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Reflection on the Measurement and Use of the Topography of the
Indentation Imprint

J. MARTEAU, M. BIGERELLE, S. BOUVIER, AND A. IOST

Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherches de Royallieu,

Compiègne Cedex, France

Summary: The goal of this paper is to study the main
uses of the residual imprint of the indentation test. It also
discusses the different technologies and methods
employed in this context. The difficulties encountered
when trying to exploit the full potentials of the imprint
are thoroughly examined. A survey of the literature on
the quantification of the pile-up clearly shows that there
is a lack of consensus on the measurement of the residual
imprint as well as on treatment methods. Therefore, in
order to widen the application fields of the indentation
residual imprint, relevant and standardized indicators
should be established.
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Introduction

The indentation test, whether conventional or
instrumented, is particularly valued for several reasons:

its convenience, the requirement of only small amounts

of materials, as well as the test’s ability to determine the
properties of materials that, due to their configuration,

could not be identified with other conventional tests.

However, the test results remain difficult to interpret
(Giannakopoulos et al., ’94), and their reliability

(Schneider et al., ’99) is still under discussion.
A survey of the literature on the residual indentation

imprint identified three main uses for the test. The first is

dedicated to themeasurement of the contact area. It aims

at checking the results or the validity of the hypotheses
made for the calculation of the hardness or Young’s

modulus, using instrumented indentation data. The

second purpose concerns the characterization of the
behavior of thematerial being tested. As an example, the

orientation and shape of cracks initiated during the test

are correlated with material parameters. The emergence
of pile-up or sink-in, which is, respectively, an upward

or inward flow of the material, also contributes in

understanding the material’s behavior. The third
purpose of the test is the use of the imprint in finite

element or molecular dynamics simulations, as de-

scribed below.
Despite these common purposes, there is a lack of

consensus on the measurement and treatment methods

used for the study of the imprint indentation. There are
several measurement means: some studies are primarily

focused on the use of optical microscopy (Yang

et al., 2006), scanning electron microscopy (SEM)
(Dwyer-Joyce et al., ’98), or confocal microscopy

(Santos et al., ’98; Keryvin, 2007), while others are

based on profile measurement (Hainsworth et al., ’98),
atomic force microscopy (AFM) measurements (Yang

et al., 2008) or interferometric microscopy (Su

et al., 2012; Marteau et al., 2013). It is worth noting
that most of the studies rely on qualitative information.

Several others try to observe the evolution of some

topographic parameters in order to fully exploit the
information given by the topography of the residual

indentation print.

The complexity in data interpretation and the need
for a better understanding of the material behavior

underneath the indenter motivated the present work, i.e.

the study of the use of the residual indentation imprint.
The paper is divided into three main parts. The first

section is devoted to the presentation of the indenter

shapes and the measurement methods. In the second
section, the main uses of the residual indentation imprint

are described in detail. The third section deals with the

key parameters used in studying pile-up behavior and
emphasizes the lack of standardization of morphological

indicators and of a prevailing technique for the study of
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indentation impressions. The main difficulties that can
be encountered in a quantitative estimation of the

indentation imprint are also discussed.

Indenter Shapes and Measurement Methods

Indenter Shapes

There are several types of indenter tips that can be
distinguished by their scale of use. At the macro-scale,

three indenters are used: Vickers, Rockwell, and Brinell.

For use at the microscale and sub-microscale levels, the
following indenters are commonly used:

� Vickers,
� Berkovich (three-sided pyramid having the same

contact area as the Vickers indenter),

� Knoop,
� Spherical,

� Cube-corner, and

� Conical.

At the nanoscale level, the Berkovich and cube-

corner tips are usually preferred. This is principally due

to the difficulty of getting a perfectly four-sided indenter
(i.e., Vickers, Knoop) or a surface of revolution (i.e.,

spherical or conical indenters). The main indenter

shapes are schematized in Figure 1.

Measurement Methods

There are predominantly six different measurement

methods used to examine the indentation imprints:

optical microscopy, SEM, confocal microscopy, inter-
ferometry, tactile profilometry, and AFM. These

measurement techniques have different advantages

and disadvantages. In this section, only some tips are
depicted, in order to give a global idea of the use of these

different methods.

If the surface cannot be touched because it is too soft
(risk of scratch) or too stiff, then all the techniques

introduced in the previous paragraph can be used, except

tactile profilometry or AFM in contact mode.

Optical microscopy is particularly convenient for
surface observation. It offers rapid image acquisition,

both at the macro- and micro-scales. For higher

resolution, SEM is more suitable but that method
remains time-consuming.

