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UMR CNRS 7239, University of Lorraine, Ile du Saulcy, 57045 Metz, France

Abstract

The modeling of heterogeneous materials with an elasto-viscoplastic behavior is
generally complex because of the differential nature of the local constitutive law.
Indeed, the resolution of the heterogeneous problem involves space-time couplings
which are generally difficult to estimate. In the present paper, a new homogenization
model based on an affine linearization of the viscoplastic flow rule is proposed. First,
the heterogeneous problem is written in the form of an integral equation. The purely
thermoelastic and purely viscoplastic heterogeneous problems are solved indepen-
dently using the self-consistent approximation. Using translated field techniques,
the solutions of the above problems are combined to obtain the final self-consistent
formulation. Then, some applications concerning two-phase fibre-reinforced compos-
ites and polycrystalline materials are presented. When compared to the reference
solutions obtained from a FFT spectral method, a good description of the overall
response of heterogeneous materials is obtained with the proposed model even when
the viscoplastic flow rule is highly non-linear. Thanks to this approach, which is en-
tirely formulated in the real-time space, the present model can be used for studying
the response of heterogeneous materials submitted to complex thermo-mechanical
loading paths with a good numerical efficiency.
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1 Introduction

The self-consistent scheme is a common homogenization method that was
developed to connect local deformation mechanisms to the overall behavior
of heterogeneous disordered materials (Hershey, 1954; Kröner, 1958). In the
past decades, many efforts have been made to obtain extensions of the self-
consistent approximation to the non-linear case. For heterogeneous materi-
als with a rate-independent elastoplastic behavior, Kröner (1961) proposed a
model where the plastic strain is considered as a stress-free strain (i.e. eigen-
strain). However, internal stresses are largely overestimated with this method
which, like Taylor’s model (Taylor, 1938), leads to uniform plastic strains.
As an alternative, Hill (1965) developed an incremental version of the self-
consistent approximation. The constitutive equations are written in the form
of a pseudo-linear relation such that it is possible to use the self-consistent
approximation at each stage of a loading path. Extending Hill’s idea to the
case of viscoplasticity, Hutchinson (1976) applied the self-consistent method
by introducing a viscoplastic modulus which results from the linearization of
the constitutive relation. This approach has been later modified by Molinari et
al. (1987) and Lebensohn and Tomé (1993) who proposed an alternative defi-
nition of the viscoplastic modulus based upon a tangent, rather than secant,
formulation. Later, a first order affine linearization procedure for non linear
elastic, viscoplastic and elastoplastic composites and polycrystals was devel-
oped by Masson et al. (2000). In particular, these authors showed that such
a first order affine approximation implemented within a self-consistent frame-
work improves the estimate of the effective behavior of non-linear polycrystals
in comparison with the incremental formulation of Hill (1965).

The case of elasto-viscoplasticity raises additional difficulties due to the dif-
ferential nature of the constitutive equations involving different orders of time
derivation. Different possibilities have been explored to overcome these dif-
ficulties. In the case of linear viscoelasticity, Hashin (1969) and Laws and
McLaughlin (1978) have used the correspondence principle to propose a hered-
itary approach. Indeed, the use of Laplace-Carson transforms allows separating
time and space variables such that it is possible to define a single viscoelastic
modulus in the Laplace-Carson space. The self-consistent problem is solved in
the Laplace-Carson space before proceeding to the inversion to the real time
space. Extensions to the non-linear case have been proposed by Rougier et al.
(1994) and Masson and Zaoui (1999). The constitutive law is first linearized
at each step of the deformation path. In this way, the considered problem is
converted into a viscoelastic problem, which can be classically solved using the
self-consistent or the Mori-Tanaka approximation in the Laplace-Carson space.
While the theoretical foundations of this approach are robust, the numerical
implementation is rather complex mostly because the inversion of Laplace-
Carson transforms requires intensive computations. Recently, the results of an
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enhanced affine formulation for two-phase composites were compared to nu-
merical results obtained by the finite element method in Pierard and Doghri
(2006) and Pierard et al. (2007).

In contrast with hereditary formulations, internal variable approaches can be
preferred for the simplicity of their numerical implementation. Indeed, the res-
olution of the heterogeneous problem is achieved in the real time space with
some internal variables whose introduction in the strain and stress concen-
tration relations allows remembering the material’s history. The first develop-
ments were carried out by Weng (1981a,b) who adapted Kröner’s model to the
case of elasto-viscoplasticity. However, similarly to the original proposition of
Kröner (1961), internal stresses are largely overestimated with this method
(Zaoui and Raphanel, 1993). This approach was later extended to the case of
finite strains by Nemat-Nasser and Obata (1986) and Harren (1991). Mercier
and Molinari (2009) used the additive interaction law developed by Molinari
(Molinari et al., 1997; Molinari, 2002) to derive a self-consistent model based
upon a tangent linearization of the viscoplastic flow rule. The additive inter-
action law has been later adapted to build a finite strain elasto-viscoplastic
self-consistent model for polycrystals (Wang et al., 2010). Recently, an in-
ternal variable approach obtained from a variational method was developed
by Lahellec and Suquet (2007a,b) to describe the behavior of composite ma-
terials. Paquin et al. (1999), Sabar et al. (2002) and Berbenni et al. (2004)
proposed an alternative framework based upon the specific properties of pro-
jection operators. In the approach of Paquin et al. (1999), the purely elastic
and purely viscoplastic heterogeneous problems are solved independently us-
ing the self-consistent approximation. Using translated field techniques, the
individual solutions are combined to deduce a strain rate localization rule.
Comparisons between both the translated field techniques and the additive
interaction law were reported in Mercier et al. (2012) in the case of two-phase
compressible or incompressible linear viscoelastic composites using a Mori-
Tanaka approximation.

In the present paper, an extension of the translated field approach initiated
by Paquin et al. (1999) for the modeling of disordered materials using the
self-consistent approximation is proposed. The motivations are twofold. First,
while the original approach of Paquin et al. (1999) derives from a classical
secant approximation, this work aims at adopting an affine linearization pro-
cedure of the viscoplastic flow rule (i.e. a first order Taylor expansion of the
viscoplastic flow rule) as suggested by Masson et al. (2000). Indeed, it has
been observed that the first order affine formulation yields softer responses
than the secant formulation (Masson and Zaoui, 1999; Masson et al., 2000;
Molinari, 2002) which, in the case of pure viscoplasticity (or non linear elas-
ticity in a general sense), may lead to the violation of a non-linear upper
bound for the moduli (Gilormini, 1995). Second, in the original approach of
Paquin et al. (1999), the local constitutive law only accounts for elastic and
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viscoplastic contributions. In the present work, the contribution of thermal
expansion is also considered so that the proposed model may be used to in-
vestigate the response of disordered materials subjected to thermo-mechanical
loading paths. Using the Mori-Tanaka approximation, a first order affine ex-
tension to the model of Paquin et al. (1999) has already been proposed for
two-phase materials by Berbenni and Capolungo (2014). It was shown that
predictions are very close to the ones obtained with the incremental varia-
tional approach developed by Lahellec and Suquet (2007b) for two-phase fibre-
reinforced composites. It is also thought that such translated field approaches
are simpler to formulate than the recent incremental variational approaches
for non-linear elastic-viscoplastic materials (Brassard et al., 2012; Lahellec and
Suquet, 2007b, 2013) whose development within a self-consistent framework
for polycrystalline materials has not been achieved yet.

