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h i g h l i g h t s

• Gaps cannot be considered as random variables.
• The tolerance analysis issue is formulated thanks to the quantifier notion.
• Two defect probabilities are defined: functionality defect probability and assembly defect probability.
• Defect probabilities are computed using a system reliability method: FORM system.

One of the aims of statistical tolerance analysis is to evaluate a predicted quality level at the design stage.
One method consists of computing the defect probability PD expressed in parts per million (ppm). It rep-
resents the probability that a functional requirement will not be satisfied in mass production. This paper
focuses on the statistical tolerance analysis of over-constrainedmechanisms containing gaps. In this case,
the values of the functional characteristics depend on the gap situations and are not explicitly formulated
with respect to part deviations. To compute PD, an innovativemethodology using system reliabilitymeth-
ods is presented. This new approach is comparedwith an existing one based on an optimization algorithm
andMonte Carlo simulations. Thewhole approach is illustrated using two industrial mechanisms: one in-
spired by a producer of coaxial connectors and one prismatic pair. Its major advantage is to considerably
reduce computation time.

1. Introduction

In very competitive industrial fields such as the automotive in-
dustry, more and more interest is being paid to the quality level of
manufactured mechanisms. It is very important to avoid warranty
returns and manage the rate of out-of-tolerance products in pro-
duction, which can lead to assembly line stoppages and/orwastage
of out-of-tolerance mechanisms. The quality level of a mechanism
can be evaluated by the number of faulty parts in production or
by the number of warranty returns per year. However, these two
methods of product quality evaluation remain a posteriori. Toler-
ance analysis is a more interesting way to evaluate a predicted
quality level at the design stage. Scholtz [1] proposes a detailed re-
view of classical methods whose goal is to predict functional char-
acteristic variations based on component tolerances. Moreover,

statistical tolerance analysis enables the definition of the proba-
bility that the functional requirement will be respected or not, as
does the well-known RSS (Root Sum of Squares) method.

Advanced statistical tolerance analysis methods allow the de-
fect probability of an existing design to be computed, knowing
the dimension tolerances and functional requirements. These are
called probabilistic approaches and this paper focuses mainly on
them. Various assumptions about the statistical distributions of
component dimensions can bemade, based on their tolerances and
capability levels. For example, the APTA (Advanced Probability-
based Tolerance Analysis of products) method proposed by Gayton
et al. [2] enables randommean deviations and standard deviations
of components’ statistical distributions to be considered during the
wholemanufacturing phase. Defect probability, noted PD in the fol-
lowing, is expressed in ppm (parts per million). It represents the
probability that a functional requirement will not be satisfied in
mass production. In a mechanism comprising several parts, PD is
usually computed based on a classic analytical chain of dimensions.
Nigam and Turner [3] list most of classic methods which enable PD
to be computed. In addition, several methods from the structural
reliability field can be used [4].
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Nomenclature

PD Defect probability of the mechanism
PDa Assembly defect probability of the mechanism
PDf Functionality defect probability of the mechanism
Φn n-dimensional multivariate normal cumulative dis-

tribution function
D Vector of part deviations
Di i-th part deviation
P Vector of part positions
Pi i-th part position
mi i-th assembly constraint
Nm Number of assembly constraints
gi i-th non-interference constraint
Nc Number of non-interference constraints
Ω Non-interference domain
f̃ Linearized function
Ns Number of contact point situations
P̂i P coordinates relative to the i-th contact point

situation
Li Performance function associated with the i-th

contact point situation
Nds Number of dominant contact point situations

In some over-constrained mechanisms, gaps are present, al-
lowing part displacements. Thus, depending on the gap situations,
different dimension chains are required to control one functional
characteristic. The formulation and computation of PD for such
mechanisms are not straightforward, and classic methods which
deal with chains of dimensions cannot be used. Over-constrained
mechanisms can be faulty because they cannot be assembled, or
because they are not functional. Thus, two defect probabilities are
defined: the assembly defect probability PDa and the functionality
defect probability PDf .

The present paper focuses mainly on the functional require-
ment issue, because of its greater complexity compared to that of
assembly. Nevertheless, the assembly issue is mentioned in the
sections concerned. Section 2 is devoted to presenting existing
methods capable of dealing with these issues and details one in
particular. It has already been used [5] and is based on an optimiza-
tion algorithm andMonte Carlo (MC) simulations. OnlyMC simula-
tions are required to compute PDa. Thismethodology is very precise
in general but requires a large number of runs (optimization runs
for the functionality issue). The main contribution of this article is
an innovative methodology detailed in Section 3 and inspired by
the work of Ballu et al. [6]. It greatly decreases the computational
effort. Both assembly and functionality defects are expressed as de-
pendent event intersections. PDf and PDa are then computed thanks
to system reliability methods, using the n-dimensional multivari-
ate normal cumulative distribution function Φn. Both approaches
are compared for two industrial mechanisms: one inspired by a
coaxial connector supplier (Fig. 1) and one prismatic joint (Fig. 2).
The results are given and commented in Sections 4 and 5. The pro-
posed method can be adapted to other over-constrained mecha-
nisms featuring gaps.

