
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9374

To cite this version :

Laurent MAHEO, Damien ANDRE, Jean-Luc CHARLES, Ivan IORDANOFF, Frédéric DAU - A
promising way to model cracks in composite using Discrete Element Method - Composites Part B:
Engineering - Vol. 71, p.193-202 - 2015

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/9374
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


A promising way to model cracks in composite using Discrete Element
Method

L. Maheo a,b,⇑, F. Dau c, D. André c, J.L. Charles c, I. Iordanoff c

a Univ. Bretagne Sud, LIMATB, F-56100 Lorient, France
b Ecoles Saint-Cyr Coetquidan, CREC, F-56380 Guer, France
c Arts et Metiers ParisTech, laboratoire I2M, dpt. DuMAS, UMR CNRS 5295, F-33405 Talence, France

Keywords:
B. Fracture
B. Mechanical properties
C. Computational modeling
C. Damage mechanics
Discrete Element Method

a b s t r a c t

In this article, the Discrete Element Method (DEM) is taking advantage for the damage modeling of a com-
posite material. At this stage of work, a Representative Elementary Volume (REV) of an unidirectional
composite material modeled in 3D is considered to prove the relevance of the approach. The interest
to introduce the Discrete Elements (DE) on the scale of constituents (fiber and matrix) is to be able to
report local mechanisms of degradation such as the matrix micro-fissuring, the fiber/matrix debonding
and the break of fiber, appropriate to this type of material. The short-term objective is to use this DEM
modeling to treat locally the damages induced by an impact loading associated with a conventional Finite
Element modeling beyond the damaged zone. First, the geometrical modelings of the fiber and the matrix
are presented. The phase of calibration of the DE model intrinsic parameters governing the fiber and
matrix behavior and the fiber/matrix interface is afterward retailed. At this stage, each constituent is
assumed to be brittle elastic. Then, simulations of longitudinal and transversal tensions but also of in
plane and out of plane shearing are performed on the REV using DEM. The results are discussed and com-
pared with those known for the literature. The capacity of the present DEM to capture the crack paths is
particularly highlighted.

1. Introduction

The increasing market of composite in the aeronautical sector in
particular imposes statutory requirements for the safety of the
properties and the persons. Concerning the composite material, a
major industrial stake is to propose a structural material perform-
ing against impacts such as falls of tools during the maintenance,
tire debris projections or hail storm. Faced with the need to
strongly reduce experiments for the benefit of numerical simula-
tions, the issue is then to develop digital models always more effi-
cient. Then, the trend is to favor multiscale approaches allowing a
dialogue between a local damaged zone and the global behavior of
the considered structure. Some authors consider the multiscale
approach by global/local iterative calculations performed on the
whole structure (macroscopic scale) and more locally around the
process zones (microscopic scale). The most common methods
consist of returning the structures effects (macro scale) to a fine
model (micro scale) using adaptive boundary conditions (down-

ward methods) [1,2] and reinjecting a corrective load (multi-grid
and decomposition methods) [3,4] or degraded homogenized prop-
erties [5] from the local scale to the global scale. Others authors
propose a multiscale method for micro–macro failure of compos-
ites computing an equivalent discontinuity at macro scale [6].

Others attempt to finalize modelings in which models intended
to report at the same time local and global effects using coupling
techniques (sticking methods). Within this framework, a direct
coupling approach is proposed by the authors of the present study.
It consists of introducing locally the Discrete Elements Method,
DEM, initially developed by [7] and adapted to the degradation
of a continuous medium when cracking or fragmentations appear
[8] and coupling it with a more conventional continuous method
beyond the process zone. So, the works [9] presents the Discrete
Elements Method (DEM) coupled with the Constrained Natural Ele-
ment Method (CNEM) using Arlequin technique[10]. More
recently, this coupling was taken advantage to treat the case of a
laser impact on glass [11]. In order to generally deal with the case
of impact on composite target, the originality of this work is to pro-
pose a 3D modeling using DE for a composite medium. The case of
an UD cell is considered at the moment but an extension to UD ply
and composite textile is also planned.
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Until now, the use of DEM to model composites is almost
restricted to a 2D domain with studies on the damage observed
in a fold UD [12–14] during debonding tests [15–17]. The DEM
turns out to be an excellent tool to identify qualitatively the initi-
ation and the distribution of fiber/matrix interfacial debonding
[16] and to quantitatively determine the degraded mechanical
properties; the degradation of the Young modulus can be related
to the density of cracks inside the material [12]. Thanks to growing
computing powers, works on the use of the DEM in a 3D domain
for homogeneous materials as silica [18] or heterogeneous as the
concrete [19] is now possible. Shiu et al. [19] shows in particular
the capabilities of the method to predict the depth of penetration
of missiles according to their shape. More recently, Aghazadeh
Mohandesi et al. [20] used the DEM to prove its capability to
describe the behavior of a sand PET composite under compressive
loadings and with different temperature conditions.