The paper is structured as follows. In the first section, starting from field
equations, the heterogeneous problem is written in the form of an integral
equation. Then, the translated fields, which are obtained from the solutions of
the purely thermoelastic and purely viscoplastic heterogeneous problems, are
introduced in order to simplify the integral equation. Finally, the localization
rule associated with the proposed affine formulation is deduced from the appli-
cation of the self-consistent method. As an illustration, some applications are
presented in the second section. The case of two-phase fibre-reinforced com-
posites is first examined in order to compare the results from the proposed
self-consistent approach with those given by others (Berbenni and Capolungo,
2014; Lahellec and Suquet, 2007b; Paquin et al., 1999). Then, the model is
used to describe the behavior of polycrystalline materials when they are sub-
jected to various thermomechanical loading conditions. To demonstrate the
relevance of the proposed affine formulation, it is compared to the original
classical secant formulation of Paquin et al. (1999) and to the full-field FFT
spectral method of Moulinec and Suquet (1998).

2 Model description

2.1 Field equations

Considering a heterogeneous material, the proposed homogenization model
aims at determining the macroscopic response of a representative volume ele-
ment V which is submitted to some specific boundary conditions. The macro-
scopic response is given by the relation between the macroscopic stress rate
and strain rate tensors (Σ̇ and Ė). The macroscopic stress rate and strain rate
tensors are connected to the local stress rate and strain rate tensors (σ̇ and ε̇)
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according to the classical averaging relations of homogenization theory:

Σ̇ (t) =
1

V

∫

V
σ̇ (x, t) dx =< σ̇ (t) > (1)

Ė (t) =
1

V

∫

V
ε̇ (x, t) dx =< ε̇ (t) > (2)

The determination of the local stress rate and strain rate fields is based on the
resolution of the field equations associated with the heterogeneous problem.
First, within the infinitesimal strain framework, the kinematical compatibility
relation is given by:

ε̇ (x, t) = ∇su̇ (x, t) (3)

where u̇ is the velocity field. In the absence of volume forces, static equilibrium
conditions impose:

divσ (x, t) = 0 (4)

divσ̇ (x, t) = 0 (5)

Boundary conditions are prescribed on ∂V according to:

u̇ (x, t) = Ė (t) .x on ∂V (6)

The decomposition of the total strain rate into themoelastic (ε̇te) and vis-
coplastic (ε̇vp) contributions leads to:

ε̇ (x, t) = ε̇te (x, t) + ε̇vp (x, t) (7)

The thermoelastic strain rate results from a stress dependent contribution due
to elasticity and a stress-independent contribution associated with thermal
expansion ε̇th such that:

ε̇te (x, t) = s (x, t) : σ̇ (x, t) + ε̇th (x, t) (8)

where s (with c = s−1) is the local elastic compliance tensor.

In the general case, the viscoplastic strain rate is a non-linear function g
depending on both the stress tensor σ and some internal variables denoted by
β. For further use of the self-consistent approximation, the viscoplastic flow
rule has to be linearized. Different linearization methods have been proposed.
In the original approach of Paquin et al. (1999), the flow rule linearization
is based upon a secant formulation. However, since the secant formulation
is known to overestimate the stiffness (Gilormini, 1995; Masson and Zaoui,
1999; Masson et al., 2000), the affine linearization method is chosen here. In
its linearized form, the viscoplastic strain rate is written:

ε̇vp (x, t) = g (σ, β) ≈ mt (x, t) : σ (x, t) + η̇ (x, t) (9)

where mt (with bt = m
−1
t ) is the viscoplastic compliance tensor defined by:

mt (x, t) =
∂g (σ, β)

∂σ
(10)
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and η̇ corresponds to a back-extrapolated strain rate:

η̇ (x, t) = g (σ, β)−mt (x, t) : σ (x, t) (11)

Thus, the final form of the constitutive law is:

ε̇ (x, t) = s (x, t) : σ̇ (x, t) + ε̇th (x, t) +mt (x, t) : σ (x, t) + η̇ (x, t) (12)

The secant formulation proposed by Paquin et al. (1999) is retrieved when the
tangent compliance tensor is replaced by the secant compliance tensor and
by setting η̇ to zero. Because of the differential nature of the above constitu-
tive law, the modeling of elasto-viscoplastic heterogeneous solids requires to
deal with a space-time relation which does not exist for elastic, elastoplastic
or viscoplastic heterogeneous solids. The next section aims at proposing an
integral equation, which includes the space-time coupling associated with the
elasto-viscoplastic constitutive model, to describe the heterogeneous problem.

2.2 Integral equation

To recast the heterogeneous problem in the form of an integral equation, the
local elastic modulus c (respectively viscoplastic modulus bt) is expressed as
the sum of an uniform reference modulusC (respectively Bt) and a fluctuating
part δc (respectively δbt, the dependence with t is omitted):

c (x) = C + δc (x) (13)

bt (x) = Bt + δbt (x) (14)

To obtain the integral equation, the modified Green operators ΓC and ΓBt

associated with the thermoelastic and viscoplastic reference media are now
introduced. The modified Green operators ΓC and ΓBt are defined as follows:

ΓC
ijkl (x− x′) = −

1

2

(

GC
ik,jl (x− x′) +GC

jk,il (x− x′)
)

(15)

ΓBt

ijkl (x− x′) = −
1

2

(

GBt

ik,jl (x− x′) +GBt

jk,il (x− x′)
)

(16)

where GC (respectively GBt) is the elastic (respectively viscoplastic) Green
function and, x and x′ are position vectors. The definition of Green functions
can be found in many textbooks (Mura, 1987; Nemat-Nasser and Hori, 1994).
As established by Kröner (1989), the modified Green operators display the
following properties for any compatible strain (or strain rate) field and any
balanced stress (or stress rate) field (in the following, the dependence with x
will be omitted):

ΓC ∗ σ̇ = 0 (17)

ΓBt ∗ σ = 0 (18)
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(

ΓC : C
)

∗ ε̇ = ε̇− Ė (19)
(

ΓBt : Bt

)

∗ ε̇ = ε̇− Ė (20)

where ∗ denotes the spatial convolution product. Using the specific properties
of the modified Green operators (equations (17) to (20)) in combination with
the constitutive model (equation (12)), the integral equation associated with
the heterogeneous problem is obtained:

ε̇ = Ė−ΓC∗(δc : ε̇te − c : ε̇th)−ΓBt∗(δbt : ε̇vp − bt : η̇)+
(

ΓC : C − ΓBt : Bt

)

∗ε̇vp
(21)

The above integral equation, which contains the entire heterogeneous problem,
is very similar to the one obtained by Paquin et al. (1999). The only difference
lies in the choice of the linearization procedure. The integral equation shows
how the local strain rate depends on both the macroscopic strain rate and the
interactions between the different points of the representative volume element.
In most cases, analytical solutions of this equation do not exist and some
numerical procedures have to be used (e.g. spectral methods (Lebensohn et
al., 2012; Moulinec and Suquet, 1998)). The self-consistent approximation,
coupled with the translated field techniques, aims at estimating the unknown
fields σ, σ̇ and ε̇ by considering only local interactions to simplify the integral
equation. Following the approach of Paquin et al. (1999), the solutions of the
purely elastic and purely viscoplastic heterogeneous problems will be used to
introduce the translated fields in the integral equation.

2.3 Cases of pure thermoelasticity and pure viscoplasticity

Considering the same representative volume element with a purely thermoe-
lastic behavior (i.e. ε̇ = s : σ̇ + ε̇th) or a purely viscoplastic behavior (i.e.
ε̇ = mt : σ + η̇), the integral equation (21) simplifies to:

ε̇ = Ė − ΓC ∗ (δc : ε̇− c : ε̇th) for pure thermoelasticity (22)

ε̇ = Ė − ΓBt ∗ (δbt : ε̇− bt : η̇) for pure viscoplasticity (23)

Introducing the strain rate concentration tensors associated with the elastic
and viscoplastic reference media (AC and A

Bt), the above equations become:

ε̇ = A
C : Ė +A

C : ΓC ∗ (c : ε̇th) for pure thermoelasticity (24)

ε̇ = A
Bt : Ė +A

Bt : ΓBt ∗ (bt : η̇) for pure viscoplasticity (25)

where A
C and A

Bt are defined as the solutions of the following equations:

A
C + ΓC ∗

(

δc : AC
)

= I (26)

A
Bt + ΓBt ∗

(

δbt : A
Bt

)

= I (27)
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The macroscopic constitutive laws display the same structure as the local
constitutive laws of the heterogeneous media such that:

Σ̇ = C
e :
(

Ė − Ėe
th

)

for pure thermoelasticity (28)

Σ = B
e
t :
(

Ė − Ṅ e
)

for pure viscoplasticity (29)

where C
e, Be

t , Ė
e
th and Ṅ e are respectively the effective elastic modulus, the

effective viscoplastic modulus, the effective thermal strain rate and the ef-
fective back-extrapolated strain rate of the heterogeneous solid with either a
purely thermoelastic behavior or a purely viscoplastic behavior. The stress
(rate) concentration rules are deduced from relations (24) and (25):

σ̇ = c : AC : Se : Σ̇ + c : AC : Ėe
th

+ c : AC : ΓC ∗ (c : ε̇th)− c : ε̇th for pure thermoelasticity
(30)

σ = bt : A
Bt : M e

t : Σ + bt : A
Bt : Ṅ e

+ bt : A
Bt : ΓBt ∗ (bt : η̇)− bt : η̇ for pure viscoplasticity

(31)

with S
e = C

e−1 and M
e
t = B

e−1
t . The averaging conditions < ε̇ >= Ė,

< σ̇ >= Σ̇ and < σ >= Σ impose:

C
e =< c : AC > (32)

B
e
t =< bt : A

Bt > (33)

< A
C >= I (34)

< A
Bt >= I (35)

< A
C : ΓC ∗ (c : ε̇th) >= 0 (36)

< A
Bt : ΓBt ∗ (bt : η̇) >= 0 (37)

< c : ε̇th > −C
e : Ėe

th =< c : AC : ΓC ∗ (c : ε̇th) > (38)

< bt : η̇ > −B
e
t : Ṅ

e =< bt : A
Bt : ΓBt ∗ (bt : η̇) > (39)

2.4 Introduction of the translated fields

The integral equation (21) can be simplified by using the solutions of the purely
thermoelastic and purely viscoplastic heterogeneous problems. Considering the
thermoelastic part of the strain rate, it can be decomposed into the solution
of the purely thermoelastic problem (denoted by ė′) and a residual strain rate
field corresponding to the internal stress rate field σ̇′:

ε̇te = s : σ̇ + ε̇th = ė′ + s : σ̇′ (40)
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where ė′ is taken as the solution of the purely thermoelastic heterogeneous
problem:

ė′ =< ε̇te > −ΓC ∗ (δc : ė′ − c : ε̇th) (41)

Adopting the same reasoning for the viscoplastic strain rate yields:

ε̇vp = mt : σ + η̇ = ė′′ +mt : σ
′′ (42)

where ė′′ is chosen as the solution of the purely viscoplastic heterogeneous
problem:

ė′′ =< ε̇vp > −ΓBt ∗ (δbt : ė
′′ − bt : η̇) (43)

Because of the additive decomposition of the strain rate into thermoelastic
and viscoplastic parts, one obtains:

ε̇ = ε̇te + ε̇vp = ė′ + ė′′ + ε̇⋆ (44)

where ε̇⋆ is the translated strain rate field associated to the translated stress
(rate) fields σ̇′ and σ′′:

ε̇⋆ = s : σ̇′ +mt : σ
′′ (45)

The most interesting feature of this decomposition lies in the specific proper-
ties of the recently introduced translated fields. Indeed, σ̇′ and σ′′ are balanced
stress (rate) fields while ε̇⋆ is compatible. Also, the importance of the trans-
lated strain rate field ε̇⋆ should be highlighted. According to equation (44),
the total strain rate is decomposed into the thermoelastic solution (ė′), the
viscoplastic solution (ė′′) and an additional contribution (ε̇⋆) which represents
the complexity of the space-time interactions associated with the thermoelas-
tic and viscoplastic couplings. This treatment of the entire problem allows for
combining the separate solutions of the thermoelastic and viscoplastic hetero-
geneous problem without compromising the issue of their mutual interactions
which are described through ε̇⋆.