2. Existing approaches to tolerance analysis for mechanisms
containing gaps

2.1. Short bibliography review

In the literature, gaps are often neglected, mainly because
only iso-constrained mechanisms are studied. In over-constrained
mechanisms, they have to be taken into account [6–8]. To study

Fig. 1. Industrial coaxial connector.

Fig. 2. Industrial prismatic joint.

such mechanisms, all mobilities between parts, arising from the
presence of gaps, have to be considered. For this purpose, a new
formulation of the tolerance analysis issue based on the quantifier
notion was developed by Dantan and Qureshi [9] and Qureshi et al.
[5]:

• The mathematical expression of tolerance analysis for the as-
sembly requirement is: For all acceptable deviations (deviations
which are inside tolerances), there exists a gap situation such
that the assembly requirements are verified.

• Themathematical expression of tolerance analysis for the func-
tional requirement is: For all acceptable deviations (deviations
which are within tolerances), and for all admissible gap situa-
tions, the functional requirements are verified.

The quantifiers ∀ ‘‘for all’’ and ∃ ‘‘there exists’’ provide an unam-
biguous expression of the condition corresponding to a geomet-
rical product requirement. This opens a wide area for research in
tolerance analysis and in particular enables amathematical formu-
lation of PDf and PDa. These two defect probabilities are dependent
but are treated separately in the following.

2.2. Geometric model

In the manufacturing phase, several deviations appear due to
manufacturing processes. These are called manufacturing devia-
tions. Many imperfections types are identified in a geometrically



tolerancedmechanism.With a view to simplicity in this paper, only
dimensional deviations are considered. As it is commonly agreed
in the literature [6,3,1], deviations D(ω) are modeled by random
variables where ω is the hazard. Their means are the nominal val-
ues, while their standard deviations depend on the process char-
acteristics. The authors are currently investigating applications
involving positional (location and orientation) deviations. These
new deviations are alsomodeled as random variables. The number
of concerned variables increases but thewhole resolutionmethod-
ology is the same. Nevertheless, considering positional deviations
in a 3-dimensional context could lead to highly non-linear func-
tions which then have to be piecewise linearized. These develop-
ments will be covered in further publications. According to the
literature [10], form deviations are negligible compared to posi-
tional ones. Thus, they will be omitted in the presented study and
the following ones. To take gaps into account, part positions are
modeled by deterministic free variables P. These variables are not
considered as random, since part displacements cannot be con-
trolled, but only limited by part dimensions. In 3 dimensions, a part
has 6 degrees of freedom (3 translations and 3 rotations) which in-
volve 6 displacement variables P per mobile part.

2.3. General formulation for assembly issues

As a preliminary step, it is useful to determine whether the
mechanism, composed of several parts, can be assembled. As Dan-
tan and Qureshi [9] express it, one gap situation has to be found
such that the assembly requirements are verified. Assembly is pos-
sible if all assembly constraints are respected:

Nm
i=1 mi(D, P) ≤

0

, where Nm is the number ofmi(D, P) ≤ 0 assembly constraints.

The general purpose of tolerance analysis is to compute the follow-
ing assembly defect probability:

PDa = Prob (∀P, ∃i,mi(D, P) > 0) . (1)

As gaps are involved, this defect probability computation is poten-
tially complex. For practical purposes, it can often be simplified so
that assembly constraints no longer depend on gaps:

PDa = Prob


Nm
i=1

mi(D) > 0


= 1 − Prob


Nm
i=1

mi(D) ≤ 0


. (2)

2.4. General formulation for functionality issues

Once the mechanism is assembled, its functionality is verified
through at least one identified functional characteristic, dependent
on deviation D and position P variables:

Fc = f (D, P). (3)

For functionality issues on mechanisms with gaps, where parts
are mobile, the functional requirement must be respected for all
admitted positions P of parts. Due to these displacements, Nc non-
interference constraints gi(D, P) ≤ 0, corresponding to Nc poten-
tial contact points, are defined. These prevent parts from coming
into collision with each other. They can be established thanks to
different methods: small displacement torsor [11], matrices [12],
T-Map [8], or directly by considering each potential contact point.
They constitute the non-interference domain Ω(D) representing
the admitted positions P of parts such that they do not collide with
each other. The system is functional if

∀P ∈ Ω(D), Fc(D, P) ∈ [Fcmin; Fcmax ]

Ω(D) : P
 Nc

j=1

gj(D, P) ≤ 0. (4)

Finally, the goal is to compute the PDf probability that functional
requirements are not respected. It is defined as
PDf = Prob(∃P ∈ Ω(D), Fc(D, P) ∉ [Fcmin , Fcmax ])

= Prob(∃P ∈ Ω(D), Fc(D, P) < Fcmin)

+ Prob(∃P ∈ Ω(D), Fc(D, P) > Fcmax). (5)
Remarks:

• In the next sections, as the two probability terms can be treated
similarly, the lower bound Fcmin is not considered.

