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ABSTRACT 

To improve the tolerancing process in an industrial context, there exists a strong need for tolerance 

analysis to estimate the probability of scrap in an acceptable computer time and managing the accuracy 

of the results. The developed approaches for gear tolerance analysis based on simulation, depend on the 

type of the Skin Model representation, and on the type of behavior model.  Therefore, this paper proposes 

a comparison of four Skin Model representations (discrete shape / parametric surface), and three Tooth 

Contact Analysis techniques (discrete approach / simulation of tangency of tooth surfaces) regarding 

accuracy of results, computation time and the adequacy with the standard tolerance practices.  
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INTRODUCTION 

Tolerance analysis concerns the verification of the value of functional 

requirements after tolerance has been specified on each component. Usually, the used 

approach for tolerance analysis of a complex system like gear is based on 

experimentations or numerical simulations. In order to determine the effects of a 

tolerance and to understand the contributions of tolerances on the system behavior, it 

is necessary to identify the relationships between tolerances and functional 

characteristics by a set of experiments or numerical simulations. 

Currently, the developed approaches depend on the type of geometrical model 

and on the type of system response function or simulation model (behavior model). To 

define the global context of this paper, we can distinguish three main issues in tolerance 

analysis: 

1. The models for representing the geometrical deviations,

2. A mathematical model for calculating the system behavior with

deviations, 

3. The development of the analysis methods.

Tolerance analysis has to simulate the “real-world” of the product with the 

minimum of uncertainty. A part of this uncertainty is due to the model uncertainty. In 

fact, Daniel P. Loucks said: “The usefulness of any model depends in part on the accuracy 

and reliability of its output. Yet, because all models are imperfect abstractions of reality, 

and because precise input data are rarely if ever available, all output values are subject 

to imprecision.” [1]. 
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Therefore, this paper focuses on the comparison of models for representing the 

geometrical deviations (skin model representations) and on the comparison of 

mathematical models for calculating the system behavior (Tooth Contact Analysis 

techniques). 

This paper is divided into three main sections. The first section presents some 

skin model representations of gear, the second some mathematical models for tooth 

contact analysis, and the last section provides a comparison of these models. 

SKIN MODEL REPRESENTATIONS 

The concept of Skin model was proposed by Ballu and Mathieu [2]. The skin 

model has been developed to enrich the nominal idealized geometry considering 

physical shapes. The concept stemmed from the theoretical foundations of Geometrical 

Product Specification (GPS). The skin model represents the interface of the part with its 

environment. 

The representation of the skin model has been investigated only recently. A 

discrete shape approach is proposed by Zhang et al. [3]. Schleich et al. [4] proposed a 

comprehensive framework for skin model simulation. 

A significant amount of research efforts has been given in the last decade to 

explore the fundamental, mathematical basis for geometric tolerance representation. 

The reported mathematical models are developed either 

• by using the tolerance zone approach (Offset zone models, tolerance zone

around theoretic geometry – Requicha [5] represents the model variations 

as a pair of "offset boundaries," or offset surfaces, which bound each ideal 
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surface. The set of offset boundaries form a tolerance zone which bounds 

the entire part ), 

• by using the variational geometry approach or by using other variational

models (Variational models or parameterization of deviations from theoretic 

geometry. The real geometry of parts is apprehended by a variation of 

nominal dimension or it is apprehended by a variation of the nominal 

geometry. The principle of vectorial tolerancing [6] is based on the concept 

of substitute surfaces. A substitute feature is an imaginary geometrical ideal 

surface which is represented by parametric vectors). 

Based on these concepts, we propose four skin model representations for gear: 

• discrete shape,

• discrete shape with Vectorial Dimensioning and Tolerancing (VD&T) strategy,

• parametric surface,

• parametric surface with vectorial dimensioning and tolerancing (VD&T)

strategy [7, 8]. 

Discrete shape 

The skin model is imagined as a continuous surface. To be integrated in 

computer systems, the skin model could be simplified to obtain a finite description like a 

discrete shape.  In this case, the real tooth surface Σ is represented by a set of points 

which are defined in a global coordinate system Sf. 
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With 

Σ1
(1), Σ2

(2): set of points of the skin model in the local coordinate system.

Mf1 and Mf2 : transform matrices from skin model coordinate system to the 

global coordinate system. 

Φ1 is rotational angle of pinion 1 and Φ2 is rotational angle of wheel 2. 

To define the discrete skin model, the nominal model is sampled into a set of 

points (Figure 1), and the real geometry is apprehended by the displacement each point, 

leading to a huge number of parameters. 

