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ABSTRACT  

Measurements are processed on a centrifugal pump model, which works with air and performs with the vane-island type diffuser 

of a real hydraulic pump, under five flow rates to investigate the internal flow characteristics and their influence on overall pump 

performance. The mean flow characteristics inside the diffuser are determined by using of a miniature three-hole probe connected 

to an online data acquisition system. The flow structure at the inlet section of the diffuser is analyzed in detail, with a focus on the 

local pressure loss inside the vane less gap and incidence angle distributions along the hub-to-shroud direction of the diffuser. 

Some existing URANS calculations, including leakage effects, are used to evaluate the pressure recovery downstream of the 

impeller. Furthermore, 2D/2C high-speed stereoscopic PIV measurement results are obtained to help analyze the flow 

characteristics inside the vane-island diffuser. Each PIV measuring plane is related to one particular diffuser blade-to-blade 

channel and is analyzed by using the time-averaged method according to seven different relative positions of the impeller. 

Measurement results show that main loss is produced inside the vane less part of the diffuser at low flow rates, which might have 

been caused by the strong rotor–stator interaction. When the impeller flow rate is greater than the diffuser design flow rate, a 

large fluctuating separated region occurs after the throat of the diffuser on the pressure side. Mean loss originates from the 

unsteady pressure downstream of the diffuser throat. For better characterization of the separations observed in previous 

experimental studies, complementary unsteady static pressure measurement campaigns have been conducted on the diffuser blade 

wall. The unsteadiness revealed by these measurements, as well as theirs effects on the diffuser performance, was then studied.  
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1. Introduction  

Centrifugal pumps are essential energy conversion devices and fluid-transporting equipment. One of 

the great astronomical projects of centrifugal pumps is to increase the machine performance in this 

competitive and energy conscious world. However, flow inside a centrifugal vane pump is three-dimensional, 

turbulent, and always associated with strong rotor–stator interaction, as highlighted in previous works [1–3]. 

Thus, solid knowledge of the flow characteristics within the impeller and diffuser is indispensable to 

improve the hydraulic performance of centrifugal pumps. 

Flow in the vaned diffuser radial pump is characterized by a strong jet–wake flow structure from the 

impeller and unsteady interactions between the rotating impeller and the stationary diffuser. Such 

interactions result in large pressure fluctuations both downstream and upstream. These fluctuations not only 

generate noise and vibration but also bring unfavorable pump performance even at the design point [4–7]. 

Diffuser pump performance improves with the reduction of flow losses in the diffuser, which yields high 

pressure recovery, and in the impeller [8]. Despite considerable experimental and numerical studies 

conducted on the flow downstream of the impeller [9–14], findings remain insufficient to facilitate 

understanding of the flow mechanism inside the diffuser and the interaction effect from the impeller and 

diffuser blades. In our previous works on the same model, complementary PIV measurements and numerical 

simulation had been used in a special pump working with air. These published works include those by 

Wuibaut et al. [15], Atif et al. [16], Dazin et al. [17], and Cavazzini et al. [18, 19]. Comparisons between 

PIV and full URANS calculation results in the present pump model have been discussed, with consideration 

of the impeller blade location relative to the vane diffuser channel. However, previous studies only focused 

on the unsteady velocity fields inside the impeller channel. Further studies that consider the pressure 

recovery downstream of the impeller and the development gradients of vortex flow are required to analyze 

the effect of internal flow characteristics on overall pump performance. In a research loop model, only an 



intrusive directional pressure probe traverse enables total pressure evaluation and consequently corrects 

impeller and pump loss evaluations. 

In this study, a classical three-hole probe was used to cover most of the complete flow passage of the 

diffuser. The overall performance of the pump model was presented. The pressure recovery downstream of 

the impeller was analyzed by using the mean values at the impeller outlet derived from pre-existing torque 

measurements and unsteady calculation results as the inlet flow conditions. Complementary PIV 

measurement associated with the unsteady blade wall static pressure test in one diffuser blade-to-blade 

passage was used to describe the fundamental flow characteristics of vane-island radial pumps. The effects 

of flow separation on overall pump performance were also discussed. 

