement, which are in
functional relation [1].

Specific volume characterizing the admissible variation space of an assembly so
as to satisfy the functional requirement [20].

• Compatibility equations: • Relation between volumes:
Cc(X,G) = 0 Vd1(X,G) ⊕ Vd2(X,G) ⊖ Vc1(X,G)

Geometrical behavior of the mechanism expressed by
the composition relations of displacements in various
topological loops [1].

Minkowski sums or intersections performed according to the different
dimensional chains of the mechanism on hypervolumes to obtain accumulated
volumes [20].

Table 2
Comparison of tolerance analysis methods between the displacement accumulation approach and the tolerance accumulation approach.

Displacement accumulation Tolerance accumulation

• Assembly requirement: The assembly of a mechanism with gaps must be ensured. The various features, in the presence of
deviations, must be assembled without interfering with each other.

◦ ‘‘there exists an admissible gaps configuration of the
mechanism such that the assembly requirement (interface
constraints) and the compatibility equations are respected’’ [1].
∃G ∈ Rm

: Cc(X,G) = 0


Ci(X,G) ≤ 0


Ci∗(X,G) = 0

◦ In this case, the assembly requirement is satisfied when the
intersection of all accumulated clearance domains is not empty [20].

Vd(X,G) ⊂


Vc(X,G)

• Functional requirement: Once the assembly requirement is verified, the influence of the geometrical deviations can be evaluated on
a functional characteristic, which is basically a maximum or a minimum clearance on a feature which has an impact on the
performance of the mechanism.

◦ ‘‘for all admissible gap configurations of the mechanism, the
geometrical behavior and the functional requirement are
respected’’ [1].
∀G ∈


G ∈ Rm

: Cc(X,G) = 0


Ci(X,G) ≤ 0


Ci∗(X,G) = 0


:

Cf (X,G) ≥ 0

◦ The functional requirement is satisfied when the accumulated
deviation and clearance domain remains within the functional
domain [20].

Vd(X,G) ⊕ Vc(X,G) ⊂


Vf (X,G)

• Mathematical tools: For both requirements, an optimization
algorithm is required, taking into account all defined constraints.
The formulation is detailed in Section 4.1. Cylinder joints result
in quadratic interface constraints, making the optimization
problem more difficult to solve. A solution is to linearize these
constraints.

• Mathematical tools: In order to be able to apply Minkowski sums or
intersections to compute accumulated hypervolumes, domains have to
be linear. A cylinder type joint in a mechanism leads to the definition of
a non-linear clearance domain, so it has to be linearized in several
facets [22,23].

2.4. Conclusion

Tolerance analysis approaches are based on different tech-
niques to provide the quality level of a designed mechanism. The
formulation to check the assembly requirement and the functional
requirement are different, and hence the required mathematical
tools are also different. However, neither method can deal with a
non-linear behavior model, i.e. model with quadratic constraints
coming from cylinder joints. For tolerance displacement, the use
of an optimization algorithm is required to determine the gap val-
ues. Qureshi et al. noticed in [1] that in some cases the result was
not admissible, because the given result violates constraints dur-
ing the resolution. Using numerical simulations, up to 10% of the
results were not admissible. It is then not conceivable to perform
simulations with such a high loss percentage. A possible solution
is to use other types of optimization algorithms, such as genetic or
evolutionary algorithms. However, these algorithms are very time-
consuming so they cannot be used in numerical simulation such as
Monte Carlo simulation. In addition, with a non-linear optimiza-
tion algorithm, the globalminimummaynot be found (required for

the functional condition) whereas the global minimum is found in
linear programming. For tolerance accumulation, in order to com-
pute the accumulated domains, Minkowski sums or the intersec-
tion of domains must be applied. These operations require dealing
with linear domains to be applied [11,22,23]. Based on these two
reasons, we chose to linearize the non-linear equations of the be-
havior model. The present paper focuses on studying the impact of
such a simplification of the behavior model on the computed qual-
ity level. This is based on the displacement accumulation approach,
but the previous analogy has shown that this study is also relevant
for the tolerance accumulation approach. Using the displacement
accumulation approach, the quality level corresponds to the prob-
ability of failure to be evaluated, one relative to the assembly re-
quirement and one relative to the functional requirement.