Fig. 1. Discrete shape illustration 

Discrete shape with Vectorial dimensioning and tolerancing (VD&T) for gear 

The discrete representation Σ7 is described by its model in the local coordinate 

system (S7 first substitute surface pinion 1 or S8 first substitute surface wheel 2). The 

model of the gear box with geometrical variations can be simulated by changing the 

settings and orientations of the coordinate systems (Fig. 2). Few coordinate systems (S7, 

S5, S3, S1 for pinion 1 and S8, S6, S4, S2 for wheel 2) are introduced. They allow to 

parameterize geometrical deviations, gaps and displacements: error on cumulative 

angular pitch, position and orientation deviations between the axis of the teeth and the 
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hole axis, rotational parameter, misalignments … Therefore, we can define the model of 

tooth surface Σf in the global coordinate system Sf (equation 2) 

Fig. 2. Definition of coordinate systems of VD&T. 
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With 

Mij is the transform matrix from Sj to Si. 

The standardized situation deviations [9], [10] are coherent with this model: 

• the situation deviations between flanks,

o Cumulative pitch deviation Fpk over a sector of k pitches: algebraic

difference between the actual length and the theoretical length of 

the relevant arc. It is equal to the algebraic sum of the single pitch 

deviations of the same k pitches. 

o Single pitch deviation fpt, Mean base pitch deviation fpbm, …

• the situation deviations between teeth and hole.

o Runout of teeth, Fr : total variation of the distance between a datum

surface(s) (hole) and an indicated surface(s) (teeth). 

o Eccentricity fe (feL, feR), Wobble Fs (FsL, FsR), …

And the form deviations are described with the parameterization of the discrete 

shape: 

• the flank deviations (profile or form deviations),
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o Total profile deviation Fα: distance between two design profiles which

enclose the actual profile over the evaluation range Lα, subject to 

provisions of the above. 

o Profile form deviation ffα, Profile slope deviation fHα, …

Parametric surface and Parametric surface with VD&T 

The substitute skin model Σ is described by its parametric model in the global or 

local coordinate system. The definition of its parametric model is decomposed into 3 

steps: the definition of the nominal surface, the addition of the crowning and the 

addition of the deviations: 

Substitute tooth surface model = Nominal tooth surface model + Crowning + 

deviations 

Form deviations can be defined by the deviations between the substitute tooth 

profile and theoretical profile (Nominal tooth surface model + Crowning). For each point 

of each tooth surface, this deviation is the displacement normal to profile of this point: 
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With 

j  {0, …, Z1-1} and k  {0, …, Z2-1} : tooth index 

w (1),j(u1,v1): deviation parametric expression of the tooth j.

To describe the form deviations as these parametric functions, we can find lots 

of solutions, such as the famous Fourier transform applied to roughness filtering, the 
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Discrete Cosinus Transform (DCT) [11] proposed by Huang and Ceglarek, and the modal 

tolerancing proposed by Samper et al [12], which is a generic approach that is able to 

describe form deviations of any geometry. 

In the case of the parametric surface, skin model representation of teeth 

surfaces in the global coordinate system is given by: 
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1 vuSvuS : Nominal parametric expression.

In the case of the parametric surface with VD&T coordinate systems 

decomposition, skin model representation of teeth surfaces in the global coordinate 

system is given by: 
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As the discrete shape with the proposed VD&T, the parametric surface with 

proposed VD&T is coherent with the standardized deviations [8]. 

TOOTH CONTACT ANALYSIS TECHNIQUES 

The aim of TCA is to obtain the real gear ratio at the mean contact point during 

the meshing, contact path, orientation and size of contact ellipse. Only the first one is 

evaluated in this study. If the teeth surfaces and the relative positions are perfect, the 
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instantaneous gear ratio would be constant. Due to misalignment and parts deviations, 

this instantaneous kinematic relationship is changing [7]. The relative variations of real 

gear ratio are minor but accelerations induced are not negligible. Indeed, jump of 

angular velocity must be avoided in order to reduce noise level and vibrations [13]. 

TCA for discrete shape 

The aim of TCA is to determine the relationship between the two rotational 

angles (Φ1 and Φ2). To do so, it is necessary to traduce the contact between the two 

teeth surfaces. In the case of discrete shape, the condition of contact between the two 

surfaces (Fig. 3) is given by: 
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Fig. 3. Teeth gap in the case of discrete shape 

Numerical methods are required to identify the contact point for each 

configuration of the pinion 1. To simplify this numerical resolution, we can simplify the 

model: we consider the contact point in the meshing plan Pl. The new condition of 

contact between the two surfaces (Fig. 4) is given by: 
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This mathematical problem does not have an explicit solution in the general 

case. We may only have an approximate numerical solution. With this aim, the following 

method is used: 

• to choose a series of values for Φ1,

• for each value of Φ1, to solve the optimization problem which is made by an

iterative method, 

• to analyze the instantaneous kinematics error.