Based on the translated field properties, an associated problem, which is de-
scribed by the following integral equation, is now considered:

ε̇⋆ = Ė⋆−ΓC∗(δc : s : σ̇′)−ΓBt∗(δbt : mt : σ
′′)+

(

ΓC : C − ΓBt : Bt

)

∗(mt : σ
′′)

(46)
where Ė⋆ is the macroscopic strain rate field from which boundary conditions
are prescribed on ∂V . Also, because of the properties given by equations (32)
to (39), the following averaging relations are verified:

< ε̇⋆ >= Ė⋆ = 0 (47)

< s : σ̇′ >= 0 (48)

< mt : σ
′′ >= 0 (49)

S
e :< σ̇′ >=

(

S
e : Σ̇ + Ėe

th

)

− < ε̇te >=< ε̇vp > −Ėe
vp (50)

M
e
t :< σ′′ >=

(

M
e
t : Σ + Ṅ e

)

− < ε̇vp > (51)
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2.5 Self-consistent approximation

In order to solve the associated problem, which consists of equations (41),
(43) and (46), the self-consistent approximation is used. The main idea of the
self-consistent approximation is the decomposition of the modified Green op-
erator ΓC (respectively ΓBt) associated with the thermoelastic (respectively
viscoplastic) reference homogeneous medium into a local part (subscript l)
and a non-local part (subscript nl) to weaken the influence of non-local inter-
actions:

ΓC (x− x′) = ΓC
l δ (x− x′) + ΓC

nl (x− x′) (52)

ΓBt (x− x′) = ΓBt

l δ (x− x′) + ΓBt

nl (x− x′) (53)

The influence of non-local terms, which are difficult to estimate, is weakened by
introducing uniform second-order tensors in the integral equations (41), (43)
and (46). Indeed, for any uniform tensor X , the fields ABt : X , AC : X and X
are kinematically admissible while the fields c : AC : X and bt : A

Bt : X are
balanced. Thus, these different fields benefit from the specific properties of the
modified Green operators ΓC and ΓBt (relations (17) to (20)). Therefore, using
the above decomposition of the modified Green operators and introducing the
unknown uniform tensors (Y1 to Y5) in the integral equations (41), (43) and
(46) leads to:

ε̇⋆ = Ė⋆ − ΓC
l :

(

δc : s : σ̇′ − c : AC : Y1

)

− ΓC
nl ∗

(

δc : s : σ̇′ − c : AC : Y1

)

− ΓBt

l :
(

δbt : mt : σ
′′ − bt : A

Bt : Y2

)

− ΓBt

nl ∗
(

δbt : mt : σ
′′ − bt : A

Bt : Y2

)

+
(

ΓC
l : C − ΓBt

l : Bt

)

:
(

mt : σ
′′ −A

Bt : Y3

)

+
(

ΓC
nl : C − ΓBt

nl : Bt

)

∗
(

mt : σ
′′ −A

Bt : Y3

)

(54)

ė′ =< ε̇te > −ΓC
l : (δc : ė′ − c : ε̇th +C : Y4)

− ΓC
nl ∗ (δc : ė′ − c : ε̇th +C : Y4)

(55)

ė′′ =< ε̇vp > −ΓBt

l : (δbt : ė
′′ − bt : η̇ +Bt : Y5)

− ΓBt

nl ∗ (δbt : ė
′′ − bt : η̇ +Bt : Y5)

(56)

Neglecting the non-local terms requires to choose Y1, Y2, Y3, Y4 and Y5 such
that the following self-consistency conditions are fulfilled:

< δc : s : σ̇′ − c : AC : Y1 >= 0 so Y1 = S
e :< σ̇′ > (57)

< δbt : mt : σ
′′ − bt : A

Bt : Y2 >= 0 so Y2 = M
e
t :< σ′′ > (58)

< mt : σ
′′ −A

Bt : Y3 >= 0 so Y3 = 0 (59)

< δc : ė′ − c : ε̇th +C : Y4 >= 0 so C : Y4 = C
e : Ėe

th (60)

10



< δbt : ė
′′ − bt : η̇ +Bt : Y5 >= 0 so Bt : Y5 = B

e
t : Ṅ

e (61)

Considering only local terms and using the expressions of the unknown tensors,
the self-consistent solution of the associated problem is given by:

ε̇⋆ = Ė⋆ − ΓC
l :

(

δc : s : σ̇′ − c : AC : Se :< σ̇′ >
)

− ΓBt

l :
(

δbt : mt : σ
′′ − bt : A

Bt : M e
t :< σ′′ >

)

+
(

ΓC
l : C − ΓBt

l : Bt

)

: (mt : σ
′′)

(62)

ė′ =< ε̇te > −ΓC
l :

(

δc : ė′ − c : ε̇th +C
e : Ėe

th

)

(63)

ė′′ =< ε̇vp > −ΓBt

l :
(

δbt : ė
′′ − bt : η̇ +B

e
t : Ṅ

e
)

(64)

Regarding the properties of the elastic and viscoplastic reference media, it
is imposed to choose the solutions obtained for the purely thermoelastic and
purely viscoplastic heterogeneous problems using the self-consistent approxi-
mation (i.e. C = C

e and Bt = B
e
t). This choice for the properties of the ref-

erence media is needed to ensure that the averaging relations < ė′ >=< ε̇te >
and < ė′′ >=< ˙εvp > are verified.

Returning to the original problem, the strain rate concentration rule is ob-
tained from the combination of equations (44), (62), (63) and (64):

ε̇ = A
C : Ė +A

C : ΓC
l :

(

c : ε̇th −C
e : Ėe

th

)

+A
C : ΓBt

l :
(

bt : η̇ −B
e
t : Ṅ

e
)

+A
C : ΓC

l :
(

δc : ε̇vp + c : AC :
(

< ε̇vp > −Ėe
vp

))

−A
C : ΓBt

l :
(

δbt : ε̇
vp − bt : A

Bt :
(

M
e
t : Σ + Ṅ e− < ε̇vp >

))

+A
C :

(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

ε̇vp −A
Bt :< ε̇vp >

)

−A
C :

(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

A
Bt : ΓBt

l :
(

bt : η̇ −B
e
t : Ṅ

e
))

(65)

The above relation describes the connection between ε̇ and Ė as a function of
the spatial interactions resulting from the thermal and viscoplastic incompat-
ibilities. It is emphasized that only the self-consistent solutions of the purely
thermoelastic and viscoplastic heterogeneous problems are needed to estimate
the local strain rate and stress rate fields. Moreover, in contrast with the
propositions of Rougier et al. (1994) and Masson and Zaoui (1999), no com-
plex numerical procedure is involved since relations (63) to (65) are entirely
formulated in the real-time space. Substituting the concentration rule (65)
in the local constitutive equation (12) gives the following interaction law for
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stresses:

σ̇ = c : AC :
(

S
e : Σ̇ + Ėe

vp + Ėe
th

)

− c : ε̇vp − c : ε̇th

+ c : AC : ΓC
l :

(

c : ε̇th −C
e : Ėe

th

)

+ c : AC : ΓBt

l :
(

bt : η̇ −B
e
t : Ṅ

e
)

+ c : AC : ΓC
l :

(

δc : ε̇vp + c : AC :
(

< ε̇vp > −Ėe
vp

))

− c : AC : ΓBt

l :
(

δbt : ε̇
vp − bt : A

Bt :
(

M
e
t : Σ + Ṅ e− < ε̇vp >

))

+ c : AC :
(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

ε̇vp −A
Bt :< ε̇vp >

)