2. Experimental apparatus and overall pump performance measurement  

2.1 Pump dimensions  

The experiments were conducted on a pump working with air and under conditions similar to those in 

water. The pump is composed of an SHF impeller matched with a vaned diffuser, the characteristics of 

which are listed in Table 1. No volute was used downstream of the diffuser to focus the analysis on the 

rotor–stator interaction. The diffuser design flow rate corresponds to 80% of the impeller design flow rate 

(Qn = 0.3365 m
3
/s). This configuration has been chosen to enhance performance when the pump operates at 

partial working condition. The outlet parts of the impeller and of the entire diffuser are characterized by a 

two-dimensional design.  

2.2 Process of global measurement 

The system diagram and the main specifications of the test apparatus are shown in Fig. 1. An aspiration 

circuit consists of a pipe and an aspiration caisson. The operating conditions were regulated with normalized 

diaphragms positioned on a wall of the caisson. Calculating the flow rate in the pipe was made possible by 



measuring the pressure difference between upstream and downstream of the diaphragm. The mass flow in 

the caisson moved through a honeycomb filter and finally entered the aspiration pipe. An asynchronous 

motor of 5.5 kW coupled with a speed variator was used to drive the pump. The exact impeller rotation 

velocity was measured by using a numeric stroboscope BRUEL ET KJAER Type 4913 coupled with a 

photoelectric cell. The pressure measurements (at the impeller inlet and in the aspiration caisson) were 

conducted with the use of a Selector BEXHILI 20 pneumatic channel and a digital manometer YEW type 

2654. The temperature and relative humidity were determined at the machine exit by using a digital 

thermohygrometer DOSTMANN T870 to calculate air density. 

A miniature three-hole probe was used to measure the mean flow characteristics downstream of the 

impeller. Measurements were conducted at 23 positions, as shown in Fig. 1(c), at five mass flow rates. For 

each blade-to-blade position, axial traverse was performed from hub to shroud to cover a complete flow 

distribution section inside the diffuser plane. The three-hole probe is connected to the honeywell type 

pressure sensor, which transforms pressure tension information in a real-time online data acquisition system 

controlled by LabVIEW. Every pressure transducer is calibrated to obtain a calibration certificate before 

measurement. 

2.3 Three-hole probe measurement method 

Flow direction can generally be precisely determined by using the null method for probe measurement. 

This method equalizes the pressure on two opposite static tappings. However, it has low efficiency in 

obtaining an improved value in the test diffuser because the approach requires several attempts to rotate the 

setting angle owing to the low reference pressure. In the non-nulling method, the probe is mounted at a fixed 

position, and the flow characteristic values are calculated through prior calibration. However, this method is 

sensitive to the probe characteristics. Calibration and data processing were carefully conducted to ensure the 

validity of the measured angles within the Reynolds number range [20]. Moreover, calibration measurement 



should be conducted to ensure a useful range of the pitch and yaw angles and to establish the zero point. 

During our calibration, three coefficients were defined to represent the probe characteristics. The pitch and 

yaw angles were changed from -33° to 33°, with an interval of 3° at four Reynolds numbers (using probe 

diameter as the reference length). The results shown in Fig. 2 indicate that the angle calibration coefficient 

Cα of Reynolds number dependency is significant, whereas the pressure coefficient Cpo and velocity 

coefficient Cps are insignificant. The Reynolds number effects on the pitch and yaw angle coefficient Cα are 

negligible when the absolute values of the pitch and yaw angles are less than 13°, such that a linear variation 

is observed. Therefore, an economical method combining the semi-null method with the calibration curve 

was adopted in our measurement with a focus on setting Ca to be less than 1. 
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3. Mean flow characteristic results 

3.1 Pump component performance curves and leakage calculation 

To analyze the diffuser performance, the impeller outlet conditions have to be determined. The overall 

performance curve of the impeller is deduced from the experimental results obtained by Barrand et al. [21], 

as shown in Fig. 3. These results have been validated in two different water test stands, namely INSA de 

Lyon (Villeurbanne, France) and EPFL Lausanne (Lausanne, Switzerland). The straight line corresponding 

to the theoretical curve correctly fits the first curve with an extensive flow rate range. This straight line was 

obtained by applying the Euler equation, with the assumption that no swirl velocity exists at the impeller 

inlet and that a constant outlet relative angle β2 is equal to 14° with the tangential direction. The existing 

experimental impeller head curve enabled the calculation of the mean absolute tangential velocity outside 



the impeller. The mean radial velocity was from the division of the flow rate and the section area of the 

impeller exit. Impeller efficiencies were determined from existing 1D loss models, the results of which were 

similar to those obtained by using unsteady loss calculations from several CFD methods. The calculated real 

fluid total and static pressure coefficient at the impeller outlet for five chosen flow rates are also shown in 

Fig. 3. These values were taken as the initial conditions for all further performance evaluations downstream 

of the impeller. 

