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Abstract. In this paper, we present a novel and efficient approach to
retrieve human motion capture data as used in data-driven computer
games, animated movies and special effects in the aim of finding a spe-
cific motion. From the kinematic chain model, the human motion capture
data is transformed to a spatial-temporal invariance representation called
the motion feature representation, in which each segment of kinematic
chain model is represented by an angle between itself and the root seg-
ment. We treat the human motion as a cluster of curves of angle. In the
aim of finding a human motion capture data in a very large database,
we propose a novel lower bounding distance called LB Keogh Lowe to
speed up similarity search. In order to reduce the computational cost,
we employ techniques to simplify the curves length of both the envelopes
curves and the query data. The similarity between two human motions is
measured by applying the constrained Dynamic Time Warping. We carry
out an experimental analysis with various real motion capture dataset.
The results demonstrate the efficiency of our approach in the context of
the human motion capture data and the potentiality to apply it in others
contexts of the time-series data retrieval.

1 Introduction

Nowadays, motion capturing plays an important role in computer games, computer-
animated movies or video games as a tool for synthesizing realistic motion se-
quences. In general, by using optical devices, trajectories of moving markers
attached to the human body are recorded as 3D motion data. The huge quan-
tity of motion capture dataset is very expensive and time consuming due to the
high cost of recording equipment, high computational power and the requirement
of manual post-processing operations. Therefore, it has been suggested reusing
the motion capture data by modifying and adapting the existing motion clips
via editing and morphing techniques [1][2][3]. Hence, there is a strong need to
develop an efficient method to retrieve a motion data among others.

In practice, content-based approach is one of the most efficient methods to
enable an automatic extraction of a user-specified motion. The crucial point of



this approach is to define the feature of motion content utilized to qualify the
motion. Some existing methods consider the motion key-frame as the feature
but cannot handle the spatial-temporal variation of motion [4]. In this paper,
we propose a novel approach consisting in transforming the motion capture data
to a spatial invariance space called motion feature representation. For that, we
use the kinematic chain model to represent the motion capture date. In the
spatial invariance space, each segment of kinematic chain model is represented
by an angle between itself and the root segment. Thus, we treat the transformed
motion as a cluster of curves of all the angles describing the kinematic motion.
The distance between two motions is defined as the similarity between the curves
of the motions. Hence, we conduct the motion data mining as the shape matching
problem between the curves. In the aim of finding a human motion capture data
in a very large database, we propose techniques to speed up similarity search
based on bounding envelopes curves. In order to reduce the computational cost,
we employ techniques to simplify the curves length of both the envelopes curves
and the query data. The similarity between two human motions is measured
by applying the constrained Dynamic Time Warping technique on the curves of
their angles. Our contributions can be summarized as following:

– We introduce the spatial-temporal invariance representation for human mo-
tion capture data and conduct the human motion data mining to the curves
matching problem.

– We present a novel lower bounding distance called LB Keogh Lowe for prun-
ing power the retrieval of human motion capture data.

– We demonstrate the efficiency and the effectiveness of our method on the
various real human motion datasets.

The rest of the paper is organized as follows. In the next section, we review
some discussion of related work. In Section 3, we describe the necessary geometric
formulas which are utilized in our human motion data mining approach. Section
4 and Section 5 focus on our approach of human motion data mining technique.
Section 4 provides an overall view of the proposed human motion retrieval system
which includes the chosen human motion features, the technique to measure the
similarity between two motions and the low bounding technique to speed up
the searching. Section 5 investigates some proposed techniques for more pruning
power the retrieval of human motion capture data. Experiments and results
discussion are employed in Section 6. We finish with the conclusion and further
work in Section 7.

2 Related Work

In computer animation or movie specified effects, data-driven motion synthesis
is an important technique to generate the realistic motions from the recorded
motion capture data. Due to the large use of motion capture data, the efficient
reuse of such data is more and more challenging. In fact, human motion capture
data is a kind of high-dimensional time-series and its raw data describe the



spatial information of a large number of markers in the three-dimensional space,
thus the problem of human motion data mining is considered as the time-series
retrieval. In terms of time-series matching, three main aspects are considered.
The first one is how to represent the human motion data. The second one is how
to determine the distance function to measure the similarity of two motions and
the last one concerns the considered techniques to speed up the searching.