− c : AC :
(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

A
Bt : ΓBt

l :
(

bt : η̇ −B
e
t : Ṅ

e
))

(66)

where Ėe
vp is the effective viscoplastic strain rate which is chosen to impose

the condition < σ̇ >= Σ̇:

Ėe
vp = Z :< c : ε̇vp > −Z :< c : AC : ΓBt

l :
(

bt : η̇ −B
e
t : Ṅ

e
)

>

−Z :< c : AC : ΓC
l :

(

δc : ε̇vp + c : AC :< ε̇vp >
)

>

+Z :< c : AC : ΓBt

l :
(

δbt : ε̇
vp − bt : A

Bt :
(

M
e
t : Σ + Ṅ e− < ε̇vp >

))

>

−Z :< c : AC :
(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

ε̇vp −A
Bt :< ε̇vp >

)

>

+Z :< c : AC :
(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

A
Bt : ΓBt

l :
(

bt : η̇ −B
e
t : Ṅ

e
))

>

(67)

with:
Z =

(

I − S
e :< c : AC : ΓC

l : c : AC >
)

−1
: Se (68)

2.6 Particular case of two-phase materials

In the case of two-phase materials (with phases r = 1, 2), the Levin’s formula
(Levin, 1967) can be used to further simplify the strain rate concentration
equation (65) (see also Masson et al. (2000); Rekik et al. (2007)). Thus, for
each phase r = 1, 2, the expression of ė

′(r) simplifies to:

ė
′(r) = A

C (r)
:< ε̇te > +aC

(r)
(69)

where aC
(r)

is given by:

aC
(r)

=
[

A
C (r)

− I

]

:
(

c
(2) − c

(1)
)

−1
:
(

τte
(2) − τte

(1)
)

(70)

with τte
(r) = −bt

(r) : ε̇
(r)
th . In a similar manner, the expression of ė

′′(r) becomes:

ė
′′(r) = A

Bt
(r)

:< ε̇vp > +aBt
(r)

(71)
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where aBt
(r)

is given by:

aBt
(r)

=
[

A
Bt

(r)
− I

]

:
(

bt
(2) − bt

(1)
)

−1
:
(

τvp
(2) − τvp

(1)
)

(72)

with τvp
(r) = −bt

(r) : η̇(r). Thus, for two-phase materials, equation (65) can
be recast for each phase r = 1, 2 as (the superscript (r) is now removed to
simplify the notations):

ε̇ = A
C : Ė + aC +A

C :
(

A
Bt

)

−1
: aBt

+A
C : ΓC

l :
(

δc : ε̇vp + c : AC :
(

< ε̇vp > −Ėe
vp

))

−A
C : ΓBt

l :
(

δbt : ε̇
vp + bt : A

Bt :<
(

δmt :
(

σ − τvp − bt : a
Bt

))

>
)

+A
C :

(

ΓC
l : Ce − ΓBt

l : Be
t

)

:
(

ε̇vp −A
Bt :< ε̇vp > −aBt

)

(73)

where Ėe
vp is obtained from equation (67) together with equation (73) and

averaging relations (1) and (2).

3 Applications

3.1 Fibre-reinforced composites

In order to study the effect of non-linear viscosity on the overall response, the
present self-consistent (SC) approximation, which uses the translated field
(TF) techniques together with a first order affine (AFF) linearization pro-
cedure of the viscoplastic flow rule (equation (73), labeled as SC-TF-AFF),
is applied to two-phase fibre-reinforced composites. The interest for study-
ing such composite materials is twofold. First, a Mori-Tanaka approximation
based on translated field techniques and coupled with a first order affine for-
mulation (labeled as MT-TF-AFF) has been recently developed by Berbenni
and Capolungo (2014). It is therefore interesting to compare the self-consistent
and Mori-Tanaka schemes for two-phase composite materials with an elasto-
viscoplastic behavior. Second, to observe the influence of the linearization
procedure, the present SC-TF-AFF approach is also compared to the original
self-consistent approach of Paquin et al. (1999) (labeled as SC-TF-SEC) which
uses a secant approximation of the viscoplastic flow rule (Paquin et al., 1999).

The composite material is made of a matrix phase (r = M) and long cylin-
drical fibres (r = I). Fibres are aligned along the same direction (x3) and are
perpendicular to the (x1, x2) plane. These microstructures were extensively
studied by Lahellec and Suquet (2007b) with a variational approach (labeled
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as SEC (EIV+HS)) developed for non-linear composites. This variational ap-
proach consists of an incremental effective potential approach where the in-
ternal variables are the effective viscoplastic strain rates (i.e. EIV stands for
”Effective Internal Variable”) which are determined from a modified secant ap-
proach. The effective properties of the thermoelastic-like homogeneous equiv-
alent medium are obtained from the Hashin-Shtrikman (HS) estimates calcu-
lated for the composite cylinder assemblage (CCA). For such fibre-reinforced
composites, full-field FFT calculations have been performed earlier by Lahel-
lec and Suquet (2007b) to obtain ”exact” solutions. Their results are used
here as reference solutions to demonstrate the relevance of the present affine
approach. The RVE studied by Lahellec and Suquet (2007b) for the FFT cal-
culations is a 2D volume element where fibres are seen as a composite cylinder
assemblage of self-similar cylinders.

Here, both phases are given an elasto-viscoplastic behavior (with ε̇th = 0).
The non-linear viscoplastic flow rule takes the form of a power law (Norton’s
model):

ε̇ = s : σ̇ +
3

2
ε̇0

(

σeq

σ
(r)
0

)1/m
s

σeq
(74)

where m is the strain-rate sensitivity parameter which is the same for both
phases, s is the deviatoric stress, σeq is the Von Mises equivalent stress, ε̇0 is

a reference strain rate and σ
(r)
0 is the flow stress for each phase (r).

The material parameters used for the simulations are the same as in Lahellec
and Suquet (2007b) and Berbenni and Capolungo (2014) with a fibre volume

fraction of f = 0.21. σ
(M)
0 = 1 GPa for the matrix while σ

(I)
0 = 5σ

(M)
0 for the

inclusions which are considered as hard fibres. The elastic properties, which
are assumed to be isotropic, are the same for both phases (Young’s modulus
E = 100 GPa and Poisson ratio ν = 0.45). The reference strain rate is set to
ε̇0 = 1 s−1 for both phases and the strain rate sensitivity parameter m is either
equal to 1 (linear case) or 0.2 (non-linear case). In the SC-TF-AFF, SC-TF-
SEC and MT-TF-AFF formulations, fibres are modeled with axisymmetric
ellipsoidal inclusions elongated in the x3 direction and with an aspect ratio
of 1/100. The applied strain rate Ė is isochoric and corresponds to in-plane
shear loading at 45◦ with respect to axis x1:

Ė = Ė11















1 0 0

0 −1 0

0 0 0















with Ė11 = 0.5 s−1 (75)

The calculated overall stress-strain responses obtained from the present SC-
TF-AFF approach are first compared to the results given by the FFT method
(Lahellec and Suquet, 2007b), the SEC (EIV+HS) approach (Lahellec and
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SC-TF-SEC (Paquin et al., 1999) and SC-TF-AFF (present)

Figure 1. Overall (i.e. effective) monotonic responses obtained from different meth-
ods for two-phase elasto-viscoplastic fibre-reinforced composites subjected to in–
plane shear loading perpendicular to the fibres (fibre volume fraction f = 0.21,
strain rate sensitivity parameter m = 1).