The non-dimensional pump head curves shown in Fig. 3 correspond to global performance in terms of 

total pressure coefficient. The total pressure coefficient was calculated after obtaining the static pressure in 

the tank and at the inlet of the impeller. Moreover, the test process was conducted under four operating 

rotational speeds. The results are also shown in Fig. 3. On the basis of the results, we can conclude that the 

Reynolds number insignificantly affects the flow structure inside the pump under the four rotating speeds. 

This result would help us use the similarity law in turbomachinery and avoid the limit of the pressure sensor. 

Given that temperature is of significant importance relative to air density, considerable attention was 

focused on the measurement to ensure that all test results were collected within a 2 C temperature variation. 

After probe measurement and weight average solution calculation, the mean values of total pressure at the 

inlet and outlet of the diffuser can be obtained. Diffuser performance is shown in Fig. 3, where 

non-dimensional total pressure change linearly decreases as flow increases. 

During measurement, the global flow rate must be considered when determining the pump operating 

conditions. For the present experimental setup, two main types of leakage exist in the operating pump model, 

as shown in Fig. 4. The global flow rate of the impeller is the sum of the flow rate in the caisson Qvc and the 

leakage flow rate Qvl, which can be calculated by using Formulas 4 and 5: 
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where δ is the flow rate coefficient of the diaphragm, S is the area of the diaphragm section, △Pc is the 

pressure difference between upstream and downstream of the diaphragm, ρ is the air volumetric density, and 

△Pi is the difference between the atmospheric and wall pressures at the impeller inlet. 

The flow rate in the diffuser is the sum of three parts, namely, the flow from the impeller Qimp, the 

leakage flow from the shroud Qshroud, and the leakage flow from the hub Qhub. A specific arrangement 

enables flow leakage just after the impeller outlet section. The low pressure may cause this leakage to enter 

into the vane diffuser. Based on the Bernoulli equation, the following recursion formulas can be used to 

calculate the leakage flow: 
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Based on the impeller total head coefficient curve shown in Fig. 3, the mean total pressure outside the 

impeller can be obtained. After integrating the relevant geometric parameter of the leakage channel and 

pressure difference into Formulas 6, 7, and 8, the leakage flow rate can be calculated. The values of the 

coefficients in these formulas can be derived from [22]. The non-dimensional flow rate of pump components 

is shown in Fig. 5. The leakage at the impeller inlet is always positive and maintains a constant percentage 

with increasing flow rate. Inward impeller tip leakage flow always occurs when the non-dimensional mass 

flow rate of the impeller is less than 0.8, whereas outward leakage flow occurs at 0.956Qn and 1.12Qn. The 

impeller tip leakage flow reaches its maximum of approximately 28% at 0.386Qn, which will significantly 

affect the flow field. The conclusions are in accordance with the existing numerical simulation results, 

including leakage effects [23]. In detail, as shown in Fig. 3, the non-dimensional head curve of the impeller 

separates the theoretical line that is approximately 0.7 times the impeller design flow rate. This result 

indicates that revolution flow at the impeller import will occur and increase with decreasing flow rate. Given 



that no pre-rotate assumption was used in calculating the value of leakage, the obtained result was relatively 

large. 

3.2 Probe measurement results at the diffuser inlet  

Flow inside the diffuser can be divided into two parts, namely, the vane less and vaned blade parts. 