Our objective is thus to introduce the DEM developed in the lab-
oratory [21] to prove its capability and its relevance to treat the
cracks propagation at the microscopic scale. The case of an UD is
considered in this work through a Representative Elementary Vol-
ume (REV) constituted by a fiber flooded in a cube of resin. The
geometrical modeling of the fiber and the matrix is first presented).
The filling technique is particularly described. The mechanical
modeling of the continuous media constituted by the fiber and
the matrix is then handled. It consists of the introduction and cal-
ibration of mechanical links to report a brittle elastic behavior.
Cohesive beams developed in [26,27] stand for these links. The cal-
ibration step to identify beam parameters at microscopic scale is
detailed for each constituent (fiber and matrix) and for the inter-
face (fiber/matrix). Numerical tests to validate the REV behavior
are then presented. Longitudinal and transversal tractions, and in
plane and out of plane shearing are performed on the REV. The
parametric simulations qualitatively and quantitatively show the
relevance of the present DE model.

Comparisons are also made between two criteria implemented
for the failure process. Some conclusions and perspectives con-
clude this work.

2. Geometrical modeling of the heterogeneous media

2.1. General considerations

The geometrical modeling of the fiber and the matrix is guided
by the following requirements and assumptions: (i) use the sim-
plest DE shape, (ii) adopt a compatible DE size with the scale of
mechanisms to observe, (iii) adopt a radius distribution to get a
correct representation of the continuous medium (compaction
and isotropy), and (iv) use a sufficient number of DE to ensure
the macroscopic results non sensitivity to the discretization.

In the present DEM, the formulation is naturally in explicit
dynamics. The DE geometry associated with the density carries
the kinetic information whereas the links connecting the centers
of adjacent DE pilot the behavior, see Section 3.1. For efficiency
reasons, the implementation and treatment are performed using
spherical DE. More complex geometries could be however envis-
aged by the use of Voronoï cells [22,23]. The size of spheres is vary-
ing according to a Gaussian distribution. It is chosen in such a way
to be able to analyze the mechanisms of degradation at the scale
they occur; the matrix micro-cracking, the fiber/matrix debonding
and the failure of fibers are the interesting mechanisms. Their
number and their size have also to allow a good geometrical repre-
sentation of the fiber/matrix interface.

Practically, building the continuous medium (fiber or matrix)
consists of placing at one time a set of DE whose radius has been
beforehand chosen according to the required distribution. This
stuffing operation is followed by a phase of relaxation to get the

best cohesion of the isotropic continuous. The last is governed by
two criteria: an optimal rate of compaction (ratio between the vol-
ume of spherical DE and the enveloping volume) of 6.3 and a min-
imal number of coordination (number of contacts by DE) of 6 [26].

Even if the objective at this stage is not to study the degradation
of the fiber, its modeling uses the same distribution (casting) of DE
as the matrix. This choice allows: (i) to avoid prohibitive filling
times due to significant differences of size and (ii) to get a suffi-
cient fine representation of both the media (fiber and matrix)
and the interface.

At this stage, being able to represent damage mechanisms at the
fiber scale does not present any interest except for the final failure
but this will be useful in the future when intra tow fissuring will be
considered.

2.2. Representative Elementary Volume (REV)

A cubic domain is considered as the Representative Elementary
Volume (REV). It is made of a cylindrical carbon fiber flooded in an
epoxy matrix. Results are widely available in the literature [24] for
such a REV. It also corresponds to a will to avoid too prohibitive
times of simulations. The main objective at this stage is to prove
the interest of the present DEM for the modeling of the damage
mechanisms in composite. In parallel to this work, one can precise
developments are performed in the laboratory to model cells con-
taining several fibers randomly distributed within a Statistical Ele-
mentary Volume (SEV) such as those considered in [25]. The way of
parallel computing is explored.