Suquet, 2007b) and the MT-TF-AFF approach (Berbenni and Capolungo,
2014) in figures 1 and 2 for two different strain-rate sensitivities m = 1 and
m = 0.2, as initially done in Lahellec and Suquet (2007b).

Figure 1 reports the results of the SC-TF-AFF approach for m = 1 (linear
case). In this case, both previous (Paquin et al., 1999) and present translated
field approaches are equivalent and lead to the same results. The SC-TF (SEC
or AFF) approach gives an overall response that is slightly stiffer than the
ones obtained from the FFT method, the SEC (EIV+HS) approach or the
MT-TF-AFF approach. In this case, this is clearly due to the self-consistent
approximation itself applied to this two-phase microstructure with hard fibres
being embedded in a soft matrix phase, for which the HS or the MT estimates
classically represent a lower bound of the effective behavior for single-potential
materials.

For m = 0.2 (non-linear case, see figure 2), more discrepancies occur between
the different approximations and the FFT method especially at large physical
times when the overall behavior tends to the viscoplastic asymptotic state.
In this case, all the mean field approximations overestimate the FFT results.
In comparison with the linear case, it is still observed that the asymptotic
estimate given by the SC-TF-AFF approach is stiffer than the MT-TF-AFF
one. However, in agreement with the FFT results, the transient regime de-
termined with the present SC-TF-AFF approach is shorter than for m = 1.
Furthermore, the present SC-TF-AFF approach provides results which are
closer to the FFT response than the ones given by the original SC-TF-SEC
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Figure 2. Overall (i.e. effective) monotonic responses obtained from different meth-
ods for two-phase elasto-viscoplastic fibre-reinforced composites subjected to in–
plane shear loading perpendicular to the fibres (fibre volume fraction f = 0.21,
strain rate sensitivity parameter m = 0.2).

method. Also, for such microstructures with a relatively low volume fraction
of fibres, these results (figures 1 and 2) confirm that the Mori-Tanaka’s es-
timate, derived by Berbenni and Capolungo (2014), or the Hashin’s CCA,
developed by Lahellec and Suquet (2007b), give more accurate results than
the self-consistent scheme, especially regarding the asymptotic state at large
physical times. However, for m = 0.2, figure 2 shows that the overall response
calculated from the SC-TF-AFF approach during the transition from the elas-
tic regime to the viscoplastic regime, i.e. up to E11=0.03, is close to the FFT
solution.

In figure 3, the phase average stress-strain responses (fibres with dotted lines,
matrix with dashed lines) are reported in addition to the overall responses
(solid lines) according to both the SC-TF-AFF and SC-TF-SEC approaches.
It is observed that the overall stiffness and the average stress (i.e. the first mo-
ment of stresses) in the fibres are largely overestimated with the SC-TF-SEC
method of Paquin et al. (1999) while they are much reduced with the present
SC-TF-AFF formulation. Thus, in comparison with the secant formulation
originally developed by Paquin et al. (1999), the description of the mechanical
behavior of two-phase materials is significantly improved with the proposed
affine formulation.
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Figure 3. Overall and phase average monotonic responses obtained from the present
SC-TF-AFF affine approach and compared to the SC-TF-SEC secant approach
(Paquin et al., 1999) for two-phase elasto-viscoplastic fibre-reinforced composites
subjected to in-plane shear loading perpendicular to the fibres (fibre volume fraction
f = 0.21, strain rate sensitivity parameter m = 0.2).

3.2 Polycristalline materials

In the case of polycrystalline materials, the local behavior of each crystal
strongly depends on its orientation because of the anisotropy of plastic, elastic
and thermal properties. As a result, the macroscopic behavior is importantly
impacted by the internal stresses generated during a loading path because of
the interactions between the different grains. In this section, different models
are compared for various thermomechanical loading conditions: the proposed
affine self-consistent model (labeled as SC-TF-AFF), the original secant self-
consistent model of Paquin et al. (1999) (labeled as SC-TF-SEC) and the
FFT-based spectral method (Lebensohn et al., 2012; Mareau et al., 2013;
Moulinec and Suquet, 1998) (labeled as FFT). In the present case, the FFT-
based spectral method uses the basic algorithm proposed by Moulinec and
Suquet (1998) to solve the integral equation associated with the heterogeneous
problem. In order to assess the validity of the proposed model, the results of the
spectral method are taken as reference since this method provides a numerical
solution to the integral equation without neglecting non-local interactions.

The polycrystal, which is used for the comparison, consists of 200 randomly
oriented grains with spherical shape. In the case of the FFT-based spectral
method, a 3D microstructure was generated using the procedure proposed
by Robert et al. (2012). The different grains were initially approximated by
spheroids being randomly positioned but not superimposed. The Watershed
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algorithm (Meyer, 1994) was then used to dilate the spheroids to fill the volume
element such that smooth grain boundaries were obtained. The microstructure
was then discretized into a 128× 128× 128 regular grid.

3.2.1 Single crystal constitutive law

For the present comparison, the local behavior is described within a crystal
plasticity framework. The phenomenological constitutive equations developed
by Méric and Cailletaud (1991) are used to model the behavior of each crys-
tal. Considering a crystal with N slip systems, the constitutive law can be
summarized in the following set of relations:

ε̇th = αṪ (76)

ε̇vp =
N
∑

s=1

1

2
(ms ⊗ bs + bs ⊗ms) γ̇s (77)

γ̇s =

(

〈|τ s − xs| − rs〉

Ks

)ns

sign (τ s − xs) (78)

τ s = σ : (bs ⊗ms) (79)

xs = asys with ẏs = γ̇s − dsys|γ̇s| (80)

rs = rs0 +
N
∑

t=1

QHstqt with q̇t =
(

1−Bqt
)

|γ̇t| (81)

In the above equations, ms and bs are respectively the slip plane normal and
the slip direction for the sth slip system. For each slip system, the viscoplastic
shear strain rate γ̇s depends on:

• the resolved shear stress τ s which is connected to the stress tensor σ,
• the isotropic hardening shear stress rs which is the force associated to the
internal variable qs,

• the kinematic hardening shear stress xs which is the force associated to the
internal variable ys.

Different material parameters have been introduced in the constitutive model:
α is the thermal expansion tensor, K and n are viscosity parameters, a and d
are kinematic hardening parameters and Q, B and H are isotropic hardening
parameters. H is a N × N matrix providing a description of the interactions
between the different slip systems.