• The functionality notionmakes sense only if themechanism can
be assembled. Thus, the functionality defect probability PDf is
the probability that themechanism can be assembled (thanks to
the non-interference domain Ω(D)) but being non-functional.
It should be noted that non-interference equations gi(D, P) can
be close to assembly equations mi(D, P) but are significantly
different.

2.5. Solution strategy using Monte Carlo simulations and optimiza-
tion

The defect probabilities defined above can be computed thanks
to the well-known Monte Carlo (MC) simulation method [5]. Due
to the presence of gaps, the functionality formulation requires
all the admitted part positions to be taken into consideration. To
ensure this, an optimization algorithm is called for each sample
of random variables D to find the worst functional characteristic
value max(Fc) with respect to the associated functional require-
ment Fcmax . For a given value of D, Fc(D, P) is maximized under Nc
non-interference constraints: gj(D, P) ≤ 0, j = 1 to Nc . The func-
tionality defect probability is written as follows:

PDf = Prob


max
P∈Ω(D)


Fc(D, P) > Fcmax


. (6)

The algorithm is composed of four steps. The first three steps
are repeated Nl times: k = 1 to Nl, where Nl is the number of MC
simulations.
1. A set of dimensions D(k) is randomly decided.
2. Once the non-interference domain Ω


D(k)


is constituted,

maxP∈Ω(D(k))


Fc

D(k), P


is computed using an optimization

algorithm.
3. The indicator I(k)Df is introduced:

I(k)Df =


1 if max

P∈Ω(D(k))


Fc(D(k), P)


> Fcmax

0 else.
(7)

4. Finally, PDf = E[IDf ]
where E[.] is the mathematical expectation operator.

For the assembly issue, the solution is simpler: the second step
is skipped and the indicator is defined as

I(k)Da =


1 if

Na
max
i=1

[mi(D)] > 0

0 else.
(8)

Finally, PDa = E[IDa].
MCdefect probabilities are estimators. Thus, the 95% confidence

interval of PD can be computed to evaluate the accuracy of the
result (see [4] for more details):
PD − 1.96σPD ≤ PD ≤ PD + 1.96σPD (9)
where σPD is the defect probability standard deviation, dependent
on the number of MC simulations Nl, defined as

σPD =


PD(1 − PD)

Nl
. (10)

This methodology can be very precise but requires millions
of runs to reach low PD values (optimization runs for PDf ), so an



alternative methodology is proposed to reduce computation time.
It will be presented in the next section.

3. A new approach to dealing with functionality issues for
mechanisms with gaps

The first presented methodology uses MC simulations, but it
requires millions of optimization runs. The objective of this new
approach is to reduce that computation time.

3.1. System formulation

As previously stated, to deal with the functionality issue, all
the part position situations have to be taken into consideration.
The first methodology is global, since it considers all the contact
points at once (i.e. the Nc non-interference constraints). In fact, it
is possible to decompose the global defect event into several iden-
tified ones, each one relative to a contact point situation. This is
the aim of the proposedmethodology. This approach is called ‘‘sys-
tem’’ since the problem is composed of a system of events. The ad-
vantage of this approach is that the position variables disappear in
Eq. (12) for a given contact point situation. P variables are replaced
by P̂i: the part coordinates in the i-th contact point situation. It is
thenmuch easier to verify that the functional requirements are re-
spected. A contact point situation is defined such that all degrees
of freedom are removed; thus 6 non-interference constraints are
equal to 0: gi(D, P) = 0, i = 1 to 6. These constraints are linearized
thanks to a Taylor expansion around a pertinent point in P space,
depending on the application. Since part position variations are
very small in the tolerance analysis problem, the linearized equa-
tions g̃i(D, P) = 0 are very close to the original ones,which enables
the problem to be addressed much more easily. The negligible im-
pact of this linearization phase on the results will be demonstrated
in the following applications (Sections 4 and 5). For each of the
Ns = C6

Nc
contact point situations, it is possible to solve the i-th (i =

1 to Ns) linear problem: g̃s(i)j
(D, P) = 0, j = 1 to 6 whose solution

is P̂i, where s(i)j is the j-th term of the s(i) vector. This vector con-
tains the identification number combinations (i.e. 6 numbers from
1 to Nc) of the non-interference constraints concerned in the i-th
contact point situation. If P̂i exists, it means that the first six non-
interference constraints are respected. Then the other ones, mak-
ing up the non-interference domain, have to be checked (i.e. the
Nc −6 others). As constraints are linear and thereforemonotonous,
the extreme Fc value is given by obtaining themaximum functional
characteristic from among all the individual situations:

max
P∈Ω(D)