In order to deal with motion capture data, several representations have been
proposed. Lee et al. [6] described a two-layer structure for representing human
motion capture data, but motion physical features cannot be represented clearly
in this case. Chui et al. [7] proposed local spherical coordinates relative to the
root orientation as the segments posture of each skeletal segment. But the skele-
tal segment is represented by two parameters which cannot be used to observe
posture of each skeletal segment. In our work, we utilize a spatial invariance
representation from the work of Xiao et al. [5]. The representation is based on
the bone angle and is effective for human motion retrieval. Opposed to the work
of Xiao et al. [5] which considers the human motion as frames, we treat the hu-
man motion as a curves cluster of the bone angles, thus the problem of temporal
variation could be handled.

In fact, the human motion data mining is a part of time-series data mining
in a very large database (VLDB) domain. In terms of the distance function to
measure the similarity of the time-series data, there are many proposed meth-
ods classified into two main approaches: Model-based approach such as Hidden
Markov Model (HMM)[8], Neural Network (NN)[9], and Distance function-based
approach, which is differentiated into two sub-approaches, in which the first one
is called the Metric functions such as Euclidean distance, Manhattan distance or
Normal distance [10] and the second one is called the Non-metric functions such
as constrained Dynamic Time Wrapping (cDTW)[14], wLCSS[17], Edit distance
with Real Penalty (ERP)[11], Edit Distance on Real sequence (EDR)[12], Spatial
Assembling Distance (SpADe)[15], etc. In that domain, the experimental results
of Keogh et al., 2002 [14] have to be mentioned. Keogh et al. showed that the
performance of the distance function-based approach is much better than that
of the model-based approach, for both criteria of accuracy and computational
cost. Moreover, the work of Ding et al., 2008 [15] performed a comparison of
the major techniques of distance function-based approach by testing their effec-
tiveness on 38 time series data set from a wide variety of application domains.
Experimental results obtained show that, in over a dozen of distance measures
of similarity among time series data in the literature, cDTW [14][16] is slightly
better than the others from accuracy point of view. Moreover, on large data
set, computation cost of cDTW is very close to Euclidean distance algorithm.
Indeed, cDTW is our chosen distance function to measure the similarity of the
human motion capture data.

In terms of speed up the searching, there are two techniques utilized. The
first one consists in reducing the length of the human motion by using approxi-
mating representations. The other one consists in quickly filtering the negative
time-series due to the fact that the number of the positive time-series which



match with the candidature sequence is less much than the number of the nega-
tive ones. Many techniques have been proposed in the literature for representing
time series with reduced dimensionality. Most of them have been reviewed in
work of Ding et al. [15], such as Discrete Fourier Transformation (DFT) [18],
Single Value Decomposition (SVD) [18], Discrete Cosine Transformation (DCT)
[19], Discrete Wavelet Transformation (DWT) [20], Piecewise Aggregate Ap-
proximation (PAA) [22], Adaptive Piecewise Constant Approximation (APCA)
[21], Chebyshev polynomials (CHEB) [23], Symbolic Aggregate approXima-tion
(SAX) [24], Indexable Piecewise Linear Approximation (IPLA) [25] and etc.
In our work, we approach another approximating representation called curve
simplification representation which is proposed by Lowe [26]. The experimen-
tal result shows the efficiency and effectiveness of that approach in the human
motion database [27][28]. Opposed to the original version of the curve simplifica-
tion algorithm, we propose modified versions adapting with the human motion
data mining problem. To speed up the searching by filtering rapidly the negative
time-series sequences, lower bounding is popular technique utilized. The main
purpose of the using the lower bounding function is due to the fact that, the
computational complexity of the measurement distance is in the order of O(n2)
in general while using lower bounding technique we are capable of pre-filtering
the negative sequences with the complexity in the order of O(n). Thus, we should
avoid using the measurement distance for the negative sequences. Moreover, the
number of the negative sequences is much more than the number of potential
positive ones in the real datasets. Actually, due to the utilized measurement dis-
tance of cDTW in the paper, there are several lower bounding functions available
for cDTW such as the lower bounding function introduced by Kim et al. [29] or
another one proposed by Yi et al. [30]. In addition, Keogh et al. [14] proposed a
more efficient lower bounding function referred as LB Keogh. Their experimental
results demonstrate the effectiveness of LB Keogh in terms of time-series data
retrieval. Indeed, our technique is based on the LB Keogh which is described in
Section 4 of the paper.

3 Geometric Formulas for the Human Motion Data
Mining Approach Based on Curves Matching

In this section, we describe the necessary geometric formulas which are utilized
during the paper. In prior, we describe some definitions relative to our work.

– Coordinate system of the curve: The coordinate system of the curve is
the 2D space which is defined by vertical axis illustrated in degree unit and
horizontal axis illustrated in frame number unit (temporal axis of the human
motion).