3.2.2 Uniaxial tension

First, the case of a polycrystal subjected to uniaxial tension is considered. A
constant macroscopic strain rate (Ė11 = 1 s−1) is imposed in the x1 direction
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E (GPa) ν K (MPa) n

200 1/3 200 1, 5 and 10

Table 1
Material parameters for uniaxial tension simulations. Only non-zero coefficients are
indicated. Single crystal elastic properties are assumed to be isotropic (E is the
Young modulus and ν is the Poisson ratio).

while, except from Σ11, the macroscopic stress tensor components are set to
zero. The plastic flow rule is established for a f.c.c. crystal with slip systems
belonging to the {111} < 110 > family. As shown in table 1, different set of
parameters have been used. The set of parameters only differ by the value
of the n exponent which varies from 1 to 10. These different n values allow
testing the efficiency of the linearization procedure of the viscoplastic flow rule
as a function of non-linearity.

The macroscopic stress-strain curves obtained with the different models and
different set of parameters are plotted in figure 4. In the case of linear vis-
coelasticity (i.e. n = 1), no difference is observed between the secant and affine
formulations since they both yield the same exact definition of the viscoplastic
compliances tensor. Also, the results obtained from the self-consistent models
are very similar to the reference solution calculated with the spectral method
in both the transient and asymptotic regimes. The good description of the
transient regime indicates that the self-consistent approximation of the inte-
gral equation provides a realistic representation of the interactions associated
with the elasto-viscoplastic space-time couplings.

With an increasing non-linearity, both self-consistent models tend to overesti-
mate the polycrystalline aggregate stiffness. However, no matter the value of
n, the previsions of the proposed affine formulation are always closer to the
reference solution. For the specific case of n = 5, the results can be compared
to those obtained from the hereditary approach of Masson and Zaoui (1999)
(labeled as SC-HER-AFF). This approach, which is based on the correspon-
dence principle and an affine linearization procedure of the viscoplastic flow
rule, requires a complex numerical implementation. Indeed, the solution is ob-
tained from Laplace-Carson transforms whose inversion to the real time space
is generally not trivial. Therefore, the proposed model is an interesting alter-
native solution since it provides very similar results to the hereditary approach
of Masson and Zaoui (1999) while the implementation is much easier.

Also, the previsions from the models are very different when the local stress
and strain fields are examined. Figure 5 represents the situation of each grain in
an equivalent stress-equivalent strain diagram at the end of the tension loading
(E11 = 0.02) with the different models. It is observed that the dispersion of
the stress and strain fields is largely underestimated by both self-consistent
models. For high n values, according to the secant formulation, the local strain
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Figure 4. Macroscopic stress-strain curves calculated with the different models for a
uniaxial tension test for different n values: n = 1 (top), n = 5 (middle) and n = 10
(bottom).
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c1111 (GPa) c1122 (GPa) c1212 (GPa) K (MPa) n

197 125 122 12 11

r0 (MPa) Q (MPa) B a (MPa) d

40 10 3 40 000 1500

h1 h2 h3 h4 h5 h6

1 1 0.6 12.3 1.6 1.8

Table 2
Material parameters for cyclic plasticity simulations (316L stainless steel) (Guil-
hem et al., 2013). Only independent elastic constants and non-zero coefficients are
indicated.

field is almost equal to the prescribed macroscopic strain. Thus, the secant
formulation provides results which are close to the upper bound estimation
(i.e. ε (x, t) = E (t)) which is obtained from Taylor’s model (Taylor, 1938).
On the contrary, the affine formulation yields a more realistic distribution of
the stress and strain fields though important discrepancies with respect to the
reference solution exist. The reason for these differences lies in the description
of the influence of neighboring grains. While the spectral method explicitly
accounts for neighboring effects as in a N-site modeling (Lebensohn, 2001),
the present adopted 1-site self-consistent method describes the interactions
between the different grains in an average manner through the properties of the
reference homogeneous media. Consequently, on the contrary to the spectral
method, self-consistent models do not account for the specific position of each
grain.

3.2.3 Cyclic plasticity

The case of a 316L stainless steel polycrystalline aggregate subjected to a
cyclic loading is now examined. The simulations are performed under strain
control with various strain amplitudes (0.2 %, 0.4% and 0.8%) and with a
constant loading frequency (1 Hz). The material properties, which are given
in table 2, have been identified for 316L by Guilhem et al. (2013). Because
of the f.c.c. crystal structure, only the {111} < 110 > plastic deformation
mode is considered. The interaction matrix H is defined from six different
terms (h1 to h6). They correspond to different types of interactions between a
given slip system and the other systems. Considering two slip systems (s and
t), the interaction term Hst depends whether the two considered systems are
identical (Hst = h1), coplanar (H

st = h2), collinear (H
st = h3), Hirth junction

(Hst = h4), forming glissile junction (Hst = h5) or forming sessile junction
(Hst = h6).

The macroscopic responses, which have been computed with the different mod-

21



150

200

250

300

350

400

450

0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028

E
q

u
iv

a
le

n
t 

st
re

ss
 (

M
P

a
)

Equivalent strain

SC-TF-AFF
SC-TF-SEC

FFT

350

400

450

500

550

600

650

700

0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03

E
q

u
iv

a
le

n
t 

st
re

ss
 (

M
P

a
)

Equivalent strain

SC-TF-AFF
SC-TF-SEC

FFT

400

450

500

550

600

650

700

750

800

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03

E
q

u
iv

a
le

n
t 

st
re

ss
 (

M
P

a
)

Equivalent strain

SC-TF-AFF
SC-TF-SEC

FFT

Figure 5. Situation of each grain in an equivalent stress-equivalent strain diagram
calculated with the different models at the end of the uniaxial tension simulations
(E = 0.02) for different n values: n = 1 (top), n = 5 (middle) and n = 10 (bottom).
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els, are plotted in figure 6 for the 10th loading cycle. When the strain amplitude
is low (0.2%), a good agreement is observed between the spectral method and
the self-consistent models. However, when the strain amplitude is increased
(0.4% or 0.8%), kinematic hardening, which partly results from the develop-
ment of internal stresses, is largely overestimated by the secant formulation.
Indeed, as previously discussed, the secant formulation yields an overestima-
tion of intergranular internal stresses such that kinematic hardening is poorly
described with this model. On the contrary, the previsions of the cyclic stress-
strain curves determined from the affine model and the spectral method are
in very good agreement even for high strain amplitudes.