(Fc(D, P)) =
Ns

max
i=1


Fc(D, P̂i),

Nc−6
j=1

gs̄(i)j
(D, P̂i) ≤ 0


(11)

where s̄(i)j is the vector containing the identification numbers of
the non-interference constraints which are not involved in the i-th
contact point situation. Thus, according to structural systems reli-
ability theory [13], the original defect probability is transformed as
follows; hence Eq. (6) becomes

PDf = Prob


Fcmax −

Ns
max
i=1


Fc(D, P̂i),

Nc−6
j=1

gs̄(i)j
(D, P̂i) ≤ 0


< 0



= Prob


Ns

min
i=1


Li(D),

Nc−6
j=1

gs̄(i)j
(D, P̂i) ≤ 0


< 0



= Prob


Ns
i=1


(Li(D) < 0)

Nc−6
j=1


gs̄(i)j

(D, P̂i) ≤ 0


(12)

where the performance functions are Li(D) = Fcmax − Fc(D, P̂i).
The problem is thus reduced to a system problem of Ns unions of
Nc − 6 intersections of dependent events. However, the computa-
tion of PDf is still not trivial. It can be simplified in twoways: firstly,
the number Ns of considered situations can be reduced; secondly,
unions of intersections can be transformed.

3.2. Simplified system formulation

For practical reasons, only a few of the Ns contact point situ-
ations are realistic in the dimension variation domain. Some of
them are mechanically unfeasible, extremely rare or redundant
with others. For all these reasons, an identification phase is recom-
mended to ascertain the dominant situations. Ballu et al. [6] do
this by knowledge and expertise, but it is not always possible. An-
other possibility is to run the optimizationused in the firstmethod-
ology a small number of times (10Nr ) in the dimension variation
domain. For each set of dimensions, the optimization algorithm
finds max(Fc) while saturating some constraints. These saturated
constraints represent the identified contact point situations which
cover defect probabilities. This method, which is not obligatory,
enables a significant reduction in the number Ns of considered
events for most mechanisms. Indeed, taking into consideration
non-dominant situations would increase the mathematical com-
plexity of the defect probability expression. The computing time
would also increase slightly. 10Nr runs ensure that the appearance
probability of non-identified situations is less than 10Nr−6 ppm.
The number of dominant contact point situations is noted Nds.

The second simplification step consists of transforming the PDf
formulation thanks to the Poincaré formula:

PDf =

Nds
i=1

Prob


(Li(D) < 0)

Nc−6
j=1


gs̄(i)j

(D, P̂i) ≤ 0


−


i<k

Prob


(Li(D) < 0)

Nc−6
j=1


gs̄(i)j

(D, P̂i) ≤ 0



(Lk(D) < 0)

Nc−6
j=1


gs̄(k)j

(D, P̂k) ≤ 0


+ · · ·

+ (−1)Nds−1Prob


Nds
i=1

[(Li(D) < 0)

Nc−6
j=1


gs̄(i)j

(D, P̂i) ≤ 0


. (13)

This formula transforms unions of event intersections into
simple event intersections. It allows PDf to be computed more
easily.

3.3. Solution strategy using the FORM system

Severalmethods, such as FORM (First Order ReliabilityMethod),
can deal with this kind of system problem very efficiently [4]. Each
event (Li(D) < 0 for example) is considered individually by the
classic FORM method. The preliminary task is to transform physi-
cal variables D into standard ones U (i.e. Gaussian variables with
means and variances respectively equal to 0 and 1). In the case
of uncorrelated Gaussian variables, the transformation is direct:
Ui = (Di − µi)/σi where µi and σi are respectively the mean and
standard deviation of the random variable Di. In other cases (non-
Gaussian distributions for example), it can be more complicated,
but methods exist and are understood (see [4] for details). In the
new U space, a function Gi(D) becomes Hi(U). Each function Hi(U),



Fig. 3. Illustration of FORM system principle in standard space U1,U2 . Three
dependent events define the defect domain F , which is grayed out.

called performance function, is linearized at themost probable fail-
ure point U(i)∗. This gives rise to hyper-planes (straight lines in 2
dimensions) whose equation are H̃i(U) = 0. U(i)∗ is the closest
point to the origin which respects the constraintHi(U) = 0. Its dis-
tance from the origin is notedβi and called the reliability index. The
FORM method also provides direction cosines: αi = ∇Hi(U(i)∗)/∇Hi(U(i)∗)

. Once all performance functions (n) are treated sepa-
rately, the second stage consists of considering unions or intersec-
tions of events, which is the system phase. Let F be the following
defect domain:

F =


D
 n

i=1

Gi(D) < 0


=


U
 n

i=1

Hi(U) < 0



≈


U
 n

i=1

H̃i(U) < 0


. (14)

Fig. 3 illustrates the FORMconcepts in a 2-dimensional standard
U space. The F domain is grayed out. The dependency of different
events, i.e. the orientation of hyper-planes, is taken into account
through a covariance matrix defined using direction cosines. The
(i, j)-th term of [ρ] is ρij =