For the present REV, the fiber is assumed to be of a cylindrical
shape. Its diameter is such as the volume rate of fiber is of the order
of 51.3%. This corresponds to an arbitrary fixed value. The length of
the cell in the fiber direction results from an analysis of sensibility
[25]. The Fig. 1(a) presents the elementary volume by distinguish-
ing the cylindrical volume of the fiber of that cubic of the matrix.

2.3. DEM modeling of the REV: the filling technic

The filling of the REV by the discrete elements has to enable a
correct representation of the continuums (fiber and matrix). The
filling operation is challenged by the following objectives: (i) to
reach a rate of compaction for modeling correctly the continuums
[26], (ii) to insure the media isotropy [26] (the carbon fiber anisot-
ropy is not yet considered but envisaged in future works), (iii) to
preserve a definition of the geometry in the interface fiber/matrix
as precise as possible.

The most effective one consists into two steps. The first stage
consists in filling the whole volume of the cubic cell by aiming at
the rate of compaction of reference of 6.3 [26] without distinction
of the volumes of the fiber and the matrix. This filling makes in two
operations:

� A first operation of random trial in the space of the possible
positions is realized insuring the geometrical strict condition
of not overlapping of DE.
� The second operation consists in introducing a set of DE by

forcing their overlapping in the restricted volume of REV.
DEM calculations are then performed to release internal
energy until obtaining the desired rate of compression.

The second stage simply consists in differentiating DE belonging
to the fiber of those belonging to the matrix, so as to obtain the vol-
ume rate of fiber wished (desired), that is 51.3% (Fig. 1(b)). The dis-
tinction of fiber DE of those of the matrix is simply made by locating
the position of the DE centers close to the interface represented by a
perfect cylindrical envelope. So, the centers of DE located in the
envelope will be allocated to the fiber whereas those situated out-



side will be associated to the matrix. In this way, the cross section
profile of the interface is not a perfect circle, Fig. 1(b). In the reality,
the fibers are not being perfectly cylindrical, so this geometrical
modeling can turn out relevant. The numbers of DEs used in the
model in Fig. 1(b) are: 41,731 the fiber, 38,749 for the matrix, so
80,480 in all. The radius of DEs varies according to a uniform distri-
bution so as to insure the isotropy of the domain [26]. The sample is
a cube of 8:66 lm edge.

3. Mechanical modeling

3.1. General considerations

From the geometry, it is now necessary to place the links
between the fiber DEs and the matrix DEs but also between the
fiber/matrix DEs in order to model the behavior of each continuum
and at the interface. For the REV in Fig. 1(b), 130,516 fiber links,
115,096 matrix links and 8282 fiber–matrix links were generated
between DEs. The mechanical behavior of these links is assumed
to be brittle elastic.

Whereas many authors [12–14,16,17] use contact and spring
links between particles in DE simulations, authors of the present
study prefer use cohesive beams developed in [26,27] and no con-
tact model. These links introduced at the microscopic scale are cal-
ibrated to find the elastic and failure properties observable at a
superior scale. Continuum fiber and matrix, and interface proper-
ties are addressed. For the moment, the links are identical for a
given medium but a natural variability is envisaged in the future
by simply varying the properties of these links.

In this study, the UD composite defined in Section 2.3 has mate-
rial properties extracted from literature [28]. They are listed in
Table 1. Thereafter, the subscripts M and l denote respectively
the Macroscopic and microscopic variables whereas the super-
scripts fib;mat and f�m denote respectively a variable concerning
the fiber, the matrix and the fiber–matrix.

EM;qM; mM ;rfailM are respectively the macroscopic Young modu-
lus, the density, the Poisson ratio, the macroscopic stress failure
and D, the fiber diameter. Hereafter, isotropic properties are
adopted for the carbon fiber by convenience. This assumption
has no consequence for primary studies presented here. The trans-
verse isotropy of the carbon fiber will be introduced in future
works.

3.2. Calibration procedure

3.2.1. Elastic behavior
The elastic behavior of the cohesive beam bond is defined by

four parameters: two geometrical ones, the length ll and the radius

Rl, and two mechanical ones, the Young modulus El and the Pois-
son’s ratio ml. The bond length ll is the distance between two DE
centers. It is automatically constrained by the filling procedure.
Instead of using the beam radius Rl, the adimensional beam radius
rl ¼ RDE=Rl is preferred, where RDE is the mean radius of all the
spherical DE. This parameter and the two others have to be deter-
mined by a calibration procedure. As shown and performed in [26],
the calibration is based on numerical tensile tests on cylindrical
beams using about 10 000 DE. The procedure developed by [26]
is used for the parameter determination and the results are
resumed in Table 1.