– Time-series curve: In our work the curve of m time-series points is referred
as time-series curve which is denoted as follows:

C(m) = {ci(pc,i, tc,i)} , i = 1..m; ti > tj ∀i > j (1)



where tc,i is measured in the order of the frame number unit and pc,i is
measured in degree unit and m is the length or the dimension of the curve.

Due to the fact that tc,i > tc,j ∀i > j , thus the time-series curves are the
forward curves or the none-self-intersecting curves. In the paper, we compare
curves which have the same frame number value of the beginning point and the
end point, that means the tc,1(tc,n) of any curve refers the same value. Hav-
ing defined the necessary terms, we conduct to describe the geometric formulas
utilized in our work.

3.1 Area of the Polygon Constituted by Two Time-Series Curves

The first formula in our work concerns the polygon area composed by the two
time-series curves U(m) and V(n) to compare. We differentiate two cases. The
first case is composed by all configurations of U(m) and V(n) with no intersecting
points between them. Then, the polygon is the none-self-intersecting polygon
which is illustrated in Figure 1. We denote S1 as the area of the polygon. Formula
2 is described as below:

S1(U, V ) =

∥∥∥∥s1 + s2 + s3 + s4
2

∥∥∥∥ (2)

where s1 =
∑m−1

i=1 sign(ui) × (pu,i × tu,i+1 − pu,i+1 × tu,i), s2 = sign(um) ×
(pu,m × tv,n − pv,n × tu,m), s3 = sign(v1) × (pu,1 × tv,1 − pv,1 × tu,1, and s4 =∑n

j=2 sign(vj)× (pv,j−1× tv,j − pv,j × tv,j−1) and sign(ui) or sign(vj is the sign
function which obtains the value of 1 or -1 denoted the sign of the polygon edges
illustrated in Figure 1 in which, sign(ui), ∀i = 1...m− 1 denotes the sign of the
edge made by the point ui and ui+1, sign(um) denotes the sign of the edge made
by the point um and the point vn, sign(vj), ∀j = 2...ndenotes the sign of the
edge made by the point vj−1 and the point vj , and sign(v1) denotes the sign of
the edge made by the point u1 and the point v1.

In fact, we obtained the formula as above due to the familiar formula to
calculate the area of the none-self-intersecting planar polygon described that:
The area of a parallelogram and triangle can be expressed as the magnitude of the
cross-product of two edge vectors [33]. In the case of non-self-intersecting polygon
we could assume that sign(ui) = 1 and the sign(vj) = −1, ∀i, j thus s1, s2, s3, s4
could be reduced as :s1 =

∑m−1
i=1 (pu,i × tu,i+1 − pu,i+1 × tu,i), s2 = pu,m × tv,n −

pv,n×tu,m, s3 = pv,1×tu,1−pu,1×tv,1, and s4 =
∑n

j=2(pv,j×tv,j−1−pv,j−1×tv,j)
In practice, a technique with the computational complexity in the order of

O(n) can be performed to calculate the area of the none-self-intersecting polygon.
The second case is illustrated in Figure 2, in which two time-series curves may

have intersecting points. We refer the polygon of this case as the self-intersecting
polygon. Recall the formula 2, we denote S2 as the area of the self-intersecting
polygon thus S2 is formulated as in Formula 3.

S2(U, V ) =

∥∥∥∥s1 + s2 + s3 + s4
2

∥∥∥∥ (3)



Fig. 1. Area of the none-self-intersecting polygon (drawn by the vertical lines) consti-
tuted by two time-series curves

where s1 =
∑m−1

i=1 sign(ui) × (pu,i × tu,i+1 − pu,i+1 × tu,i), s2 = sign(um) ×
(pu,m × tv,n − pv,n × tu,m), s3 = sign(v1) × (pu,1 × tv,1 − pv,1 × tu,1, and s4 =∑n

j=2 sign(vj)× (pv,j−1 × tv,j − pv,j × tv,j−1)
At first glance, Formula 3 seems to be the same as Formula 2, but in reality

the self-intersecting polygon constituted by two curves is added the intersecting
points between them, such as the intersecting point v2 ≡ u2 or the intersecting
point v4 ≡ u3 as illustrated in Figure 2. In this case, the sign function of the edges
will be determined based on the sign of the previous edge and the convenience
of equalities described in Figure 3. In left visual diagram, the signs of edges
(ui+1, ui+2) or (vj+1, vj+2) change due to the signs of their previous edges. In
the right one, the signs are not changing.