Nine probe measurement points for five different flow rates are placed at the inlet of the diffuser to evaluate 

the flow characteristic at the vane less part. The probe dimensions make it difficult to perform accurate 

measurements at points 1 and 9, which respectively correspond to the pressure and suction sides. The flow 

information calculated from points 2 to 8 is accurate, as shown from Figs. 6 to 10. The nondimensional 

pressure coefficient calculated from ambient flow conditions (Patm, ρ), the static pressure at the inlet pipe 

(PaspA), and the rotor tip velocity (u2) can be expressed as: 
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As shown in Fig. 6, the mean value of the flow angle decreases with increasing flow rates. Angles 

greater than 90° indicate backflow from the vane diffuser part. These places locate near the shroud and hub 

side and disappear as flow rate increases. This reverse flow region even corresponds to 20% of the diffuser 

width at a close diffuser design flow rate Q/Qn = 0.762 and is associated with low absolute mean velocities, 

as shown in Fig. 8. Fig. 7a shows the average incidence flow angle distribution from the hub-to-shroud 

section for five mass flow rates, which were obtained from the difference between the absolute flow angle α 

and the diffuser blade angle (79.8°). Negative incidence was observed in the middle of the height section. 

For low flow rates, negative incidence values were evident because of strong blockage effects near the 

shroud with high positive incidence values. Low incidence values were observed for the two highest flow 

rates because radial velocity distribution was almost constant over the hub-to-shroud section, as shown in 



Fig. 7b. 

As shown in Fig. 8, cores with high kinetic energy move from the suction side to the pressure side and 

then remain near the mid-span as flow rate increases. Similarly, the non-dimensional static pressure 

distribution maps shown in Fig. 9 indicate that places with low static pressure move from the suction side to 

the pressure side. Low values are concentrated in the middle of the passage with an almost equivalent 

pressure level close to the pressure and suction sides when flow conditions are close to the design point of 

the vane diffuser. The maximum non-dimensional absolute velocities decrease with increasing flow rate, 

which is in accordance with the non-dimensional static pressure distribution. As shown in Fig. 10, maximum 

total pressure levels are located at the mid-span diffuser width and in the middle part of the blade-to-blade 

section toward the pressure side. For Q/Qn = 0.762, the maximum total pressure coefficient value obtained 

by the probe measurements exactly corresponds to the mean total pressure value calculated at the impeller 

outlet section, as shown in Fig. 3. This finding indicates that after mixing, a blade-to-blade loss distribution 

is obtained in the vane less diffuser part with consideration of the downstream vane diffuser interactions. 

The corresponding maximum total pressure zone is then equivalent to the isentropic flow conditions inside 

the vane less diffuser part originating from the impeller outlet condition. This result also corresponds to a 

time-averaged total pressure distribution because the combination of rotor–stator interactions and jet–wake 

structure that originates from the impeller itself causes unsteady flow in this region. 

3.3 Probe measurement results along the diffuser mean line 

To investigate the behavior of the vaned diffuser and the evolution of the phenomena in the analyzed 

diffuser passage, we must determine the mean line and analyze its flow characteristics. In this investigation, 

the perpendiculars to the blade surfaces were constructed. The intersection point between the two 

perpendiculars, at equal distance from the blade surfaces, is then identified. These points, including points 

19 to 23, are used to construct the mean line. Contours of static pressure distribution located at the mean line 



from the inlet to the outlet in the diffuser are determined for five flow rates, as shown in Fig. 11. The static 

pressure is always higher near the shroud than the hub. Low pressure area cores move downstream with 

increasing flow rate and park in the throat of the diffuser. 

During testing, points from 10 to 15 and point 18 are unpredictable. For points 10, 11, 12, 13, and 18, 

this unpredictability may be attributed to the wall effects when the probe is located extremely close to the 

wall. For points 14 and 15, the unpredictable flow might be caused by the strong flow separation around the 

pressure side of diffuser trailing edge. The sectional area of the diffuser channel increases, which results in 

an adverse pressure gradient and a sudden separation of the boundary layer. 