3.2.2. Fragile behavior
Two failure criteria have been investigated in this work in order

to appreciate the relevance of each other in modeling the failure
process. The first one is the most employed in the literature
[8,29,30] whereas the second one has been developed in the lab
[31,32]. The comparison between the two approaches is looked
for at this stage.

The first criterion is the ‘breakable bonds failure process’, BBF, is
driven by the failure of the bonds when a tensile criterion is satis-
fied inside the bond b. This tensile criterion is based on the maxi-
mum normal stress and simply stipulates: failure if rbl > rfaill and
no failure if not. Then, rfaill depending on the nature of the bond,
i.e. the fiber, the matrix or the fiber–matrix bonds, the calibration
procedure is used to get it.

The second criterion is the ‘removed DE failure process’, RDEF, is
based on the deletion of a DE when a tensile criterion is satisfied in
bonds connected to this DE. A virial tensor is defined for each DE i
as following:

�ri ¼
1

2Xi

X

i–j

1
2

rij � f ij þ f ij � rij
� �

ð1Þ

(a) (b)

Fig. 1. REV definition. (a) Geometry. (b) Discretization with 80,000 DE.

Table 1
Calibration of the discrete bounds properties of fiber and matrix.

q [kg m�3] E [GPa] m r rfail [GPa]

Carbone fiber
Continuum properties M 1750 260 0.3 – 2.5
Discrete bounds properties l 8272 0.3 0.307

with the BBF process 86.2
with the RDEF process 5.45

Epoxyde matrix
Continuum properties M 1200 3.45 0.3 – 0.07
Discrete bounds properties l 89 0.3 0.33

with the BBF process 2.0
with the RDEF process 0.148



Each virial tensor �ri is a function of the forces and the moments,
f ij, of the bonds connecting the DE i to the DE j spaced of rij. This
criterion is the one used by [32] and needs a calibration procedure
to be identified.

The fragile calibration procedure is then performed with the
addition of another step, the determination of rfaill (BBF and RDEF
processes). Calculations are performed for several values of rfaill.
The microscopic stress failure rfaill is determined by matching the
looked value with the expected macroscopic stress failure rfailM .

3.3. About the fiber–matrix links

As a first approximation, the fiber–matrix links are kept identical
to those of the links matrix. Adhesive contact laws building is now
in progress in the laboratory and will be soon substituted for these
links. The assumption is sufficient for present objective. So, only
conclusions on the model relevance to capture cracks mechanisms
can be dressed. No conclusions on the model accuracy to predict
any physical damage mechanisms can be established yet.

4. Elementary tests on a UD composite cell

The elementary tests aim at validating the homogenized prop-
erties obtained for the composite using the present DEM for both
elastic and rupture behavior. This is the first step of this work
before using such a model to locally capture damage mechanisms
directly coupled with the global structure, or with a more indus-
trial vision, to return degraded homogenized properties issued
from DEM to the global structure [5]. A cubic cell (Fig. 2(a)) of size
a = l = 8.66 lm with a fiber of diameter / = 7 lm is used for these
elementary tests.

The development and the implementation of particular pro-
grams (or plugins) within the platform GranOO of the laboratory
[21] allow to illustrate the broken links (in the matrix, in the fibers
as well as in the fiber/matrix interface) according to the load. For
each test, kinematic boundary conditions are adopted by conve-
nience of implementation but force, mixed or periodic boundary
conditions remain completely possible.

From the numerical simulations, the relevance of the model and
its capacity to report mechanisms of degradation at the RVE micro-
scopic scale can be appreciated both qualitatively and quantita-
tively by visualizing the break of the links.

4.1. The performed tests

Four first numerical tests have been performed on the elemen-
tary cell (Fig. 2(a)) in order to obtain the elastic properties of the

anisotropic homogeneous media and to compare them with the lit-
erature. The failure process is therefore non-actived for these four
tests.