In practice, intersecting points are unknown when occurring between two
curves, so we should have a function to sort out the intersecting points between
two edges. Anyways, a technique with the computational complexity in the order
of O(n) could be considered to calculate the area of the self-intersecting polygon.

3.2 Area of the Outlier Parts Generated by the Time-Series Curve
and the None-Self-Intersecting Polygon Constituted by Two
other Time-Series Curves

Having the formulas to calculate the area of both the none-self-intersecting
polygon and the self-intersecting polygon, we calculate the area of the outlier
parts which are generated by a time-series curve denoted C(l) and a none-self-
intersecting polygon constituted by two others time-series curves noted U(m)
and V(n). As we described above, the three curves have the same frame number
value of the beginning point and the end point. Figure 4 is an example illus-
trating the formula in which, the outlier parts are drawn by the vertical line



Fig. 2. Area of the self-intersecting polygon (drawn by the vertical lines) constituted
by two time-series curves

which consists of three sub-polygons s2, s5 and s7. S(C,U,V) is the area of the
outlier parts. S1(U, V) is the area of the none-self-intersecting polygon consti-
tuted by U(m) and V(n). S2(U, C) and S2(C, V) are noted the areas of the
self-intersecting polygon constituted by U(m) and C(l), and the self-intersecting
polygon constituted by C(l) and V(n), respectively. The formula to calculate
S(C,U,V) is described as below in Formula 4.

S(C,U, V ) =
S2(U,C) + S2(C, V )− S1(U, V )

2
(4)

We have described the necessary geometric formulas which are utilized in the
paper. In the next sections, we present our approach to retrieve a human motion
data based on the curves matching.

4 Human Motion Data Mining Based on the Curves
Matching Approach

As we describe above, there are three main aspects concerned to the retrieval
of the human motion data included the representation of the human motion
data, the chosen distance function to measure the similarity and the considered
techniques to speed up the searching. In Section 4 and Section 5, we investigate
to describe our approach for these three aspects.

4.1 Spatial-Temporal Invariance Representation for Human Motion
Capture Data

A simplified kinematic chain model is defined as Figure 5, which contains 14
joints that are constructed as a tree diagram. Eleven bones are extracted as the



Fig. 3. Two considered cases to determine the changing of the sign functions of the
edge from the its previous edge

objects to represent motion feature, including 10 bones in the human limbs and
a central bone connected by root and chest joints as a reference bone. Each
bone is defined as a vector from the upper joint to the lower joint in the human
skeleton. For every limb bone, the bone angle is defined as the angle between
the limb bone and the central bone.

θki = cos−1(
B

(k)
i .B

(Center)
i∣∣∣B(k)

i

∣∣∣×
∣∣∣B(Center)

i

∣∣∣ ), k = 1..10 (5)

where B
(Center)
i represents the central bone at the ith frame and θ is in the

interval [0, π]. Consequently, by using the bone angle, we obtain a spatial in-
variance representation for human motion data. In addition, from Formula 5 the
motion hereafter could be treat as a cluster of ten curves, in which each curve
describes a bone motion. Hence, we can introduce the human motion M data as
follows:

M =
{
Ck(θk1 , θ

k
2 , ...θ

k
mk

)
}
, k = 1..10 (6)

In fact, the curves Ck are processed independently to carry out the technique of
lower bounding or the technique of the dimensional simplification. Therefore, the
curves Ck are considered as the temporal invariance representation of the human
motion data. With such representation, our approach is a spatial-temporal in-
variance method. In practice, instead of using the motion M hereafter we utilize
the curve C to describe our approach more easily. More, the similarity of the
human motions could be treated as the similarity of the curves or the curves
matching problem.



Fig. 4. Area of the outlier parts between a curve C(l) and a none-self-intersecting
polygon constituted by two other curves U(m) and V(n). The outlier parts are drawn
by the vertical lines. Denote S(C,U,V) as the area of those parts, si is the area of the ith
sub-polygon generated by the curves illustrated as in Figure 4. We have:S(C,U, V ) =
s2 + s5 + s7;S1(U, V ) = s1 + s3 + s4 + s6;S2(U,C) = s1 + s2 + s4 + s5 + s7;S2(C, V ) =

s3+ s2+ s5+ s6+ s7 Hence, we can deduce that: S(C,U, V ) = S2(U,C)+S2(C,V )−S1(U,V )
2