3. Linearization procedure for the behavior model

Some interface constraints or deviation domain are written in a
quadratic form and they need to be linearized. For instance, com-
puting the distance between two points leads to defining nonlinear



Fig. 1. Admissible area of displacement of the pin center (Op) with respect to
the pin hole center (Ob). The variables u and v correspond respectively with the
distance between both points along the x-axis and y-axis and db and dp correspond
respectively with the diameter of the pin hole and the pin.

equations. Indeed, the distance between the point A of coordinates
(xA, yA) and the point B of coordinates (xB, yB) is expressed as fol-
lows:

d(A, B) =


(xA − xB)2 + (yA − yB)2. (2)

In order to remove the square root, it is better to deal with the
squared distance which provides a quadratic equation. As an ex-
ample, the displacement of a pin centerwith respect to the pin hole
center is limited in order to prevent the pin from penetrating into
the body. Fig. 1 shows the quadratic interface constraint and de-
viation domain characterizing the limit distance between the pin
center and the pin hole center. This distance must not exceed the
radius difference.

Let the quadratic function, to be linearized, be written as de-
fined by Eq. (3). The considered strategies are based on a first-
order linearization of function Ci to the point Pk of coordinates
(1R cos θk, 1R sin θk), where 1R is the radius difference and θk =
2kπ
Nd

, for k = 1, . . . ,Nd, is an angle whose parameterNd enables the
number of linearizations to be adjusted.

Ci(u, v) = u2
+ v2

− 1R2. (3)

Linearization corresponds to a discretization of the admissible area
of displacement, which is a 2D circle, into a polygon whose num-
ber of facets depends on Nd. Nevertheless, this operation does not
correspond to a discretization of the geometry. It is the quadratic
constraint that corresponds to a circle equation that is linearized.
Several Linearization strategies are considered: see Fig. 2. Given
Ci(X,G) = u2

+ v2
− 1R2

≤ 0, an interface constraint, the lin-
earization operation provides new inequalities depending on the
type of linearization:

Type 1: linearization following an inner polygon:

C (k)
i (X,G) = u cos θk + v sin θk − 1R cos

θ1

2
≤ 0

Type 2: linearization following a medium polygon (average
between inner and outer polygons):

C (k)
i (X,G) = u cos θk + v sin θk −

1R
2


1 + cos

θ1

2


≤ 0

Type 3: linearization following an outer polygon:

C (k)
i (X,G) = u cos θk + v sin θk − 1R ≤ 0

with θ1 =
2π
Nd

and ∆R > 0. One interface constraint becomes Nd

interface constraints, increasing significantly the number of con-
straints, but these constraints have the advantage of being linear
in displacement.

Fig. 2. The 3 types of linearization of the real admissible area of displacement, here
with 6 facets.

Fig. 3. Electrical connector.

Fig. 3 shows an industrial electrical connector where such a lin-
earization procedure is required. Indeed, the mechanism has two
cylinder joints, which will involve writing quadratic constraints.

4. Mathematical formulation and solution method for a
tolerance analysis problem

This section presents the formulation of the tolerance analysis
problem based on the displacement accumulation approach and
the applied solutionmethod to compute the probabilities of failure.
This method is first proposed by Qureshi et al. [1].

4.1. Formulation of a tolerance analysis problem

According to Table 1, the behavior model comprises three types
of equation: interface constraints, compatibility equations and a
functional condition. Assuming X is the vector of the geometrical
deviations modeled by random variables and G the vector of the
gaps, let the set of interface constraints be:
C (j)
i (X,G) ≤ 0


j=1,...,NCi

(4)

where NCi is the number of interface constraints. Let the set of
compatibility equations be:
C (k)
c (X,G) = 0


k=1,...,NCc

(5)

where NCc is the number of compatibility equations.
It is specified in Table 2 that to check the assembly requirement

it is only necessary to find at least one configuration (a specific
set of gaps) such that the interface constraints and compatibility
equations are satisfied.

The defect probability, Pfa, for the assembly requirement is
given by the following equation:

Pfa = 1 − Prob

∃G̃|Ci(X, G̃) ≤ 0


(6)



where G̃ is a vector of gaps verifying the set of compatibility equa-
tions


C (k)
c (X, G̃) = 0


for k = 1, . . . ,NCc . The method to com-

pute this probability is to maximize the sum of gaps with interface
constraints; a solution reveals the existence of an admissible con-
figuration of gaps such that all constraints and equations are satis-
fied, whereas if no solution can be provided, it means that at least
one constraint is violated, thus the assembly is not possible be-
cause there is at least one interference between two components of
the mechanism. The defect probability is given by the equation as
follows:

Pfa = Prob


@max

G̃


G̃

with C (1)
i (X, G̃) ≤ 0

...