� A tensile test, referenced by #L, is performed to determine the
elastic modulus EL along the fiber direction, Fig. 3(a). The face
x ¼ 0 is prevented from any x-displacement. A x-displacement
is imposed on the opposite face x = l, Fig. 2(b).
� A tensile test, referenced by #T, is performed to get the elastic

modulus ET along the direction orthogonal to the fiber,
Fig. 3(b). The face y ¼ 0 is prevented from any y-displacement.
A y-displacement is imposed on the opposite face y = a, Fig. 2(b).
� A shear test, referenced by #LT, is realized to obtain the shear

modulus GLT in LT plane, Fig. 3(c). The face z ¼ 0 is prevented
from any displacement. A x-displacement is imposed on the
opposite face z = a, Fig. 2(b).
� A shear test, referenced by #TT, is finally performed to deter-

mine the shear modulus GTT 0 in TT 0 plane, Fig. 3(d). The face
z ¼ 0 is prevented from any displacement. A y-displacement is
imposed on the opposite face z = a, Fig. 2(b).

The numerical tests have been performed with several discrete
domains built as described in Section 2. The characteristics of the
studied discrete domains are resumed in Table 2. The influence
of the number of DE and the influence of the random position of
the DE have been studied. A volumic fraction of fiber arbitrary cho-
sen at 51.3% is retained for simulations.

A numerical sensor located at the loading face for each test has
been used to measure the evolution of the force in order to calculate
a macroscopic stress in the elementary cell. The present DEM is nat-
urally formulated in an explicit time integration scheme adapted to
model dynamic problem, impacts on composite being aimed later.
The time step is about 10�9 s. No numerical or physical damping is
introduced. So, non-stabilized oscillations subsist in the following
curves and originate in round trip of waves in the elementary cell.

In this validation step, the viscous behavior of the epoxy matrix is
first neglected. Only a brittle elastic behavior is taken into account.

Table 3 summarizes both the numerical results obtained with
present method and analytical ones issued from literature
[33,34,28].

4.2. Quantitative results on elastic properties

Elastic properties such as elastic moduli (Fig. 4) and Poisson’s
ratios (Fig. 5) can be obtained with the two first elementary tests
whereas shear moduli (Fig. 6) can be assessed with the two last
elementary tests.
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4.2.1. Comparison of elastic and shear moduli
The value of numerical moduli EL; ET ;GLT and GTT 0 and the value

of numerical Poisson’s ratios mLT and mTT 0 have been approached
by a sliding average value calculated over several time periods
excluding the 10,000 first iterations of the loading ramp. Results
are presented in Table 3.

Firstly, the elastic moduli are overestimated by numerical sim-
ulations compared to reference values whereas the shear moduli
are underestimated. However, numerical results are in the same
range with the theoretical ones. Same remark can be done for Pois-
son’s ratios; suitable values are obtained in the same range than
the theoretical ones. These results confirm a good tendency. They
could be significantly improved using more matrix DEs in the nar-
rowest area of ða� DÞ=2 size to reduce edge effects.

Secondly, it can be observed that elastic and shear moduli are
not influenced by the number of DE but more by the procedure

to build discrete samples. The filling procedure to build discrete
domains can therefore influence the elastic properties and show
the interest of the DEM to build domains including a natural
variability.

4.2.2. Origin of the observed oscillations
Oscillations can be observed on all the plotted figures (see

Figs. 4–6) and originate in wave propagation and reflection inside
the numerical sample. The dynamic property of the calculation
involves such oscillations. Finite Element (FE) simulations have also
been performed with the software code Herezh++ [35] using a
dynamic explicit time integration scheme such as in [36] or a
quasi-static one. The FE mesh presented in Fig. 7(a) is composed
of 32,067 nodes and 58,320 linear pentahedron. The four elemen-
tary tests have been performed using the FE description with the
explicit time integration scheme in order to exhibit the oscillations
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Fig. 3. Performed tests on numerical samples with loadings and boundary conditions. (a) Longitudinal tensile test. (b) Transversal tensile test. (c) Longitudinal shear test. (d)
Transversal shear test.

Table 2
Characteristics of numerical samples.

Sample Nb of DE Nb of bounds F–M

Total Fiber Matrix Total Fiber Matrix

#1 40,730 21,149 19,581 131,375 67,504 58,468 5403
#2a 60,297 31,292 29,005 189,578 97,561 85,288 6729
#2b 62,001 32,098 29,903 200,071 101,824 91,238 7009
#2c 62,305 32,212 29,918 200,897 102,805 90,979 7113
#3 80,480 41,731 38,749 253,894 130,516 115,096 8282

Table 3
Elastic and failure properties of the UD composite obtained with the theory, the DE method and the FE method.