4.2 Distance Function to Measure the Similarity between Two
Human Motions: Constrained Dynamic Time Warping
Technique

Our chosen distance function to measure the similarity of the human motion
is based on the constraint Dynamic Time Warping (cDTW ) technique which
is introduced in many time-series data matching references [14][16]. The cDTW
technique can be described as follows. Given two time-series curves due to the for-
mula 1 U(m) = (u1, u2, ..., um)and V (n) = (v1, v2, ..., vn) and the time warping
constraint ε, the constrained Dynamic Time Warping cDTW is defined recur-
sively as follows [16]:

Distr(ui, vj) =

{
Dbase(ui, vj) if |i− j| ≤ r

∞ otherwise
cDTW (φ, φ, r) = 0
cDTW (U, φ, r) = cDTW (φ, V, r) = ∞

cDTW (U, V, r) = Distr(First(U), F irst(V )) + min

⎧⎨
⎩

cDTW (U,Rest(V ), r)
cDTW (Rest(U), V, r)

cDTW (Rest(U), Rest(V ), r)
(7)

where r = ε×tu,m = ε×tv,n and φ is the empty curve,First(U) = u1, Rest(U) =
u2, u3, ...um and Dbase denotes the distance between two vertices of the curve.
In our work, we utilize the Manhattan distance which is a special case of the Lm
distance with index value α is equal to 1 defined as follows:

Lα=1 (ui(pu,i, tu,i), vj(pv,j, tv,j)) =
(

|pu,i − pv,j|α=1
+ |tu,i−tv,j|α=1

) 1
α=1

(8)



Fig. 5. Human skeleton and segments separated

4.3 Lower Bounding Technique for Speeding Up the Human Motion
Data Retrieval

As we describe previously, the main purpose of the using the lower bounding
technique is to filter more quickly the negative time-series curves. Our lower
bounding function is based on the LB Keogh described as follows. Given a time-
series curve as the formula 1, C(m) = {ci(pc,i, tc,i)} , i = 1..m; ti > tj ∀i > j
and a local constraint time warpingε, we note that r = ε× tc,m and we use the
term r to define two new time-series curves, U(m) and L(m):

U(m) = {ui(pu,i, tu,i)} and L(m) = {li(pl,i, tl,i)}
where tu,i = tl,i = tc,i
pu,i = max(pc,i−r : pc,i+r)
pl,i = min(pc,i−r : pc,i+r)

(9)

U(m) and L(m) stand for Upper and Lower, respectively. Figure 6 illustrates
the created U and L with ε=20% of the length of the curve C. As we can see in
the figure, U and L form a bounding envelope curves to enclose C from above to
below. An important property of the bounding curves U and L is the following:

∀i, pu,i > pc,i > pl,i (10)

Having defined the bounding curves U and L of the curve C and the Manhattan
distance defined in Formula 8, we now use them to define a lower bounding
measure for cDTW. Given two time-series curves C(m) and V(n), the bounding
measure of V and the bounding envelopes of C are defined as follows:

LB Keogh(C, V ) =

tu,m∑
i=1

⎧⎨
⎩

|pv,i − pu,i| if pv,i > pu,i
|pv,i − pl,i| if pv,i < pl,i

0 otherwise
(11)



Fig. 6. An illustration of the time-series curves U and L, created for the time-series
curve C(m) by using the LB Keogh lower bounding function in which, r is a constant
value due the length of C(m) : r = 0.2×m

This function can be visualized as the Manhattan distance between any parts
of the query matching curve not falling within the envelope and the nearest
(orthogonal) corresponding section of the envelope. Thus, the function is the
area of the outlier parts generated by the curve V and the none-self-intersecting
polygon constituted by two curves U and L, illustrated in Figure 7. Hence, we
recall Formula 4 to calculate the LB Keogh(C,V) in practice:

LB Keogh(C, V ) = S(V,U, L) =
S2(U, V ) + S2(V, L)− S1(U,L)

2
(12)

Now we will explain how utilize the LB Keogh function to filter the negative
curves to speed up the searching. In prior, we recall the work of Keogh et al.
[16] which proved that:

LB Keogh(C, V ) ≤ cDTW (C, V ) (13)

Given a curve C and a threshold δ, we define a curves V as the positive matching
curve with C if the inequality as follows is convenient:

cDTW (C, V ) ≤ δ (14)

Hence, we can see that the curve V will be the negative curve if

LB Keogh(C, V ) > δ (15)

. In general, that inequality is utilized to filter the negative curves but our work
will be continued for speed up the human motion data mining.