A more detailed analysis of diffuser performance is proposed in Fig. 12, which shows the mean static 

pressure evolution with radius downstream of the impeller. Initial pressure and velocity values are derived 

from the impeller outlet conditions, as stated in Section 3.1. This figure clearly shows that the diffuser can 

be divided into two regions. In the vane less part, static pressure slightly increases for low flow rates Q/Qn = 

0.386 and 0.583. This result is linked to the sudden deceleration of the diffuser inlet flow conditions, as 

shown in Fig. 9. For all other flow rate values, static pressure remains constant in the diffuser part. For Q/Qn 

= 0.762, the static pressure value remains constant up to the diffuser throat that corresponds to positions 19 

and 20. For Q/Qn = 0.386 and 0.581, the static pressure increases rapidly before position 20 and then 

increases gradually. For the maximum flow rate value Q/Qn = 1.12, no pressure recovery occurs mainly 

because of the negative incidence at the leading edge. This negative incidence is associated with strong local 

flow blockage, which results in strong acceleration in the vane diffuser channel associated with pressure 

losses. Moreover, as shown in Fig. 12, the theoretical pressure recovery factor determined by Formula 12 

was plotted on the basis of the vane diffuser geometrical section evolution along the radius. In the following 

equation, vR denotes the absolute velocity at radius R, and S is the area of the section at radius R: 
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By calculating the difference between the ideal and real measured final values, we conjecture that the 

negative values at flow rates of 0.968 and 1.12 before the diffuser throat may be caused by the leakage flow, 

which adds energy to the diffuser part. These differences also correspond to the total loss coefficient. The 

minimum loss condition locates between the diffuser design point and impeller design flow rate. 

4 PIV measuring verification 

The flow field inside the diffuser was also studied by using a 2D/2C high-speed PIV. These results were 

not only used to verify the probe experiment results but also to analyze the unsteadiness of the flow field. 

4.1 PIV experimental setup 

Some information on the PIV measuring system is shown in Fig. 13. Two complementary metal–oxide–

semiconductor cameras (1,680 × 930 pixel
2
), equipped with 50 mm lenses, were properly synchronized with 

the laser pulses. The angle between the object and image planes was approximately 45°. The laser 

illumination system consists of two independent Nd:YAG laser cavities, each producing an approximately 

200 mJ/pulse at a frequency of 14.25 Hz. A light sheet approximately 90 mm wide with a thickness of 1.5 

mm was obtained at five heights, including the mid-span. The experimental procedure enabled the 

determination of the mean absolute velocities in two exposure frames for up to seven different impeller 

angular positions relative to the diffuser vanes. More details on the PIV techniques used, experimental setup, 

and result interpretations can be found in [17]. 

4.2 Velocity results from PIV measuring 

Image treatment was performed by using the software developed by the Laboratoire de Mecanique de 

Lille. For a given flow rate, this procedure enables us to obtain an overview of the phase-averaged absolute 

velocities inside the flow fields at each impeller angular position by means of contours. To obtain a better 

interpretation of the results, the radial and tangential components of the flow velocities in turbomachinery 



must be determined. A procedure allowing for the determination of the impeller axis of rotation in the 

measuring plane has been developed. This procedure enabled the presentation of a highly precise analysis of 

the flow within the diffuser with velocity components for each impeller relative position at several spans. 

Examples at the mid-span that correspond to several blade-to-blade positions are shown in Table 2. 

As shown in the table, the radial and tangential component evolution for every angular position 

resembles a cycle of one blade passage. Discrepancies can be observed during boundary layer development 

in the sections of two blade sides. Moreover, vortexes are identified at the diffuser entrance. The radial 

component always has three cores. When the impeller blade approaches the diffuser leading edge, the 

coherent vortices arrive from the impeller near the diffuser passage. The incoming fluctuations mix with the 

coherent large-scale structure created on the blade suction side. These fluctuations occur at half of the 

diffuser passage length when another core enters the diffuser inlet. All these fluctuations can be explained by 

the physical flow phenomenon called jet–wake and its interaction with the downstream diffuser. The waves 

emitted near the impeller trailing edge travel downstream and generate disturbances in the region of the 

diffuser leading edge. 