C
(NCi )

i (X, G̃) ≤ 0

 (7)

where themaximization of the sum of gaps is an artificial function.
The goal is only to know if a solution can be found to satisfy all the
given constraints.

The functional requirement consists of checking whether a
functional characteristic Y respects its assigned threshold Yth. The
functional condition Cf (X,G) = Yth − Y (X,G) ≥ 0 is defined and
must be verified for all admissible gap configurations, see Table 2.
However, all configurations do not have to be checked, indeed, in
order to compute the defect probability, it is necessary to find at
least one admissible configuration where the functional condition
is not respected:

Pf = Prob

∃G̃admissible|Cf (X, G̃) ≤ 0


(8)

where G̃admissible are gaps values verifying all interface constraints
and compatibility equations. This corresponds with finding the
worst gap configuration; this configuration provides the worst
value of the functional condition. The technique to find the worst
admissible configuration of gaps for the functional condition is to
minimize Cf with interface constraints:

Pf = Prob


min
G̃

Cf (X, G̃) ≤ 0

with C (1)
i (X, G̃) ≤ 0

...

C
(NCi )

i (X, G̃) ≤ 0

 . (9)

4.2. Solution method based on Monte Carlo simulation and optimiza-
tion

The classic solutionmethod combines aMonte Carlo simulation
and an optimization algorithm [1]. As all constraints and functional
conditions are linear, an optimization scheme using a simplex
technique is chosen to solve both optimization problems defined
in Eqs. (7) and (9). The different steps of the solution procedure are
described below:

1. A Monte Carlo population is defined: nMC sampling of the
random variables, X(i), i = 1, . . . , nMC .

2. The optimization algorithm is launched for each sample (either
maximization of the sum of gaps or minimization of the
functional condition).

3. The probabilities of failure are estimated using the following
equation:

P̃fa,f =
1

nMC

nMC
i=1

ID(x(i)) (10)

Fig. 4. Gear pump.

where ID(X) is the indicator function; for the assembly require-
ment the function is:

IDfa(X) =


1 if no solution can be provided
0 if a solution is found. (11)

For the functional requirement it is defined as follows:

IDf (X) =


1 if Cf (X) ≤ 0
0 if Cf (X) > 0. (12)

N.B.: Beaucaire et al. [24] propose a new solution method to
deal with overconstrained mechanisms based on a decomposition
of the mechanism into several main configurations. Considering
these configurations, the probability formulation becomes the
probability of an intersection of events, each event being associated
to one specific configuration. Due to the linearization procedure,
the number of eventsmay increase considerably, which is why this
new formulation is not used in the initial phase.

5. Impact of the linearization procedure on an industrial
application

The application is based on a gear pump, see Fig. 4, which has
two parts positioned with two pins. Fig. 5 shows a half pump view.
The joint between the two positioned parts is a planar contact.
The positioning of these two parts has an influence on the angle
of both gear axes. The functionality of the pump can be reduced if
the assembly precision of the parts is insufficient.

Based on this pump, a simplified over-constrained mechanism
is studied. Fig. 6 shows the mechanism with amplified gaps be-
tween parts. This is a 3D version of the 2D mechanism used to il-
lustrate the linearization procedure in Section 3. Both pins (3) and
(4) are fixed to part (2) so as to have only two parts in relative
movement. In addition, the planar contact a between (1) and (2)
is assumed to be perfect, thus without gaps; only kinematic dis-
placements are possible for this joint. The functional requirement
concerns the deviation of point G of part (1) with respect to part
(2). This point G can be seen as a functional point representative of
one axis of the gear pump.

5.1. Behavior model of the mechanism

The model behavior is briefly described in the following sec-
tions. The complete equations are given in Appendix A.



Fig. 5. Half gear pump.

Fig. 6. Mechanism in 3D.

Dimensions between points are deterministic; point A is used
as an origin to define the coordinates of the other points. A set of
parameters is defined, {l1, . . . , l11}, to model these dimensions.