Sample EL [GPa] ET [GPa] mLT mTT 0 GLT [GPa] GTT 0 [GPa]

Elastic properties
Theory [28] 135.06 9.52 0.3 0.3 3.98 3.41
#1 153 12.5 0.290 0.288 2.74 2.58
#2a 139 11.5 0.296 0.303 2.43 2.36
#2b 151 12.9 0.290 0.290 2.54 2.57
#2c 154 12.8 0.289 0.290 2.69 2.54
#3 140 11.5 0.296 0.301 2.42 2.31
FEM dynamic explicit 134 10.7 – – 2.33 2.26
FEM quasi-static 134 10.7 – – 2.32 2.21

Sample rfailM [GPa] efailM [10�3] % of broken bonds

Fiber Matrix Fiber/matrix

BBF RDEF BBF RDEF BBF RDEF BBF RDEF BBF RDEF

Failure properties
#1 1.42 1.45 10.00 10.20 4.6 7.1 44 25 99 40
#2a 1.30 1.38 9.97 10.90 4.5 7.0 42 22 93 38
#2b 1.30 1.40 8.86 10.10 3.7 6.5 45 17 98 28
#2c 1.36 1.44 9.16 9.80 4.1 6.5 40 19 99 30
#3 1.34 1.34 9.69 10.35 4.1 6.2 48 27 91 39



phenomenon. The same oscillations with the same periods and
amplitudes than with the DE simulations can be observed. The
evolution of the GTT 0 is only presented here (Fig. 7(b), black curve).
A sliding average (Fig. 7(b), red curve1) has been calculated over
the stabilized duration, i.e. [10�5:10�4] ms, with the same manner
than for the DE results. A FEM quasi-static has also been performed
to get the stabilized response of the numerical sample (Fig. 7(b),
green curve). The sliding average method seems therefore to be a
good tool to determine the quasi-static stabilized response. FE results
are resumed and can therefore be compared with DE ones and theo-
retical ones in Table 3.

4.3. Qualitative results about rupture behavior

The elementary cell is now subjected to the L-tensile test previ-
ously described with a linear displacement loading applied until
the failure, red curve of Fig. 2(b). The theoretical macroscopic fail-
ure strain values for the fiber and the matrix are respectively
efib

failM ¼ 9:6 � 10�3 and emat
failM ¼ 20:3 � 10�3. The two failure criterion

BBF and RDEF using a stress formulation are presented above and
are evaluated in the present section.

4.3.1. Breakable Bonds Failure process (BBF)
Fig. 8 presents the results obtained with the #2b sample. The

stress–strain curve is plotted and the evolution of the broken
beams, i.e. the fiber, the matrix and the fiber–matrix materials
links, is superposed in Fig. 8(a). A zoom of the failure stage is plot-
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1 For interpretation of color in Fig. 7, the reader is referred to the web version of
this article.



ted in Fig. 8(b) with four relevant times (a)–(d). The face and the
profile views of the sample can be observed in Fig. 9 to illustrate
the propagation of the failure inside the elementary cell. The
fiber–matrix bonds are only drawn in red in order to make the fig-
ures understandable and broken bonds are drawn in blue. A trans-
parency displaying is chosen and every bonds are therefore
displayed through the sample. As already mentioned, these results
have the sole purpose to validate the use of the failure criterion and
then, to show the DEM ability to represent damage kinetic until the
rupture. Indeed, take an interest in a fiber damage mechanisms is
quite questionable but according to the authors, this fiber will be
advantageously replaced by a tow in future investigations. Never-
theless, four main stages can just be described and commented:

(a) During a first large macroscopic ‘elastic-damaged’ stage
(eM 2 [0:8.82 � 10�3]), a few number of broken bonds ran-
domly appears in the fiber. It can be noticed that the broken
bonds tend to progressively appear in a place located at the
bottom center of the fiber (see Fig. 9(a) and (e)).

(b) During a second ‘fiber crack’ stage (eM 2 [8.82 � 10�3:9.00 �
1 0�3]), the crack propagates from the place where the broken
bonds are gathered through the entire section of fiber (see
Fig. 9(b) and (f)). The stress level drops (see Fig. 8) while the
number of fiber broken bonds increases until to a maximum
of almost 4% of the total fiber bonds (see Fig. 8). At the same
time, the number of fiber–matrix broken bonds hugely
increases while the matrix beams just begin to break.