To capture and visualize the unsteady flow field associated with the experimental comparison of mean 

flow characteristics, the appropriate method to measure velocity fields was developed according to equations 

13 and 14. Finally, contours referring to the blade-to-blade evolutions of non-dimensional mean velocities 

and mean radial and tangential velocity components are shown in Table 3. 
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As shown in Table 3, negative radial velocity components can be observed under diffuser design flow 



rates. Interaction effects are apparently more important at smaller flow rates. After the throat section, strong 

mean velocity decelerations occur on the vaned pressure side because of the important negative incidence 

related to the increase in flow rate. The existing wake flow structure downstream of the impeller trailing 

edge is cut off by the leading edge of the diffuser, which causes strong flow fluctuations. Noticeable 

fluctuations in one impeller blade passage can be associated with the radial component distributions, which 

imply that a monopole acoustic source will partly contribute to the interactions. Fluctuations of the 

tangential velocity components are also observed. These fluctuations suggest that torque and/or pressure 

fluctuations on the blades will occur and result in dipole acoustic noise. Furthermore, the PIV results of the 

turbulence rate charts obtained from [24] at position 6 for several flow rates are shown in Fig. 14. In these 

charts, we consider only red zones of high turbulence (>10%) in the diffuser channel. In the impeller region, 

these areas should be neglected because they are representative of inconsistent values. At a low flow rate, 

the turbulence rate is moderate (<5%) in the entire domain, whereas a region of high turbulence appears at 

the pressure side with the flow rate increasing. This region also provides evidence of the separation of the 

boundary layer when flow rate is greater than the diffuser design flow rate according to [25]. We also note 

that the size of this zone fluctuates with the transpositional impeller position. 

4.3 Comparison between two measuring results 

A comparison of the experimental results between the three-hole probe and the PIV measurement are 

shown in Fig. 13. The results illustrate that velocity profiles and flow angles from probe measurement are in 

good agreement with the PIV experiment data. A slight difference between the seven positions of PIV 

measurement is observed when R/R2 is greater than 1.25. Conversely, when R/R2 is less than 1.25, relatively 

significant differences exist probably because of the strong flow disturbances caused by the rotor–stator 

interaction effect. The area of the flow passage becomes narrowest at this point, which may create high 

velocity gradients between the pressure and the suction sides of the diffuser channel. These gradients cannot 



be measured by the probe itself. Furthermore, flow unsteadiness also causes angle error for probe 

measurement if established through probe calibration under stationary flow conditions. The method of probe 

measurement used in this study can help determine the mean real flow angle. Time-averaged values of 

velocity components from the PIV experiment verify the correctness of probe measurements although the 

unsteadiness yields higher velocity results for probe measurement. 

5 Analysis of unsteadiness in the diffuser 

To analyze the effect of flow separation-induced pressure fluctuations inside the vane diffuser, unsteady 

pressure measurements were conducted by using 8510B-1 Endevco pressure transducers. The transducers 

are located at five positions on the pressure face and four positions on the suction face of the diffuser in a 

blade-to-blade channel at mid-span, as shown in Fig. 16. The unsteady pressure measurements were 

performed with an acquisition time of 300 s and a sampling frequency of 6000 Hz. By using the Helmholtz 

resonance calculation, we determined that the natural frequency for the installed cavity of the sensor is 3070 

Hz. Therefore, a low-pass filter was used with a 3000 Hz cut off frequency to avoid aliasing. 

The statistical results of unsteady wall static pressure are shown in Fig. 17. From the root mean square 

(RMS) results, the levels of fluctuation decrease with increasing radius at the pressure side for all flow rates. 

The slope increases with increasing flow rate. Corresponding to the suction side, a steep increase is followed 

by a gradual decrease with increasing radius, which indicates that an area with significant unsteadiness 

exists. The RMS values at 0.968 Qn and 1.12 Qn are always larger both at the pressure and suction sides, 

which is associated with the separation area of the boundary layer. The averaged non-dimensional static 

pressure results at the pressure side almost present the same law as the probe measurement results at the 

mean line. The values increase with the radius and decrease with the flow rate. At the suction side, the 

values are constant at the diffuser design flow rate, which indicates less loss at this condition. Moreover, the 

values reveal the contrast variation between flow rates is greater than the diffuser design and smaller than 



the diffuser design. 