Fig. 7 shows the joint graph of the mechanism where deviation
torsors and clearance torsors are represented. Deviation torsors
Tia/i are defined tomodel the geometrical deviations of a substitute
surface ia with respect to the nominal surface i. A torsor is com-
posed of three rotation components a, b and c and three translation
components u, v andw. Each torsor depends on the type of surface
to model. For example, the deviation torsor of the substitute sur-
face 1bwith respect to the nominal surface 1 is defined as follows:


T1b/1


=

a1b1 u1b1
b1b1 v1b1
0 0


A

. (13)

The other deviation torsors required are

T2b/2


,

T1a/1


,

T2a/2


,

T1c/1

,


T2c/2


,


T1g/1


and


T2g/2


. They are defined in Ap-

pendix A.1. Moreover, intrinsic deviations are considered: the di-
ameters of the pins and their pin holes: d1b, d3b, d1c and d4c . All
these parameters are modeled using random variables with a nor-
mal distribution.

Gaps between joints aremodeled by clearance torsors:

G1a/2a


,

G3b/1b

,

G4c/1c


and


G2g/1g


. According to the assumptions,

there are no clearance torsors between pins (3), (4) and their
pin holes in part (2):


G3b/2b


=


G4c/2c


= {0}. Additionally,

the torsor

G1a/2a


only represents the kinematic displacement

because the joint is assumed to be without gaps. Their form is
shown in Appendix A.1. Gaps are the optimization parameters

when checking the assembly requirement, see Eq. (7), or finding
the worst gap configuration, see Eq. (9).

Fig. 8 shows the top view of the mechanism with amplified de-
viations and gaps. Only translation components of the deviation
torsor and clearance torsor can be represented.

Compatibility equations are written using topological loops of
the joint graph, see Fig. 7. There are 5 joints and 4 workpieces
(without taking into account the functional joint) so 2 assembly
requirement topological loops are studied (Njoints − Nworkpiece + 1)
which provides 12 linear equations. The loops used are written
below:

• Loop (1), (2), (3), expressed in A:
T1/1


A = {0}

=

T1/1b


+


G1b/3b


+


G3b/2b


+


T2b/2


+


T2/2a


+


G2a/1a


+


T1a/1


. (14)

• Loop (1), (3), (2), (4), expressed in A:
T1/1


A = {0}

=

T1/1b


+


G1b/3b


+


G3b/2b


+


T2b/2


+


T2/2c


+


G2c/4c


+


G4c/1c


+


T1c/1


. (15)

Equations obtained with these loops are detailed in Appendix A.2.
The functional condition is written using a topological loop go-

ing through the functional condition. The loop (1), (3), (2), Cf ex-
pressed in G is taken to obtain a relationship with the functional
characteristics u2g/1g and v2g/1g :
T1/1


G = {0} =


T1/1b


+


G1b/3b


+


G3b/2b


+


T2b/2


+


T2/2g


+


G2g/1g


+


T1g/1


. (16)

This loop provides two equations with which the functional char-
acteristic can be written; this is the sum of the displacement u2g/1g
and v2g/1g :

u2g1g + v2g/1g = u1b1 + l9b1b1 + u3b1b − l8C3b1b + l9b3b1b
− u2b2 − l9b2b2 + u2g2 − u1g1

+ v1b1 − l9a1b1 + v3b1b − l9a3b1b
+ l7C3b1b − v2b2 + l9a2b2 + v2g2 − v1g1. (17)

This characteristic must not exceed a threshold dth; the functional
condition is given as follows:

Cf (X,G) = dth − (u2g1g + v2g/1g) ≥ 0. (18)

The non-interference conditions must be checked for two
joints: surface b between pin (3) and pin hole (1) and surface c be-
tween pin (4) and pin hole (1).

• Non-interference 1b/3b:

C (1)
i = u2

3b1b + v2
3b1b −


d1b − d3b

2

2

≤ 0 (19)

C (2)
i = (u3b1b + l3b3b1b)2 + (v3b1b − l3a3b1b)2

−


d1b − d3b

2

2

≤ 0. (20)

• Non-interference 1c/4c:

C (3)
i = u2

4c1c + v2
4c1c −


d1c − d4c

2

2

≤ 0 (21)

C (4)
i = (u4c1c + l4b4c1c)2 + (v4c1c − l4a4c1c)2

−


d1c − d4c

2

2

≤ 0. (22)



Fig. 7. Joint and deviation graph associated with the studied mechanism in 3D.

Fig. 8. Top view of the mechanism with amplified deviations and gaps. Intrinsic
deviations are represented for pins (3): d1b and d3b . In addition, deviations
of surfaces 1c and 2c with respect to their nominal surface are represented:
u1c1, v1c1, u2c2, v2c2 . Point Cnominal corresponds to the case where no deviations are
considered. Gaps components for joint 1c/4c are also shown: u4c1c and v4c1c .