α(i), α(j)


, where ⟨•, •⟩ is the scalar

product. Finally, the defect probability associated with the F do-
main is estimated using the n-dimensionalmultivariate normal cu-
mulative distribution function Φn:

PD = Prob


n

i=1

Gi(D) < 0


≈ Prob


n

i=1

H̃i(U) < 0


= Φn(−β, [ρ]). (15)

In the case illustrated in Fig. 3, the defect probability is
expressed as follows:

PD = Φ3({−β1, −β2, −β3}, [ρ]). (16)

Φn is computed thanks to the Genz method [14], which eval-
uates the n-dimensional multivariate normal cumulative distribu-
tion function almost instantaneously. As limit-state functions are
replaced by hyper-planes, themethod gives only an approximation
of PD, but it also provides its confidence interval. Again, due to low
part dimension variations in a tolerance analysis context, this lin-
earization is often very accurate. This method can easily be applied
to compute both defect probabilities PDf and PDa given respectively
by Eqs. (13) and (2), composed only of event intersections.

Fig. 4. RADIALL coaxial connector scheme. Gaps are emphasized for better com-
prehension. Numbers are the contact point identifications.

Table 1
Dimension characteristics of the RADIALL coaxial
connector.

Name Mean Standard deviation

D1 6 0.03
D2 6.1 0.03
D3 12 0.03
D4 12.1 0.03
D5 10.1 0.03
D6 10 0.03
D7 3 0.03

4. RADIALL coaxial connector

4.1. Case study

In this section, a case study is presented, based on an industrial
problem. It is a 2D representation of an electric coaxial connector
designed andmanufactured by RADIALL SA, comprising 2 cylindri-
cal parts (see Fig. 4). Due to the presence of gaps in the mecha-
nism, part 1 is mobile while part 2 is fixed. The position of part 1
is located in 2D space thanks to the displacement variable vector:
P = {X, Y , α}. Rotational symmetry is taken into account by con-
straining α positive. Dimensions D are modeled by Gaussian vari-
ables and their characteristics are noted in Table 1.

4.2. Assembly defect issue

This coaxial connector can be assembled if the dimensions of
part 1 are lower than the corresponding dimensions of part 2, if
the following assembly constraints are verified:

m1(D) = D3 − D4 ≤ 0
m2(D) = D1 − D2 ≤ 0 (17)
m3(D) = D6 − D5 ≤ 0.

The assembly defect probability can be computed thanks to the
FORM system method described in Section 4:

PDa = 1 − Prob

×


(m1(D) ≤ 0)


(m2(D) ≤ 0)


(m3(D) ≤ 0)


= 1 − Φ3(−β1, −β2, −β3, [ρ]). (18)



Table 2
Assembly issue results for the RADIALL coaxial connector.

Solution method PDa in ppm (95% C.I.) Number of calls
(computation time)

Monte Carlo simulations 27490(205) 107 runs (21 s)
FORM system 27380 Analytical result (0 s)

As the functions are independent, the covariance matrix [ρ] is
equal to the identity matrix. Thus, Φ3(−β1, −β2, −β3, [ρ]) =

Φ(−β1)Φ(−β2)Φ(−β3), with

β1 =
µD3 − µD4
σ 2
D4

+ σ 2
D3

= −2.357

β2 =
µD1 − µD2
σ 2
D2

+ σ 2
D1

= −2.357 (19)

β3 =
µD6 − µD5
σ 2
D5

+ σ 2
D6

= −2.357.

Finally,

PDa = 1 − Φ(2.357)Φ(2.357)Φ(2.357) = 27 380 ppm. (20)

Table 2 shows PDa results computed by MC simulations and by the
FORM system. Both computationmethods give comparable results
in a very short time because this assembly issue is trivial. However,
it is interesting to note that the FORM system methodology
provides the exact probability result instantaneously while MC
simulations provide a confidence interval on the result.

4.3. Functionality defect issue

Concerning the functionality issue, the non-interference do-
main Ω(D) is determined by considering each potential contact
point. This depends on themechanism dimensions and defines the
admitted positions and orientation P of part 1:

g1(D, P) =
D6

2
sin(α) +

D3

2
cos(α) −

D4

2
+ X ≤ 0

g2(D, P) = D7 tan(α) +
D1

2 cos(α)

+


D5

2
− Y


tan(α) − X −

D2

2
≤ 0

g3(D, P) =
D3

2
sin(α) +

D6

2
cos(α) −

D5

2
+ Y ≤ 0

g4(D, P) =
D6

2
sin(α) +

D3

2
cos(α) −

D4

2
− X ≤ 0 (21)

g5(D, P) =
D1

2 cos(α)
+


D5

2
− Y


tan(α) + X −

D2

2
≤ 0

g6(D, P) =
D3

2
sin(α) +

D6

2
cos(α) −

D5

2
− Y ≤ 0

Ω(D) : P
 6

i=1

gi(D, P) ≤ 0.