The auto power spectrum density (PSD) solution for pressure signals was achieved with the use of a 

2048-point Hanning window with 50% overlap. The pressure pulsation in the frequency spectrum shown in 

Fig. 18 under five operating conditions indicate discrete spectral characteristics and blade passing frequency 

(199.5 Hz), with the multiples representing the main frequency. Peaks also appear at the impeller passing 

frequency (28.5) and its multiples. Peak values at the suction side are always greater than those at the 

pressure side, which can be attributed to the incidence angles. For point 9, the global increase in amplitude 

on a large-frequency band could be associated with increasing turbulence rate, especially at high flow rate. 

This global increase can be linked to the pulsations of the separated regions. By contrast, the spectrogram at 

point 6 did not present this characteristic. Moreover, peaks that are thrice the blade passing frequency (598.5) 

sometimes exhibit high values. This phenomenon is more evident at points located at the flow separation 

regions. A comprehensive effect was observed between the flow dynamic and the mechanical effect, which 

motivated us to conduct further studies. 

6. Conclusions 

Some experiments, including three-hole probe, PIV, and unsteady pressure measurements processed in 

the vane-island type diffuser of a centrifugal pump, are conducted in this study. The following conclusions 

are drawn from the experimental investigation: 

1. Flow can be considered steady regardless of the relative position of the impeller, as long as overall 

diffuser performance is considered. Moreover, probe measurements enable the probe to rotate in such a way 

that pressure equilibrium is achieved between the two holes that are used to obtain the flow angle, which 

will partly avoid the error attributed to unsteadiness. The best pressure recovery factor is obtained near the 

design point of the diffuser that corresponds to the reduced flow rate value Q/Qn = 0.8. 

2. A large fluctuating separated region exists at the leading edge of the diffuser on the suction side at 



low flow rates and at the trailing edge on the pressure side at high flow rates. This region induces an increase 

in the peak associated with the BPF and its harmonics, as well as a global increase in the pressure amplitude 

on a large-frequency band. 

3. Noticeable fluctuations were observed in the radial component distributions and the impeller mean 

with a monopole hydroacoustic source to the spread of such a pump system. Fluctuations of the tangential 

velocity components indicate that pressure fluctuations on the blades will result in dipole sources of 

hydroacoustic noise, which would be the main type of noise in this pump system. 

4. At low flow rates, turbulence cores, probably because of the rotor–stator interaction, originate from 

the impeller outlet, proceed into the diffuser passage, and decrease the probability density at the center of the 

diffuser passage and on the blade suction side. These conditions are the main reasons for performance loss. 

Moreover, the leakage flow enters the gaps and interacts with the impeller blade, which increases complexity. 

At high flow rates, loss always originates from the flow separation at the pressure side, and the areas of 

these regions become larger with increasing flow rates. 
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Nomenclature  

θ: phase angle of the impeller blade 

Tu: turbulence rate 

α: flow angle 



vr: radial velocity 

vu: tangential velocity 

vR: absolute velocity at radius R 

PaspA: static pressure at the inlet pipe 

Dh: equivalent diameter 

l: length of leakage channel  

λ, Kret, Kel, Kcoude90: discharge flow coefficient 
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(a) Test loop of measurement system 

 

(b) Three-hole probe installation diagram 

 

(c) Locations of probe traverses in the vane diffuser 

Fig. 1 Test ring apparatus 
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(a) Angle coefficient 

 

(b) Pressure coefficient 

 

(c) Velocity coefficient 

Fig. 2 Probe characteristics 



 

Fig. 3 Pump component head curves and respective flow rates 

 



 

Fig. 4 Fluid leakage models 
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Fig. 5 Pump components flow rate 

 



 

 

(a) Q/Qn = 0.386 

 

(b) Q/Qn = 0.581 

 

(c) Q/Qn = 0.762 

 

(d) Q/Qn = 0.968 

 

(e) Q/Qn = 1.12 

Fig. 6 Flow angle at R3 

 



 

(a) Mean incidence flow angle 

 

(b) Non-dimensional radial velocity 

Fig. 7 Mean values at the inlet of the diffuser 

 



 

 

(a) Q/Qn = 0.386 

 

(b) Q/Qn = 0.581 

 

(c) Q/Qn = 0.762 

 

(d) Q/Qn = 0.968 

 

(e) Q/Qn = 1.12 

Fig. 8 Non-dimensional absolute velocities at R3 



 

 

(a) Q/Qn = 0.386 

 

(b) Q/Qn = 0.581 

 