These four inequalities are linearized following the different strate-
gies proposed in Section 3.

5.2. Numerical results

All parameter values: dimensions, means, standard deviations
and probability laws, are necessary for tolerance analysis. Pins
diameters and situation deviations are defined as randomvariables
following a normal distribution. Several standard deviation values
are set in order to obtain different orders of magnitude of
probabilities of failure. Monte Carlo simulations are performed on
three different populations. The number of samples nMC is chosen
in order to yield a coefficient of variation on the probability of
failure (see Eq. (23)) of lower than 5%.

C.O.V.Pf =


1 − Pf
Pf nMC

. (23)

Fig. 9 shows the variation in computing time for each simulation
as a function of the number of linearizations. The required time

Fig. 9. Evolution of computing time as a function of the number of linearizations
and for different orders of magnitude for the probability of failure. Simulation
performed with an Intel Core i7-2720.

is naturally longer for a larger number of linearizations because
the constraint optimization problem is more complex to solve.
Secondly, the order of magnitude of the probability has a strong
influence on the computing time; indeed the dash–dot curve with
triangle markers represents the smallest target probability and the
computing time increases faster than for the others. Therefore, it is
very important to select the best linearization strategy in order to
obtain an accurate enough result and to avoid useless computing
time.

5.2.1. Impact of the number of linearizations on probability of failure
convergence

Only results pertaining to probabilities of around 10−2 are pre-
sented in this section. Other results are shown in the Appendices.
Numerical results are given in Table 3; the corresponding curves
are shown in Figs. 10 and 11. The results show that the number of



Table 3
Probabilities of failure obtainedwith the first set of values, order ofmagnitude 10−2 .

Set of values 1
Pfa (×10−2) Pf (×10−2)

Nsamples 3e5 3e5
C.O.V. ∼0.7% ∼1.2%
95% C.I. ∼0.18 ∼0.1

Nd Inner Medium Outer Inner Medium Outer

8 6.72 6.37 6.06 1.15 1.61 2.20
12 6.53 6.37 6.23 1.75 2.01 2.31
16 6.48 6.39 6.31 1.81 1.95 2.11
20 6.42 6.37 6.31 1.90 2.01 2.1
25 6.39 6.35 6.32 1.96 2.01 2.09
30 6.38 6.36 6.34 1.97 2.03 2.08
40 6.37 6.36 6.34 1.98 2.01 2.03
50 6.37 6.36 6.35 2.01 2.02 2.04
60 6.36 6.36 6.35 2.01 2.02 2.03
70 6.36 6.36 6.36 2.02 2.02 2.03

Fig. 10. Convergence of the probability of failure of the assembly requirement for
the first set of values.

linearizations Nd and the strategy influence the probability of fail-
ure values. Strategies provide different results which all converge
toward the same value, validating the linearization equations. De-
pending on the requirement, one specific strategy is more inter-
esting than another. Considering a target probability to be reached,
the inner polygon strategy provides conservative results for the as-
sembly requirement. In this case, even if the result is an approxi-
mation, the probability will not be underestimated. This strategy
may be preferred when only one result is expected. On the con-
trary, for the functional requirement, the conservative results are
provided by the outer polygon strategy. Furthermore, the combi-
nation of the inner and outer polygon strategies provides a con-
fidence interval for the true failure probability value. The greater
the number of linearizations, the smaller the confidence interval.
Themediumpolygon strategy gives the best results, which are very
close to the converged value; however these values may not be
conservative, which may not be suitable. Yet this strategy may be
preferred if a simple approximation of the order of magnitude is
required.

5.2.2. Impact of the probability order of magnitude on convergence
speed

The previous results concern the impact of the number of lin-
earizations, but the order of magnitude of the target probability
can also have an impact. Indeed, the order of magnitude may have
an influence on the required number of linearizations to reach a

Fig. 11. Convergence of the probability of failure of the functional requirement for
the first set of values.