The functional characteristic is Fc = αmax. To achieve an ad-
equate electrical connection, αmax, which represents the largest α
angle admitted by themechanism,must not exceed a given thresh-
old Fcmax = 0.01 rad. The functional requirement is

αmax(D) = max
P∈Ω(D)

(α) ≤ Fcmax . (22)

To compute PDf with the proposedmethod, the preliminary task
is to linearize the initial non-interference constraints g(D, P) in

Eq. (21) with respect to the displacement space P by using a Taylor
expansion around a particular point: (X = 0, Y = 0, α = Fcmax)
(to not be confused with the most probable failure point). This
point is very pertinent because Fcmax is the angle at which the
functional characteristic value is critical. Then the important con-
tact point situations are identified. In 2D space, such a situation
has three contact points among the six potential ones (Nc = 6).
As a consequence, there exist Ns = C3

6 = 20 potential contact
point situations. Five of these are identified thanks to their con-
tact point identification, defined in Fig. 4 in this particular case:
s(1) = {1, 2, 3}, s(2) = {1, 3, 4}, s(3) = {2, 3, 6}, s(4) = {1, 3, 6}
and s(5) = {2, 3, 5} as dominant situations. They are obtained us-
ing 100 optimization runs. For each of them, a linear problem is
solved in order to obtain the P-coordinates P̂ of these extreme sit-
uations. For example, the first one is defined as follows:

P̂1(D) = P
g̃1(D, P) = 0

g̃2(D, P) = 0
g̃3(D, P) = 0.

(23)

Based on these coordinates, 5 performance functions are de-
fined:

Li(D) = Fcmax − Fc(D, P̂i(D)), i = 1–5. (24)

These functions, although resulting from a linear system, are not
linear with regard to D space. Thus, the FORM method transforms
them into hyper-planes at the most probable failure point. The in-
tersection of events is treated by the FORM systemmethod and PDf
is computed thanks to themulti-dimensional Gaussian cumulative
distributive function Φn. The following equation enables the com-
putation of the defect probability presented Eq. (13):

PDf ≈

5
i=1

Φ4

−β(i), [ρ]

(i)
−


i<j

Φ8

−β(ij), [ρ]

(ij)
+ · · · + (−1)Nds−1Φ20


−β(ij...Nds), [ρ]

(ij...Nds)


(25)

where β(i), β(ij), β(ij...Nds), [ρ]
(i), [ρ]

(ij) and [ρ]
(ij...Nds) are the

reliability index vectors and the covariancematrices associated re-
spectivelywith the i-th contact point situation, the i-th and j-th sit-
uations and the Nds situations together. For example, the first term
of Eq. (25) uses Φ4 because there is an intersection of Nc −3+1 =

6 − 3 + 1 = 4 events in the first term of Eq. (13) (Nc − 6 + 1 in
3 dimensions but Nc − 3 + 1 in this particular plane model). Thus,
β(i) and [ρ]

(i) are respectively a 4-dimensional vector and square
matrix.

For a better comprehension, Fig. 5 shows the defect area as
regards the first identified situation in (U1,U2) space while (U3,
U4,U5,U6,U7) are fixed. Fig. 6 shows the whole defect area in the
same space. The complete defect area is the union of individual de-
fect areas relative to each contact point situation. Some lines can-
not be displayed since they are outside the frame. Some lines are
also merged with others. It is interesting to note that most defect
areas have common limits and are disjoint. Nevertheless, the third
and fourth ones have a common intersection. This figure helps to
understand the necessity of using the Poincaré formula to compute
PDf (Eq. (13)).

The goal of this application is to show that tolerance analysis
can be conducted at a very low computing cost using the FORMsys-
tem methodology for simple over-constrained mechanisms with
gaps. Different solution methods are proposed based on the two
presented methodologies, using both linear and non-linear non-
interference constraints. Results in ppm are listed in Table 3 with
their 95% confidence intervals (C.I.). Nl = 107 runs were used for
MC, so the 95% C.I. width of PDf is approximately equal to 300
ppm. The FORM system results have also a 95% C.I. due to the Genz
method. The low difference between the two MC results shows



Fig. 5. Representation of the defect area of the first contact point situation in standard space U1,U2 .

Fig. 6. Representation of the whole defect area in standard space U1,U2 .

Table 3
Functionality issue results for the RADIALL coaxial connector.

Solution method PDf in ppm (95% C.I.) Number of calls (computation time)

Monte Carlo with non-linear constraints 47329(257) 107 non-linear optimization runs (3 days)
Monte Carlo with linear constraints 47202(312) 107 linear optimization runs (10 h)
FORM system with linear constraints 47245(225) 20 FORM solutions + 31 Φn computations (10 min)
FORM system upper bound 60940(136) 5 FORM solutions (3 s)

that non-interference constraint linearization has no measurable
impact on PDf . Also, as the FORM system results are very close to
those of MC (Table 3), it shows that the FORM linearization phase
has no measurable impact either. This argues that the FORM sys-
tem methodology can deal with this kind of problem with a very
low computing cost (10 min as opposed to 10 h).