In this section, we have described an overall view of the human motion data
mining in which, we conducted the human motion data mining as the curves
matching problem by using the spatial-temporal representation for the human
motion data. We also have presented the cDTW to measure the similarity of the
curves and the technique to speed up the searching based on the lower bounding
function called LB Keogh for filtering rapidly the negative curves. In the next
section, we describe another technique to speed up the searching based on the
dimensional reduction technique called the curve simplification.



Fig. 7. An illustration of the lower bounding function LB Keogh between the original
curve C (shown dotted) and the query curve V calculated by the area of the outlier
parts generated by the curve V and the none-self-intersecting polygon constituted by
the bounding envelope U and L

5 Techniques of Dimensionality Reduction Based on the
Curve Simplification

As we describe above, the technique to reduce the dimension of the curves is uti-
lized to speed up the searching besides the technique of using the lower bounding.
In the approach of the curves matching problem, we utilize the curve simplifi-
cation technique to reduce the dimension. The technique is proposed by Lowe
[26] and is utilized efficiently to the key-frame extraction of the human motion
data [1][5][27]. Due to the fact that, in our work, two axis of the coordinate
system for the time-series curves do not have the same unit, while vertical axis
is represented in the degree unit the horizontal one is represented in the frame
number unit. Therefore instead of using the Euclidean distance of the point to
a line as in the original version of Lowe technique, we utilize a distance measure
of the length of the segment defined by the given point and the point lied in
the line which has the same frame number value (orthogonal point). The idea is
illustrated in Figure 8.

5.1 Lowe Algorithm to Simplify the Candidate Curve

Step 1: Set the first and the last points as key points, creating 2 key points.
Step 2: Find the highest absolute distance point, which would have the dis-

tance called the error distance. If the error distance is lower than a specified
thresholdσ, stop further subdividing this interval. Otherwise, create a new key
point at the point with the highest error distance.

Step 3: Sub-divide the current state into two smaller segments, a segment
between the beginning key point and the newly created middle key point, and
another segment between the middle key point and the ending key point. Assume
that the new segments now have only 2 key points and restart the algorithm from
step 2 for both segments.



Fig. 8. An illustration of the utilized distance instead of using the Euclidean distance
as in the original version of the Lowe technique

Figure 9 shows the modified algorithm to simplify the curve step by step.
In practice, that modified algorithm is applied to the original candidate curves.
Given a time-series curve C(m) with m is the dimension of the curve, we note
C̄(m̄) is the simplified curve of C with the dimension of m̄. In general, we always
maintain the important property of the any time-series curve C(m) which is the
tc,1 or tc,m referring to the same value.

In the next part, we will describe another modified Lowe algorithm to simplify
the curve which adapts the bounding property of the envelope curves.

Fig. 9. An illustration of the modified curve simplification in which, the chosen points
are highlighted

5.2 Modified Lowe Algorithm to Simplify the Bounding Envelope
Curves

Opposed to the modified algorithm to simplify the When we simplify the bound-
ing curves we have to ensure that the original curve is always enclosed by the



bounding curves. Therefore, we proposed another modified Lowe algorithm for
bounding curves simplification. We recall the utilized distance illustrated in Fig-
ure 10 in which, we occupy the value with the sign of the subtraction pi−qj . We
differentiate into two cases, one for the upper bounding curve U and another for
the lower bounding curve L.

Modified simplification technique for upper bounding curve is de-
scribed as follows:

Step 1: Set the first and the last points as key point, creating 2 key points.

Step 2: Find the highest positive distance point. If the point is found, create
a new key point at the point with the highest positive distance; otherwise find
the lowest negative distance point which would have the distance called the error
distance. If the absolute value of the error distance is lower than a specified
thresholdσ, stop further subdividing this interval. Otherwise, create a new key
point at the point with the lowest negative error distance.

Step 3: Sub-divide the current state into two smaller segments, a segment
between the beginning key point and the newly created middle key point, and
another segment between the middle key point and the ending key point. Assume
that the new segments now have only 2 key points and restart the algorithm from
step 2 for both segments.

Modified simplification technique for lower bounding curve is de-
scribed as follows:

Step 1: Set the first and the last points as key point, creating 2 key points.

Step 2: Find the lowest negative distance point. If the point is found, create
a new key point at the point with the lowest negative distance; otherwise find
the highest positive distance point which would have the distance called the error
distance. If the error distance is lower than a specified thresholdσ, stop further
subdividing this interval. Otherwise, create a new key point at the point with the
highest positive error distance.