(c) During a third ‘propagation in the fiber–matrix interface’
stage (eM 2 [9.00 � 10�3:9.25 � 10�3]), the crack mainly prop-
agates through the interface between fiber and matrix

(see Fig. 9(c) and (g)) which is corroborated by the number
of fiber–matrix broken bonds which reaches 90% of the total
fiber–matrix bonds (see Fig. 8).

(d) During a forth stage ðeM � 9:5 � 10�3Þ, the crack goes on
mainly propagating through the interface between fiber
and matrix and more slightly through the matrix (see
Fig. 9(d) and (h)). Indeed, there are almost no broken bounds
in the corners of the discrete domain while their concentra-
tion in the fiber–matrix interface is important (see Fig. 9(h)).
The number of fiber–matrix and matrix broken bonds finally
respectively reaches a maximum of 98% and 45% for a mac-
roscopic strain of 16.00 � 10�3 (see Fig. 8) and show that the
degradation of the discrete domain mainly occurs in the
interface and cannot be neglected inside the matrix.

This failure test has been repeated for the other referenced sam-
ples and shows the same failure procedure as described previously,
i.e. (i) initiation of the crack inside the fiber, (ii) propagation
through the fiber, (iii) propagation at the interface fiber–matrix
and (iv) degradation of the discrete domain mainly in this interface
area. The main results of these numerical tests are resumed in
Table 3. Even if these results are only qualitatively analyzed for
now, they show the DEM ability to represent damage kinetic until
the rupture.

4.3.2. Removed Discrete Element Failure process (RDEF)
The RDEF process is performed for each DE of the discrete domain.

A virial stress tensor is calculated by the mean of forces and torques
in neighbor bonds as described in Section 3.2.2. When this virial
stress reaches the microscopic failure limit, i.e. rfib

faill = 5450 MPa
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Fig. 7. Finite Element calculation. (a) FE sample. (b) Determination of GTT 0 with the sliding average method performed on the FEM explicit calculation and with the FEM
implicit calculation.
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Fig. 8. Failure with the BBF process for the #2b discrete domain. (a) Macroscopic stress–strain curve and evolution of the ratio of broken bounds for fiber, matrix and fiber–
matrix bonds. (b) Zoom during the failure.



and rmat
faill = 148 MPa for the fiber and the matrix respectively, the DE

is deleted and therefore all the neighbor bonds are also deleted. In
this study, the DE is deleted but furtherly, this DE will be kept in
order to model debris and the contact between this DE and the adja-
cent will be treated. In order to make understandable the compari-
son between the two failure processes, the deleted bonds will be
displayed in the following figures.

With the same manner than previously, four main stages can be
described and analyzed:

(a) During a first large macroscopic ‘elastic-damaged’ stage
(eM 2 [0:10.00 � 10�3]), a few number of broken bonds ran-
domly appears in the fiber (see Fig. 11(a) and (e)). It can
be noticed that damages appear progressively in the fiber
during a longer strain duration than with the previous pro-
cess (see Fig. 10(a) and (b)). Another difference between
the two failure processes comes from the place where the
crack initiates even if the discrete domains are the same.

(b) During a second ‘fiber crack’ stage (eM 2 [10.00 � 10�3:
10.25 � 10�3]), the crack propagates from the place where
the broken bonds are gathered through the entire section
of fiber (see Fig. 11(b) and (f)). The stress level drops while
the number of fiber broken bonds increases until to a maxi-
mum of almost 6.5% of the total fiber bonds (see Fig. 10). At
the same time, the number of matrix and fiber–matrix
broken bonds hugely increases. It can be noticed that the
macroscopic strain efailM of the fiber crack is higher with
the RDEF process than with BBF one, 10�4 and 9 � 10�3,
respectively.

(c) During a third ‘propagation in the matrix’ stage (eM 2
[10.25 � 10�3:10.50 � 10�3]), the crack mainly propagates
through the matrix (see Fig. 11(c) and (g)) which is corrobo-
rated by the number of matrix broken bonds which reaches
17% of the total matrix bonds (see Fig. 10). This stage is com-
pletely different with this process than with the previous
one. Indeed, with the RDEF process, the crack propagates
through the matrix following the crack path initiated inside
the fiber.