Fig. 12. Relative deviation of Pfa for the inner strategy.

certain accuracy. Figs. 12 and 13 show the relative deviation be-
tween the approximate probability and its converged value for the
conservative strategy of the assembly and functional requirement.
These figures show that the smaller the real probability, the greater
the relative deviation. Itmeans that for a givennumber of lineariza-
tions, the relative deviation between the approximated probability
and the real probability is greater for a small probability (e.g. 10−6)
than for a greater probability (e.g. 10−2). This means that a smaller
real probability requires a finer linearization to reach the same ac-
curacy than a greater real probability. In a same way, for a given
number of linearizations, the confidence interval of the probability
of failure is larger when the real probability is small.

6. Conclusion

The functionality of a product is influenced by design toler-
ances. Evaluating the quality level of a product at its design stage
is therefore a key element, enabling an improvement of the func-
tional quality of the product while reducing the manufacturing
cost. This requires methods such as tolerance analysis to quan-
tify the impact of tolerances on mechanism quality. To evaluate
the quality level of the product, a mathematical model is required,
which must represent its behavior as well as possible. However,
the behavior model may be approximated. Therefore the objective



Fig. 13. Relative deviation of Pf for the outer strategy.

of this paper is to answer two questions: ‘‘Why is an approxima-
tion required?’’ and ‘‘What is its impact on the predicted quality
level?’’.

The paper proposed by Qureshi et al. [1] provides a tolerance
analysis formulation able to deal with non-linear behaviors. Al-
though the mathematical formulation enables this kind of prob-
lem to be solved, a difficulty appearswhen calling the optimization
schemewith non-linear constraints. Someoptimization operations
do not converge, making the result unreliable. The present paper
is dedicated to defining linearization strategies for the non-linear
constraints in order to solve this difficulty. The goal is to demon-
strate that applying a linearization procedure has an impact on the
predicted quality level (probability of failure). The outcomes of the
study are listed below:

• The linearization of non-linear equations is required in both tol-
erance analysis approaches: tolerance accumulation and dis-
placement accumulation.

• The linearization of non-linear constraints has a real impact on
the probability of failure of the mechanism; the obtained result
may underestimate the real value, hence over-estimating the
quality of the design. The linearization procedure must be cho-
sen carefully in order to obtain conservative results. Indeed, de-
pending on the type of requirement, the conservative strategy is
different: inner polygon strategy for the assembly requirement
and outer polygon strategy for the functional requirement.

• An interesting procedure consists of defining a confidence in-
terval of the true probability of failure using two lineariza-
tion strategies: outer and inner polygon. This interval becomes
smaller when the number of linearizations increases.

• Approximation due to linearization is all the more important
when the real probability of failure is small. This means that the
number of linearizationsmust be greater for a small probability
in order to obtain the same accuracy for the results.

Future studieswill concern the establishment of a smart algorithm,
able to re-use results obtained from a simulation with a poor pre-
cision. The idea is that between a simulation with poor precision
and onewith good precision, a large number of points in theMonte
Carlo simulation give the same result. Using the results with poor
precision, the goal is to evaluate only those points whichmay have
a different result with a greater degree of linearization. Hence, the
computing time to yield an accurate result can be considerably re-
duced. This algorithm will then be tested on a more complex in-
dustrial application.
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Appendix A. Behavior model

A.1. Geometrical model

Point A is used as an origin to define the coordinates of the other
points:

−→
AC =

l1
l2
0


−→
AB =

0
0
l3


−→
CD =

0
0
l4


−→
AE =

 0
0

−l5



−→
CF =

 0
0

−l6


−→
AG =

l7
l8
l9


−→
AH =

l10
l11
0


.

Deviation torsors Tia/i are defined to model the geometrical de-
viations of a substitute surface ia with respect to the nominal sur-
face i.


T1b/1


=

a1b1 u1b1
b1b1 v1b1
0 0


A


T2b/2


=

a2b2 u2b2
b2b2 v2b2
0 0


A

T1a/1


=

a1a1 0
b1a1 0
0 w1a1


A


T2a/2


=

a2a2 0
b2a2 0
0 w2a2


A

T1c/1


=

a1c1 u1c1
b1c1 v1c1
0 0


C


T2c/2


=

a2c2 u2c2
b2c2 v2c2
0 0


C

T1g/1


=

a1g1 u1g1
b1g1 v1g1
c1g1 w1g1


G


T2g/2


=

a2g2 u2g2
b2g2 v2g2
c2g2 w2g2


G

.

Other deviations: diameters of the pins and their pin holes: d1b, d3b,
d1c and d4c .