To give an idea of the weight of each dominant contact point
situation, the individual defect probabilities associated with each
situation were computed as

P (i)
Df = Prob


(Li(D) < 0)

3
j=1

(g̃j(D, P̂i) ≤ 0)


(26)

P (1)
Df = 30 527(65) ppm, P (2)

Df = 1861(12) ppm,

P (3)
Df = 13 770(27) ppm

P (4)
Df = 14 781(32) ppm, P (5)

Df = 1(0.01) ppm. (27)

This shows that different situations play a significant role in the
defect scenario. Based on these individual situation results, it is
possible to compute a PDf upper bound, which is simpler and faster

to obtain, but quite distant from the actual value in this case:

PDf ≤

Nds
i=1

P (i)
Df = 60 940(136) ppm. (28)

5. Two-axle prismatic joint

5.1. Case study

Now let us consider a second industrial case study, already pre-
sented by Ballu et al. [6] and Wu et al. [15]. The new proposed
methodology is applied to compute defect probabilities for this
mechanism. It is a prismatic joint composed of 2 shafts {3, 4}, one
bearing {1} and one other part {2} (see Fig. 7). The axles slide in
part {1} and are attached to part {2} by hooping. Part {1} is fixed,
while parts {2, 3, 4} are positioned in the vertical direction thanks
to displacement variables P = {YK , α} (see Fig. 7). Parts {2, 3,
4} are designed to move mainly in the horizontal direction, but
this study will investigate only vertical displacements, and hori-
zontal movements are not considered here. l1, l2 and l3 define the



Fig. 7. Prismatic joint general scheme. Gaps are emphasized for better comprehen-
sion. Numbers are the contact point identifications.

horizontal positions of parts which are fixed. They are modeled by
deterministic variables. Due to manufacturing defects, the shafts
are not parallel, their borings are not coaxial with them and their
dimensions are not at their nominal values. Thus, gaps are intro-
duced between shafts and borings, allowing displacements. Di-
mensions D characterize relevant manufacturing deviations. D1 to
D8 are the distances between the real axes of the borings and the
shafts at part {1} plane level. D9 to D12 are the diameters of the
shafts and borings (see Fig. 8). They are modeled by Gaussian vari-
ables. D and l characteristics are noted in Table 4.

5.2. Assembly issue

The assembly constraints of this mechanism, obtained geomet-
rically, are as follows:

m1(D) = 2D1 −
2(l1 + l2 + l3)

l3
D5 −


2 −

2(l1 + l2 + l3)
l3


D6

+D9 − D11 − 2D3 +
2(l1 + l2 + l3)

l3
D7

+


2 −

2(l1 + l2 + l3)
l3


D8 + D10 − D12 ≤ 0

m2(D) = −2D1 +
2(l1 + l2 + l3)

l3
D5

+


2 −

2(l1 + l2 + l3)
l3


D6 + D9 − D11

+ 2D3 −
2(l1 + l2 + l3)

l3
D7

−


2 −

2(l1 + l2 + l3)
l3


D8 + D10 − D12 ≤ 0

m3(D) = 2D2 −
2(l2 + l3)

l3
D5 −


2 −

2(l2 + l3)
l3


D6

+D9 − D11 − 2D4 +
2(l2 + l3)

l3
D7

+


2 −

2(l2 + l3)
l3


D8 + D10 − D12 ≤ 0 (29)

m4(D) = −2D2 +
2(l2 + l3)

l3
D5 +


2 −

2(l2 + l3)
l3


D6

+D9 − D11 + 2D4 −
2(l2 + l3)

l3
D7

−


2 −

2(l2 + l3)
l3


D8 + D10 − D12 ≤ 0

m5(D) = D9 − D11 ≤ 0

m6(D) = D10 − D12 ≤ 0.

These constraints enable the shafts to penetrate part 1 with-
out stress or deformation. To compute PDa, once again both MC

Fig. 8. Prismatic joint notation scheme. Dimensions D1 to D8 are defined at plane
levels.

Table 4
Dimension characteristics of the prismatic joint.

Name Mean Standard deviation

D1,D2,D3,D4,D5,D6,D7,D8 0 0.022
D9,D10 79.78 0.022
D11,D12 80.22 0.022
l1 300 /
l2, l3 200 /

Table 5
Assembly issue results for the prismatic joint.

Solution method PDa in ppm (95% C.I.) Number of calls
(computation time)

Monte Carlo simulations 1567(49) 107 runs (2 min)
FORM system 1575(73) 1 Φ6 computation (2 s)

simulations and the FORM system can be used, since the defects do
not depend on part positions. The reliability indexes of the FORM
system method are computed analytically, since the constraints
are linear. Table 5 shows the assembly defect results for this case
study.