(d) During a forth stage ðeM � 12:00 � 10�3Þ, the crack keeps
mainly propagating through the matrix and more slightly
through the fiber–matrix interface (see Fig. 11(d) and (h)).
Indeed, we can be notice the presence of broken bounds in
the corners of the discrete domain which shows the entire
failure of the numerical specimen (see Fig. 11(h)). The num-
ber of fiber–matrix and matrix broken bonds finally respec-
tively reaches a maximum of 28% and 17% for a macroscopic
strain of 12.00 � 10�3 (see Fig. 10). These values show that
the degradation does not occur in the entire specimen but
only in the failure area.

5. Conclusion and future works

The first works on 3D modeling of an UD composite material
cell by using the Discrete Elements Method (DEM) developed in
the laboratory are presented in this paper. The composite material
is restricted to a cubic Representative Elementary Volume (REV)
constituted by a carbon fiber flooded in an epoxy matrix. The geo-
metrical modeling of this elementary volume with discrete ele-
ments of spherical shape is first treated by distinguishing the
fiber of the matrix. The filling phase is described in particular to
get a good representativeness of the continuity of each isotropic
medium (fiber and matrix) by respecting a rate of compaction
and an optimal number of coordinations.

The mechanical modeling of the fiber and the matrix as contin-
uous media but also the interface fiber–matrix is then considered.
It consists of the introduction of mechanical links intended to
model the constitutive behavior. At this stage of the works, the
objective is mainly to prove the relevance of the present 3D DEM
for the representation of the damage mechanisms in a UD compos-
ite cell. So, a simple brittle elastic behavior is adopted for the fiber
and for the matrix to prove this feasibility. The thermal, plastic, vis-
cous aspects already investigated in [37,38] could be later imple-
mented if needed by the physics. These mechanical links are
beam model whose the properties are calibrated to find the macro-
scopic mechanical properties. At the interface, the links between

Fig. 9. Failure with BBF process for the #2b discrete domain. Observation of the broken bonds (in blue) for different macroscopic values of strain. (a and e) eM ¼ 8:82 � 10�3.
(b and f) eM ¼ 9:00 � 10�3. (c and g) eM ¼ 9:25 � 10�3. (d and h) eM ¼ 9:50 � 10�3. (a–d) Profile views. (e–h) Face views. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



the fiber and matrix are identical to the links of the matrix at this
stage.

Once the geometrical and mechanical modelings accomplished,
elementary tests on the REV are performed. They allow to estimate
the anisotropic properties of the REV and to appreciate the capabil-
ities to capture the damage mechanisms with the present DEM.
The cases of longitudinal and transversal tractions, in plane and
out of plane shearing are performed.

In spite of interface links largely improvable, the results
obtained on the anisotropic elastic properties from the REV are
nevertheless in the good order of height of those issued from ana-
lytical models taken as reference. The longitudinal EL and transver-
sal ET Young modulus are overestimated whereas the GLT and GTT

shear modulus are underestimated.
Besides, the two criteria implemented to assess the DEM capa-

bilities in representing the damage mechanisms influence the

damage progress. A more localized rupture zone is observed using
the Breakable Bonds Failure criterion compared with the Removed
DE Failure one. The pictures plotted for different REV strain state
show the present DEM ability to model the kinetics of the damage.
Globally, the results encourage the authors to go on in this way.

So, numerical investigations are already in progress to imple-
ment a more physical contact at the interface using cohesive laws.
The double cantilevered beam (damage in mode 1), shearing tests
(damage in modes 2 and 3) and tests combining damage in mode 1
and mode 2 (or mode 3) are experienced before validating the
approach on a pull-out test. Once acquired the damage mecha-
nisms modeling, passing from the REV to a Statical Elementary Vol-
ume (SEV) is the next step. The interest will be to represent the
damage mechanisms when several fibers are included in a matrix
volume and then to be able to directly couple such local effects
to the global ones by sticking method [9] or to indirectly couple
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Fig. 10. Failure with the RDEF process for the #2b discrete domain. (a) Macroscopic stress–strain curve and evolution of the ratio of broken bounds for fiber, matrix and fiber–
matrix bonds. (b) Zoom during the failure.

Fig. 11. Failure with RDEF process for the #2b discrete domain. Observation of the broken bonds (in blue) for different macroscopic values of strain. (a and e)
eM ¼ 10:00 � 10�3. (b and f) eM ¼ 10:25 � 10�3. (c and g) eM ¼ 10:50 � 10�3. (d and h) eM ¼ 12:00 � 10�3. (a–d) Profile views. (e–h) Face views. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)



them returning degraded properties from the SEV modeled with
the present DEM to the global structural scale modeled with FEM
or equivalent method.
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