(c) Q/Qn = 0.762 

 

(d) Q/Qn = 0.968 

 

(e) Q/Qn = 0.1.12 

Fig. 9 Non-dimensional static pressure at R3 

 



 

 

(a) Q/Qn = 0.386 

 

(b) Q/Qn = 0.581 

 

(c) Q/Qn = 0.762 

 

(d) Q/Qn = 0.968 

 

(e) Q/Qn = 1.12 

Fig. 10 Non-dimensional total pressure at R3 

 



 

 

(a) Q/Qn = 0.386 

 

(b) Q/Qn = 0.581 

 

(c) Q/Qn = 0.762 

 

(d) Q/Qn = 0.968 

 

(e) Q/Qn = 0.1.12 

Fig. 11 Non-dimensional static pressure at the mean line 

 



 

 

Fig. 12 Evolution of static pressure coefficient downstream of the impeller  

(Y = [Psta(R) − Psta(R2)]/(0.5 × ρv2
2
)) 



 

 

(a) PIV acquisition system 

 

(b) Laser sheets 

 

(c) Scheme of the impeller positions 

Fig. 13 PIV acquisition system, measuring plans, and positions 



 

 

(a) Q/Qn = 0.581  

 

(b) Q/Qn = 0.762 

 

(c) Q/Qn = 1.12 

Fig. 14 Turbulence rate 

 



 

 

(a) Flow angle comparison 

 

(b) Non-dimensional absolute velocity comparison 

Fig. 15 Comparison of the results between probe and PIV measurement at mid-span



 

 

Fig. 16 Locations of pressure traverses in the vane diffuser 



 

   

          (a) RMS at the pressure side             (b) Averaged *d staP  at the pressure side 

  

           (c) RMS at the suction side             (d) Averaged *d staP  at the suction side 

Fig. 17 Statistical results of unsteady wall static pressure 

 



 

  

(a) Point 2                                      (b) Point 4 

  

(c) Point 6                                      (d) Point 9 

Fig. 18 Auto PSD of the wall static pressure characteristic 



 

Table 1 Parameters of the tested pump configurations 

Impeller 

Inlet radius R1 (mm) 141.1 

Outlet radius R2 (mm) 256.6 

Outlet width b2 (mm) 38.5 

Number of blades Z1 7 

Outlet blade angle β2a (°) 22.30 

Mean blade thickness s (mm) 9 

Speed N (rpm) 1,710 

Diffuser 

Inlet radius R3 (mm) 273.6 

Outlet radius R4 (mm) 397.8 

Constant width B4 (mm) 40 

Number of blades Z2 8 

Inlet blade angle α31 (°) 10.21 

Outlet blade angle α4 (°) 39.55 

Relative radial gap (R3 − R2)/R2 6.65% 



 

Table 2 Radial and tangential velocities distribution at 0.581Qn, mid-span 

Name vr* vu* 

Range 
  

Position 1 

  

Position 3 

  

Position 6 

  

-0.11             0               0.11               0.22               0.33 -0.11      0        0.11       0.22       0.33      0.44      0.55      0.66



Table 3 Contours of the mean velocity at several flow rates 

Q/Qn v* vr* vu* 

0.386 

   

0.581 

   

0.762 

   

0.968 

   

1.12 

   

 

0          0.088          0.174           0.261           0.348         0.44 -0.11             0               0.11               0.22               0.33 -0.11          0           0.11           0.22           0.33           0.44

0       0.11         0.22      0.33       0.44      0.55      0.66      0.77-0.11             0               0.11               0.22               0.33 -0.11      0        0.11       0.22       0.33      0.44      0.55      0.66

0       0.11         0.22      0.33       0.44      0.55      0.66      0.770          0.088          0.174           0.261           0.348         0.44 0         0.11         0.22         0.33        0.44         0.55      0.66 

0      0.11     0.22     0.33     0.44      0.55      0.66     0.77    0.870          0.088          0.174           0.261           0.348         0.44 0         0.11         0.22         0.33        0.44         0.55      0.66 

0       0.11         0.22      0.33       0.44      0.55      0.66      0.770          0.088          0.174           0.261           0.348         0.44 0         0.11         0.22         0.33        0.44         0.55      0.66 