5.3. Functionality issue

The mechanism’s functionality depends on the lower position
min(YK ) of point K , belonging to part {2}, in the vertical direction
(see Fig. 7). The functional requirement is that this position be
greater than 0.94 mm below its nominal position: min(YK ) ≥

YKmin = −0.94. To compute PDf , the preliminary task is to establish
non-interference constraints. There are 4 potential contact points
represented in Fig. 7. Each one involves a linearized constraint:

g̃1(D, P) = YK + (l1 + l2 + l3)α + D6 +
D9

2
−

D6 − D5

l3
(l3 + l2 + l1) − D1 −

D11

2
≤ 0

g̃2(D, P) = −YK − (l2 + l3)α − D6 +
D9

2
+

D6 − D5

l3
(l3 + l2) + D2 −

D11

2
≤ 0

g̃3(D, P) = YK + (l1 + l2 + l3)α + D8 +
D10

2
−

D8 − D7

l3
(l3 + l2 + l1) − D3 −

D12

2
≤ 0 (30)



Table 6
Functionality issue results for the prismatic joint.

Solution method PDf in ppm (95% C.I.) Number of calls (computation time)

Monte Carlo simulations 556(30) 107 linear optimization runs (28 h)
FORM system 553(4) 12 FORM solutions + 15 Φn computations (5 min)
FORM system upper bound 558(4) 4 FORM solutions (3 s)

g̃4(D, P) = −YK − (l2 + l3)α − D8 +
D10

2
+

D8 − D7

l3
(l3 + l2) + D4 −

D12

2
≤ 0

Ω(D) : P
 4

i=1

g̃i(D, P) ≤ 0.

As the displacements are very small, functions are linearized. The
defect probability PDf is defined as

PDf = Prob


min
P∈Ω(D)

(YK (D, P)) − YKmin < 0


. (31)

This probability can be computed by the first methodology, and
by the second one if the contact point situations are well defined.
As Ballu et al. [6] did, it is simple to identify them using the iden-
tification numbers defined in Fig. 7: s(1) = {1, 2}, s(2) = {3, 4},
s(3) = {1, 4} and s(4) = {2, 3}. In this case, Nds = Ns = 4,Nc = 4.
Thus, the second methodology PDf formulation is as follows:

PDf = Prob


4

i=1


(Li(D) < 0)

2
j=1


gs̄(i)j

(D, P̂i) ≤ 0


(32)

where Li(D) = YK (D, P̂i(D)) − YKmin . Functionality defect proba-
bility results are given in Table 6. As in the previous application,
both methodologies give comparable results, but the computation
cost of theMCmethod is significantly higher than that of the FORM
system. This application confirms the ability of the FORM system
method to deal with functionality issues very efficiently. The de-
fect probability of individual situations P (i)

Df , i = 1 to 4, can be com-
puted, and their sum gives a PD upper bound, which is very close
to the actual result:

P (1)
Df = 148(1), P (2)

Df = 131(1), P (3)
Df = 148(1),

P (4)
Df = 131(1)

PDf ≈

4
i=1

P (i)
Df = 558(4) ppm. (33)

This shows that individual defect events are independent in this
case.

6. Conclusion

Statistical tolerance analysis is a key step in the design phase
for industrial products. Probabilistic approaches provide very use-
ful tools for tolerance analysis. The goal is to compute defect proba-
bilities of over-constrainedmechanisms containing gaps; the latter
represent themain difficulty here, since they cannot bemodeled as
random variables. In fact they are free and have to be considered
as deterministic variables. This point greatly complicates the solu-
tion process. In addition, these kinds of mechanisms are specific,
because their non-conformance is caused either by assembly de-
fects or by functionality defects. This paper shows that assembly
issues are often trivial, whereas functionality issues are complex
due to the presence of gaps.

Concerning functionality issues, the paper proposes an innova-
tive methodology from the structural reliability domain. The au-
thors propose to compute PDf defect probability using the FORM

system method. Several contact point situations are treated sep-
arately as dependent events. Their intersection is taken into con-
sideration thanks to the multi-dimensional Gaussian cumulative
distributive function Φn, computed by the Genz method. The pro-
posed methodology is compared with another existing method
based on MC simulations and optimizations. The two industrial
applications show that both presented methodologies give equiv-
alent results. The proposed method enables the computation of
defect probabilities for mechanisms containing gaps at a very low
computing cost (a few minutes compared to several hours). The
FORM system methodology is remarkably accurate and can be
applied to other mechanisms containing gaps on which several
contact point situations can be identified to respect functional
requirements. Its efficiency is also linked to the linearity of non-
penetration constraints to ensure that extreme functional charac-
teristic values are obtained at the contact points.

In the case of more complex mechanisms with gaps whose
behavior is governed by highly non-linear functions, the constraint
linearization phase could lead to errors in defect probabilities.
In future work, it would be interesting to deal with this kind of
system.
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