Gaps between joints are modeled using clearance torsors:


G1a/2a


=

 0 U1a2a
0 V1a2a

C1a2a 0


A


G3b/1b


=

a3b/1b u3b/1b
b3b/1b v3b/1b
C3b/1b W3b/1b


A

G4c/1c


=

a4c/1c u4c/1c
b4c/1c v4c/1c
C4c/1c W4c/1c


C


G2g/1g


=


− u2g/1g
− v2g/1g
− −


G

.

A.2. Compatibility equations

Loop (1), (2), (3), expressed in A, gives the following compati-
bility equations:

C (1)
c (X,G) = −a1b1 − a3b1b + a2b2 − a2a2 + a1a1 = 0 (A.1)

C (2)
c (X,G) = −b1b1 − b3b1b + b2b2 − b2a2 + b1a1 = 0 (A.2)

C (3)
c (X,G) = −C3b1b − C1a2a = 0 (A.3)

C (4)
c (X,G) = −u1b1 − u3b1b + u2b2 − U1a2a = 0 (A.4)

C (5)
c (X,G) = −v1b1 − v3b1b + v2b2 − V1a2a = 0 (A.5)

C (6)
c (X,G) = −W3b1b − w2a2 + w1a1 = 0. (A.6)



Loop (1), (3), (2), (4), expressed in A, gives the following compati-
bility equations:

C (7)
c (X,G) = −a1b1 − a3b1b + a2b2 − a2c2 + a4c1c + a1c1 = 0 (A.7)

C (8)
c (X,G) = −b1b1 − b3b1b + b2b2 − b2c2 + b4c1c + b1c1 = 0 (A.8)

C (9)
c (X,G) = −C3b1b + C4c1c = 0 (A.9)

C (10)
c (X,G) = −u1b1 − u3b1b + u2b2 − u2c2 + u4c1c

+ l2C4c1c + u1c1 = 0 (A.10)

C (11)
c (X,G) = −v1b1 − v3b1b + v2b2 − v2c2

+ v4c1c − l1C4c1c + v1c1 = 0 (A.11)

C (12)
c (X,G) = −W3b1b − l1b2c2 + l2a2c2 + W4c1c

+ l1b4c1c − l2a4c1c + l1b1c1 − l2a1c1 = 0. (A.12)

A.3. Functional condition

The functional characteristic is given by:
u2g1g + v2g/1g = u1b1 + l9b1b1 + u3b1b − l8C3b1b

+ l9b3b1b − u2b2 − l9b2b2 + u2g2 − u1g1

+ v1b1 − l9a1b1 + v3b1b − l9a3b1b
+ l7C3b1b − v2b2 + l9a2b2 + v2g2 − v1g1. (A.13)

This characteristic must not exceed a threshold dth. The functional
condition is given as follows:
Cf (X,G) = dth − (u2g1g + v2g/1g) ≥ 0. (A.14)

A.4. Interface constraints

The non-interference conditions concern both pins.
Non-interference 1b/3b:

C (1)
i = u2

3b1b + v2
3b1b −


d1b − d3b

2

2

≤ 0 (A.15)

C (2)
i = (u3b1b + l3b3b1b)2 + (v3b1b − l3a3b1b)2

−


d1b − d3b

2

2

≤ 0. (A.16)

Non-interference 1c/4c:

C (3)
i = u2

4c1c + v2
4c1c −


d1c − d4c

2

2

≤ 0 (A.17)

C (4)
i = (u4c1c + l4b4c1c)2 + (v4c1c − l4a4c1c)2

−


d1c − d4c

2

2

≤ 0. (A.18)

A.5. Deviation rotation relations

Rotation deviation expressions for deviation torsors are given
as follows:
• Torsor {T1a/1}:

a1a1 =
l1

l1l11 − l2l10
w1a1,H +

l10 − l1
l1l11 − l2l10

w1a1

−
l10

l1l11 − l2l10
w1a1,C (A.19)

b1a1 =
l2

l1l11 − l2l10
w1a1,H +

l11 − l2
l1l11 − l2l10

w1a1

−
l11

l1l11 − l2l10
w1a1,C . (A.20)

• Torsor {T2a/2}:

a2a2 =
l1

l1l11 − l2l10
w2a2,H +

l10 − l1
l1l11 − l2l10

w2a2

−
l10

l1l11 − l2l10
w2a2,C (A.21)

b2a2 =
l2

l1l11 − l2l10
w2a2,H +

l11 − l2
l1l11 − l2l10

w2a2

−
l11

l1l11 − l2l10
w2a2,C . (A.22)