Step 3: Sub-divide the current state into two smaller segments, a segment
between the beginning key point and the newly created middle key point, and
another segment between the middle key point and the ending key point. Assume
that the new segments now have only 2 key points and restart the algorithm from
step 2 for both segments.

5.3 Pruning Power of the Human Motion Capture Data Mining

Having defined the dimensionality reduction of the candidate curves and the
bounding envelope curves of the query curves, now we explain how to utilize them
for pruning power of the human motion capture data mining. We recall Formula
12 to calculate the LB Keogh of the query curve C and the candidate curve V in
which, LB Keogh(C, V ) = S(V,U, L)is the area of the outlier parts generated by
the curve V and the non-self-intersecting polygon constituted by two bounding
curves of C. We occupy the simplified curve V̄ , the simplified curves Û and
L̂to formulate a new bounding measure denoted LB Keogh Lowe(C,V) which is
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Fig. 10. Illustrates an example of the carrying out the modified curve simplification
technique to the bounding curves, in which we note the simplified curve of the upper
bounding as Û and that of the lower bounding as L̂

describe by the formula:

LB Keogh Lowe(C, V ) = S(V̄ , Û , L̂) =
S2(Û , V̄ ) + S2(V̄ , L̂)− S1(Û , L̂)

2
(16)

The difference between LB Keogh and LB Keogh Lowe is illustrated in Figure
11. In practice, the computation cost of LB Keogh Lowe which performs the
curve simplification on both of the bounding curves and the query curve is lower
than that of the LB Keogh.

To filter rapidly the negative curves, given a threshold δ, instead of using the
inequality 15 we utilize another inequality due to the LB Keogh Lowe in which,
the query curve V will be a negative curve if

LB Keogh Lowe(C, V ) > δ (17)

In practice, given a dataset of the human motions, we perform a pre-processing
to obtain the dataset of query curves C, the lower bounding curves U and V, the
reduced dimensionality lower bounding curves Ûand V̂ . That pre-processing is
considered as the offline working. Hence, it does not impact the performance of
the system. More, we prefer using the δ as the function of the tc,m which means
δ := δ × tc,m due to the convenience of choosing δ

We summarize this section by Figure 12 illustrating the proposed algorithm
to handle the human motion data best match retrieval based on the curves
matching.

In next section, we describe our experimental evaluation of our proposed
approach with various real human motion datasets.



6 Experiments and Results

This section describes the experiments carried out to analyze the effectiveness
of the curve simplification technique in term of the dimensionality reduction
and the proposed lower bounding function which is based on that technique.
In addition, we perform an experiment to verify the efficiency of the human
motion data mining. The experiments were executed on an Intel Pentium Dual-
Core 2.1GHz Window PC with 2GB RAM and the program is written in C++
Language.

To analyze the performance of the dimensionality reduction technique based
on the curve simplification, we define a pruning scale P1 which is described as
follows:

P1 =
Number of the points of the reduced curves

Number of the point of the original curves in database
× 100(%) (18)

To analyze the effectiveness of the proposed lower bounding function based on
the curve simplification technique, we define another pruning power scale P2

described as follows:

P2 =
Number of the humanmotions that do not require full wDTW

Number of the humanmotions in databased
× 100(%)

(19)

6.1 Data Preparing

We gathered more than 500Mb of the human motion dataset from Mocap-
Club.com [31] with various kinds of human motion activities such as the walking,
running, dancing, kung-fu and etc which are recorded in the frequency of 60Hz
with more than 42 markers attached on the human body.Due to the proposed
approach of the human motion representation, we extracted from the original
dataset the 3D position of 14 joints of the kinematic chain model as described
in Figure 5. Thus, we transformed them to the bone angle space and sort them
so that each human motion is described by 10 curves of the bone angle. The
obtained dataset differed significantly in size and length. In order to produce
meaningful results, we reorganized obtained dataset in the bone space. We de-
rived six sets of data, each containing 270 human motion sequences, with variable
lengths of 32, 64, 128, 256, 512 and 1024, respectively. Short sequences were gath-
ered by using a scale factor of the length of original data and the desired lengths
of extracted data while long sequences were produced by concatenating original
sequences. In practice, all experiments were conducted on these derived dataset.