3.2.4 Creep

In order to test the ability of the different formulations to deal with the cou-
pling between thermoelasticity and viscoplasticity within the polycrystalline
material, creep simulations are performed. Creep simulations consist of two
steps: (i) temperature is first increased to 350◦C with a rate of 35 ◦C/s then
(ii) a constant uniaxial stress (from 300 to 425 MPa) is applied to the poly-
crystalline aggregate for 105 s. The single crystal properties which are used
for creep simulations were identified for a zirconium alloy (zircaloy-4, h.c.p.
crystal structure) at 350◦C by Diard et al. (2005). They are given in table
3. Four different plastic deformation modes are considered in the simulations:
prismatic slip {1010} < 1120 >, basal slip {0001} < 1120 >, pyramidal <a>
slip {1011} < 1120 > and pyramidal <c+a> slip {1011} < 1123 >.

The strain rate, determined during the secondary creep stage, has been esti-
mated using the different extensions (present affine and secant formulations)
and compared to the results from the FFT-based spectral method. The results
are reported in figure 7. For high stress values, the secant formulation under-
estimates the stationary creep strain rate. This poor prevision of the creep
behavior arises from the work hardening associated with the internal stresses
which are known to be overestimated by the secant formulation. Thus, it is
observed that the thermo-elasto-viscoplastic coupling is better described by
the proposed affine formulation for which the agreement with the spectral
method is good for any applied stress. This result indicates that the partial
relaxation of internal stresses during the second loading step is well captured
by the affine model.

Also, the slope of the strain rate versus stress curve corresponds to the effec-
tive strain rate sensitivity of the polycrystalline aggregate. While the effec-
tive strain rate sensitivity varies smoothly according to the spectral method,
abrupt changes are observed with both self-consistent models. These strain
rate sensitivity variations can be explained from the activation of the different
deformation modes. Indeed, in the case of zircaloy-4, four deformation modes
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Figure 6. Macroscopic stress-strain curves obtained for a 316L polycrystal subjected
to strain-controlled cyclic loadings with different strain amplitudes: 0.2% (top), 0.4%
(middle) and 0.8% (bottom). The results correspond to the 10th cycle.
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c1111 (GPa) c3333 (GPa) c1122 (GPa) c2233 (GPa) c1212 (GPa)

103.2 118.3 51.6 46.6 23

α11 (K−1) α33 (K−1)

5.3 × 10−6 1.01 × 10−5

Prismatic

r0 (MPa) K (MPa) n a (MPa) d

20 198 9.4 22 100 170

Basal

r0 (MPa) K (MPa) n

132 90 5.5

Pyramidal <a>

r0 (MPa) K (MPa) n

107 500 7.5

Pyramidal <c+a>

r0 (MPa) K (MPa) n a (MPa) d

195 55 11.3 6 120 170

Table 3
Material parameters for creep simulations (zircaloy-4) (Diard et al., 2005). Only
independent elastic constants and non-zero coefficients are indicated.
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Figure 7. Steady creep strain rate calculated with the different extensions (present
affine and secant formulations) and the FFT method for a zircaloy-4 polycrystalline
aggregate as a function of the applied stress.
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with different strain rate sensitivities exist. As a result, the evolution of the
effective strain rate sensitivity strongly depends on the active deformation
modes. According to the FFT method, the activation of a deformation mode
in a given grain occurs progressively when the applied stress is increased since
intragranular fluctuations of the stress field are accounted for. On the contrary,
self-consistent models consider only the volume average strain and stress ten-
sors in each grain to determine the overall behavior. Thus, the activation of
a deformation mode takes place simultaneously over the entire grain volume.
The abrupt strain rate sensitivity variations being observed at a macroscopic
scale with both self-consistent models are therefore caused by the rapid tran-
sitions from one deformation mode to another occurring in different grains.

4 Conclusions

Translated field techniques were used to build up a new self-consistent model
for materials with a local thermo-elasto-viscoplastic behavior. The present
homogenization scheme is based on a first order affine linearization of the vis-
coplastic flow rule inspired from the initial work of Masson et al. (2000). The
proposed model can be seen as an extension of the classical secant formula-
tion first developed for elasto-viscoplastic materials by Paquin et al. (1999)
without altering the CPU time needed for computations. When compared to
reference solutions calculated from a FFT spectral method, a good description
of the thermomechanical behavior is obtained with the present model. More
specifically, in comparison with the original secant formulation, the descrip-
tion of the interactions between the different phases of a representative volume
element is largely improved with the proposed affine model. Furthermore, al-
though the spatial inter-granular elasto-viscoplastic interactions are complex,
the present model does not require intensive computations since it is entirely
formulated in the real-time space. It is an alternative approach to other recent
polycristalline models (e.g. Wang et al., 2010) that should be considered with
interest for applications where the computation time is a critical issue, e.g.
fatigue, creep responses of polycrystalline materials.

Acknowledgments

One of the author (S.B.) would like to thank the support of the French State
through the National Research Agency (ANR) under the program Investment
in the future (Labex DAMAS referenced as ANR-11-LABX-0008-01).

26



References

Berbenni, S., Capolungo, L., 2014. A Mori-Tanaka homogenization scheme for
non-linear elasto-viscoplastic heterogeneous materials based on translated
fields: an affine extension. Comptes Rendus de Mecanique (special issue),
accepted for publication.

Berbenni, S., Favier, V., Lemoine, X., Berveiller, M., 2004. Micromechanical
modeling of the elastic-viscoplastic behavior of polycrystalline steels having
different microstructures. Materials Science Engineering A 372, 128-136.

Brassard, L., Stainier, L., Doghri, I., Delannay, L., 2012. Homogenization of
elasto-(visco)plastic composites based on an incremental variational princi-
ple. International Journal of Plasticity 36, 86-112.

Diard, O., Leclercq, S., Rousselier, G., Cailletaud, G., 2005. Evaluation of
finite element based analysis of 3D multicrystalline aggregates plasticity:
Application to crystal plasticity model identification and the study of stress
and strain fields near grain boundaries. International Journal of Plasticity
21, 691-722.

Gilormini, P., 1995. Insuffisance de l’extension classique du modèle auto-
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Kröner, E., 1989. Modified green functions in the theory of heterogeneous
and/or anisotropic linearly elastic media, in: Weng, G.J., Taya, M., Abe,
M. (Eds.), Micromechanics and inhomogeneity, Springer, Berlin, pp. 197-
211.

Lahellec, N., Suquet, P., 2007. Effective behavior of linear viscoelastic com-
posites: A time-integration approach. International Journal of Solids and
Structures 44, 507-529.

27



Lahellec, N., Suquet, P., 2007. On the effective behavior of nonlinear inelastic
composites: I. Incremental variational principles. Journal of the Mechanics
and Physics of Solids 55, 1932-1963.

Lahellec, N., Suquet, P., 2013. Effective response and field statistics in elasto-
plastic and elasto-viscoplastic composites under radial and non radial load-
ings. International Journal of Plasticity 42, 1-30.

Laws, N., McLaughlin, R., 1978. Self-consistent estimates for the viscoelastic
creep compliances of composite materials. Proceedings of the Royal Society
of London A 359, 251-273.
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