• Torsor {T1b/1}:

a1b1 =
v1b1 − v1b1,B

l3
(A.23)

b1b1 =
u1b1,B − u1b1

l3
. (A.24)

• Torsor {T2b/2}:

a2b2 =
−v2b2 + v2b2,E

l5
(A.25)

b2b2 =
−u2b2,E + u2b2

l5
. (A.26)

• Torsor {T1c/1}:

a1c1 =
v1c1 − v1c1,D

l4
(A.27)

b1c1 =
u1c1,D − u1c1

l4
. (A.28)

• Torsor {T2c/2}:

a2c2 =
−v2c2 + v2c2,F

l6
(A.29)

b2c2 =
−u2c2,F + u2c2

l6
. (A.30)

Appendix B. Parameter values

Nominal values for the three set of values:
l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11
100 40 30 30 20 20 120 50 40 50 −30

Threshold values:
yth

Set of values 1 2 3
0.25 0.25 0.28

Random variables:
µX σX

Set of values All 1 2 3
d1b 20 0.06 0.01 0.01
d3b 19.8 0.06 0.01 0.01
d1c 20 0.06 0.01 0.01
d4c 19.8 0.06 0.01 0.01
t 0 0.01 0.01 0.009
r 0 0.01 0.01 0.0009

where t is the vector of the translation components of the
geometrical deviations:
t = {u1b1, v1b1, u1b1,B, v1b1,B, u2b2, v2b2, u2b2,E, v2b2,E, w1a1,

w1a1,H , w1a1,C , w2a2, w2a2,H , w2a2,C , u1c1, v1c1, u1c1,D,

v1c1,D, u2c2, v2c2, u2c2,F , v2c2,F ,

u1g1, v1g1, w1g1, u2g2, v2g2, w2g2}



Table C.4
Probabilities of failure obtained with the second set of values.

Set of values 2
Pfa (×10−4) Pf (×10−3)

Nsamples 3e6 3e6
C.O.V. ∼4.8% ∼1.15%
95% C.I. ∼0.27 ∼0.12

Nd Inner Medium Outer Inner Medium Outer

8 1.44 0.71 0.42 1.28 1.93 2.9
12 1.62 1.22 0.91 2.07 2.49 2.98
16 1.88 1.62 1.36 2.21 2.45 2.7
20 1.55 1.37 1.26 2.33 2.48 2.66
25 1.52 1.43 1.36 2.41 2.5 2.62
30 1.5 1.42 1.35 2.45 2.52 2.59
40 1.43 1.38 1.36 2.47 2.51 2.55
50 1.48 1.45 1.42 2.49 2.52 2.54
60 1.43 1.42 1.4 2.49 2.51 2.53
70 1.44 1.42 1.42 2.5 2.52 2.52

Fig. C.14. Convergence of the probability of failure of the assembly requirement
for the second set of values.

Fig. C.15. Convergence of the probability of failure of the functional requirement
for the second set of values.

and r is the vector of the rotation components of the geometrical
deviations:
r = {a1g1, b1g1, c1g1, a2g2, b2g2, c2g2}.

Appendix C. Results for the second set of values

See Table C.4, Figs. C.14 and C.15.

Table D.5
Probabilities of failure obtained with the third set of values.

Set of values 3
Pfa (×10−5) Pf (×10−5)

Nsamples 1e7 1e7
C.O.V. ∼6% ∼4%
95% C.I. ∼0.6 ∼0.1

Nd Inner Medium Outer Inner Medium Outer

8 2.28 1.07 0.47 2.26 4.10 7.48
12 2.63 1.98 1.32 4.65 6.16 8.12
16 3.18 2.63 2.20 4.98 5.87 6.93
20 2.50 2.25 2.05 5.44 6.09 6.66
25 2.42 2.35 2.16 5.81 6.18 6.51
30 2.39 2.24 2.19 5.98 6.23 6.49
40 2.27 2.24 2.19 6.04 6.18 6.35
50 2.39 2.33 2.27 6.13 6.21 6.31
60 2.27 2.24 2.24 6.12 6.19 6.27
70 2.32 2.27 2.24 6.17 6.20 6.26

Fig. D.16. Convergence of the probability of failure of the assembly requirement
for the third set of values.

Fig. D.17. Convergence of the probability of failure of the functional requirement
for the third set of values.

Appendix D. Results for the third set of values

See Table D.5, Figs. D.16 and D.17.
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