6.2 Experiments and Results

Performance of the dimensionality reduction technique based on the
curve simplification. Figure 13(a, b, c) illustrate the performance of the curve
simplification P1 due to the length of the human motion. The Figure 13a is the



outcome when we carry out the technique for the original dataset while Figure
13b and Figure 13c are the results carried out for the lower bounding curves.
As shown in the figure, the performance of the curves simplification technique
increased with the length of the data suggesting. In the lower bounding curves,
the differences performances among the specified thresholds are not considerable
thus we should choose the specified threshold as small as possible. In practice,
to analyze the pruning power performance and the query time, we choose the
threshold for lower bounding curves as σ = 50. The specified threshold to re-
duce the dimension of the original candidate data is chosen due to the threshold
δ of the LB Keogh Lowe. We recall the work of Baek et al. [32] which devel-
oped experiment to choose the threshold for the human joint of the kinematic
chain model. From this work, the suggested error interval for human joint is
(100,200) thus we choose the specified threshold σ = 100 which is illustrated as
the green curve in Figure 13a. Moreover, we also choose the threshold δof the
LB Keogh Lowe 100 due to the reference work of Baek.

Pruning power performance. Having defined the threshold σ and δ, now
we can verify the pruning power performance of the LB Keogh Lowe bounding
function due to the capability of filtering the negative human motions. In fact,
we perform the 1-nearest neighbor search using the sequential scan technique. A
random human motion was chosen from the data set to act as the query and the
remaining 269 human motions acted as the data. The search carried out 50 trials
on each different lengths of the human motion. We recall Formula 20 to measure
the pruning power for query human motion. The average of the 50 queries was
reported as the pruning power of each different lengths of the dataset. Figure 14
shows how the pruning power averaged of the proposed LB Keogh Lowe. Lower
bounding function varies as the lengths of the data in the human motion dataset
in which, 92% of the human motion of length 1024 and 67% of the human motion
of length 32 did not require computation of the actual time warping distances.
The promising pruning power greatly reduces the querying time. We conducted
experiments to measure the time required for the query evaluation of the human
motion in different lengths. In prior, we should recall the work of Keogh et al.
[16] to confirm the time warping constraintε. Due to the experimental result of
Keogh the threshold εis the most efficient with the value of 20% of the length of
the real time-series data. Thus we denote ε=0.2.

Query time analysis. Having defined of σ, δ, ε, we carried out the experiment
to analyze the query time of the human motion. Similar to the pruning power
analysis, the average value of 50 trials of each different lengths of the human
motion are reported. Figure 15 illustrates the compared results of query time
analysis in the human motion retrieval between the lower bounding approach and
none-lower bounding approach. In fact, the average query time is consistently
reduced and the difference between two query time curves is considerable, in
which to search the 1-nearest, the human motion of length 256, our approach just
needs 2.99 seconds averaged while the none-lower bounding approach needs 4,84



seconds averaged, thus we achieved 38% more efficient in time cost processing.
To search the longest human motion of length 1024, our approach needs 20,92
second averaged while the none-lower bounding approach needs 64,96 seconds
averaged. Hence, we also achieved 68% more efficient in time cost processing.

7 Conclusion and Future Work

In our paper, we have proposed a novel approach to retrieve a human motion
data. The approach is based on the computational geometry and conducted the
human motion data mining to the curves matching problem. We have intro-
duced a spatial-temporal invariance representation for the human motion data.
We have described the modified curve simplification algorithms adapted to the
purpose of the human motion data mining and proposed the use of a lower
bounding technique noted LB Keogh Lowe to speed up the searching. We have
demonstrated the efficiency and effectiveness of our method on various real hu-
man motion datasets. Due to the obtained results, our approach can be applied
in others contexts of the time-series data retrieval. For future work, we would
like to carry out our approach to various kinds of time-series data to confirm
the efficiency and the effectiveness and to compare with the other approaches in
terms of the time-series data approximating representations and lower bounding
distances.
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Fig. 11. Comparison of LB Keogh lower bounding distance (upper visual diagram):

LB Keogh(C, V ) = S(V, U, L) = S2(U,V )+S2(V,L)−S1(U,L)
2

and LB Keogh Lowe lower

bounding distance (lower visual diagram):LB Keogh Lowe(C, V ) = S(V̄ , Û , L̂) =
S2(Û,V̄ )+S2(V̄ ,L̂)−S1(Û,L̂)

2
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Fig. 12. An illustration of the algorithm to best match retrieval of the human motion
data based on the curves matching

Fig. 13. (a, b, c) An illustration of the performance of the dimensionality reduction
technique to the real human motion dataset. Fig 13a is outcome carried out the original
human motion; Fig 13b, 13c are results carried out the upper bounding and lower
bounding curves, respectively. The specified threshold is in degree.



Fig. 14. Average pruning power in the human motion dataset

Fig. 15. Comparison the average query time between LB Keogh Lowe bounding and
none bounding technique