This tooth contact analysis allows to define the kinematic relationship during the 

meshing of one tooth. To define it during the global meshing, we reproduce this analysis 

for each tooth which is nominally in contact, we obtain each kinematic relationship of 

each tooth, and we calculate the superior (or inferior, that depends on the direction of 

rotation) envelope of these relationships. 

Fig. 4. Projected teeth gap in the case of discrete shape 

TCA for parametric surface 

During the meshing, surfaces S(1) and S(2) are tangential (Fig. 5) and it is well 

known the necessary and sufficient conditions for this situation are [14]: 
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Fig. 5. Contact condition in the case of parametric surface 

The most difficult in TCA is to solve a system of non-linear equations that traduce 

contact between the two surfaces. When the position of contact point(s) is (are) known, 

it’s easy to determinate the real gear ratio and transmission error, the contact paths on 

the gear tooth surfaces. Like the TCA for discrete shape, numerical methods are 

required, iterative methods are used. 

These three TCA approaches have been implemented and tested in a case of a 

meshing of two gears. The algorithm is chosen as a function of its rapidity and precision. 

The following table shows the results for a simulation (20 turns with 60 angular 

positions for each tooth). 

Table 1. A comparison between the different approaches. 
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To compare a numerical result and an experimental result, the data points of the 

measured gears are used as input of the meshing simulation program. Meshing results 

are then compared with real meshing measurement on meshing machine (Fig 6). 

Fig. 6. Comparison between measurements and simulation. 

As shown, a great similarity is obtained. The differences could be due to the 

measurement uncertainties and the geometrical variations of the master gear and the 

assembly for the kinematic simulation; in fact, the numerous meshing simulations don’t 

take into account the geometrical variations of the master gear. 

COMPARISONS OF THESE MODELS & CONCLUSION 

We proposed four skin model representations of gear and three techniques for 

Tooth Contact Analysis. To compare them, the chosen criteria are: 

• The compatibility between them,

• The adequacy with the metrology or standard practices,

• The accuracy of the simulation,

• The computing time.

The comparison results are shown in the tables 2, 3, 4 and 5. 

Table 2. Compatibility 
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Parametric surfaces are continuous, and they offer the convenience that discrete 

shape can be enumerated very quickly by simply choosing coordinates in the parameter 

space. Therefore, TCA for discrete shape can be used easily with a skin model which is 

represented by parametric surfaces. 

Table 3. Adequacy with the metrology or standard practices 

The skin model representation with VD&T is coherent with the standard and 

metrology practices. The important point of the proposed skin model representations 

for gear is to provide an unique solution to express tolerances based on geometry. 

Taken into account directly, in the expression of the specification, the result based on a 

mathematical expression is unique and clearly described for everybody. There is no 

more interpretation for the designer, the manufacturer and the metrologist.  

Table 4. Accuracy of the simulation 

By all approaches, accurate numerical simulations are performed to obtain 

transmission error. 

Table 5. Computing time 

The technique based on the projection is a fast solution. 
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The discrete shape with VD&T and the TCA approach based on the projection 

offers the best compromise between the accuracy, the computing time and the 

adequacy with the standard practice. 
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Table 1. A comparison between the different approaches. 

Average time calcultation 

(minutes) 

Average residual 

TCA for discrete shape 117’ 2.10-8 m 

TCA with projection for 

discrete shape 

5’ 5.10-7 m 

TCA for parametric 

shape 

91’ 3.10-8 m 



Table 2. Compatibility 

Discrete shape 
Discrete shape 

with VD&T 

Parametric 

surface 

Parametric 

surface with 

VD&T 

TCA for discrete 

shape OK OK 

Need a 

discretization 

operation 

Need a 

discretization 

operation 

TCA with 

projection for 

discrete shape 

OK OK 

Need a 

discretization 

operation 

Need a 

discretization 

operation 

TCA for 

parametric 

surface 

Need a fitting 

operation 

Need a fitting 

operation 
OK OK 
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Table 3. Adequacy with the metrology or standard practices 

Discrete shape 
Discrete shape 

with VD&T 

Parametric 

surface 

Parametric 

surface with 

VD&T 

Adequacy -- ++ -- ++ 



Table 4. Accuracy of the simulation 

Accuracy 

TCA for discrete shape +++ 

TCA with projection for discrete shape ++ 

TCA for parametric shape +++ 



Table 5. Computing time 

Computing time 

TCA for discrete shape - 

TCA with projection for discrete shape +++ 

TCA for parametric shape - 