For three-dimensional observations, AFM, interfero-

metric microscopy, confocal microscopy, or tactile
profilometry can be used. The selection of a technique

depends on the indenter shape and the scale of the

imprint. Tactile profilometry can be used for three-
dimensional observations but is not a rapid procedure. It

should only be used to draw the profile of an imprint

(e.g., for the bisectors of a Berkovich imprint). Usually,
tips having a diameter from 1 to 10 mm are used for the

measurements, thus offering a small resolution in

contrast to AFM.
The interferometric and confocal microscope obser-

vations offer a good depth of field but only at higher

magnifications. Higher magnification is thus recom-
mended for the observation of imprints having sharp

angles (e.g., cube-corner indent). AFM offers a better

resolution compared to the previous techniques.
Therefore, the AFM technique is more suitable when

accurate inspections of the topography of the imprint are

required. However, AFM is a very time-consuming
process and can only be used for small scales (i.e., areas

smaller than 100 � 100 mm). It is worth mentioning

that the AFM tip should be carefully monitored in order
to avoid any deterioration of the results.

Main Uses of the Indentation Imprint

Validation of Hypotheses and Explanation of the
Indentation Results

One of the most recurrent uses of the indentation
residual imprint is the validation of the experimental

results. For example, it can be used in order to

understand special features in the load-versus-indenta-
tion depth curves or to check the value of material

characteristics (elastic modulus, hardness) that are

calculated when using the indentation test.
The study of the shape of the imprint also provides

valuable help to understand the evolution of the

Fig. 1. Different shapes of indenters: (a) Spherical, (b) Berkovich, (c) Vickers, (d) Conical, (e) Rockwell, (f) Knoop.
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recorded loading curve. Such analysis can explain the
origin of phenomena such as pop-in, which is an abrupt

step in the recording of the curve. Barnoush et al. (2010)
studied the pop-in phenomenon by combining different
techniques. The information given by the residual

imprint permitted qualification of the behavior of

material, through the observation of pile-up occur-
rences. The use of the electron channeling contrast

imaging technique enabled observations about the

dislocation substructure. Combining these results with
the load-versus-indentation depth curves revealed that

the occurrence of pop-in was directly linked with the

subsurface dislocation structure in aluminum. Beegan
et al. (2004) also studied the origin of the appearance of
pop-in in carbon nitride and copper films. That study

showed that the pop-in occurrence was associated with a
fracture of the film. It was evidenced using AFM

imaging of the indents. Chen et al. (2010) investigated
the relationship between pop-in and shear band
appearance through imprint inspection.

The residual imprint can also be used to localize the

indentation, if the material has two or more phases
(Göken and Kempf, ’99; Arpat and Ürgen, 2011).

The measurement of the imprint contributes to

confirming or refuting the assumptions used for the
calculation of the contact area. Indeed, the errors

introduced into the estimation of the contact area can

lead to an inaccurate assessment of the Young’s
modulus and of the hardness. Several sources of errors

can be listed. Among them, (i) the tilting of the sample

due to a non-planar surface (Kashani and
Madhavan, 2011); (ii) the occurrence of sink-in or

pile-up (Farges and Degout, ’89; Ou et al., 2008) around
the indent, as shown in Figure 2. In this later situation,
the use of the (Oliver and Pharr, ’92) method for

materials experiencing pile-up can lead to an underesti-

mation of the contact area. This underestimation results
from an erroneous identification of the region support-

ing the load. Indeed, as indicated by Chaudhri and

Winter (’88), the pile-up area also supports the indenter

load. Thus, the material behavior should be carefully
observed (Constantinides et al., 2006). When pile-up is

known to be important, or if the indent is not

symmetrical, Fischer-Cripps (2006) advised to directly
measure the contact area but gave no details on the

measurement method. For example, Beegan et al.
(2005) and Charleux et al. (2008) used AFM measure-
ments to determine the true contact area (and thus the

true hardness) because of pile-up occurrence.

Finally, the residual imprint contributes to assessing
the consistency of the hardness results. Youn and Kang

(2006) used the residual imprint to understand the

difference of hardness among heat-treated squeeze-cast
alloy. The use of AFM demonstrated that there was a

difference of shape, distribution, and size of the silicon

particles dispersed in the eutectic matrix, as well as a
height difference between the phases. The latter

decreased with the increase of the age hardening time.

This variation was the cause for the disparity of hardness
in the specimens. Bolelli et al. (2008) examined the

origin of the low values of plasma-sprayed TiO2 through

the observation of the cross-section of the indent and
found that sub-surface cracking disturbed the calcula-

tion of the material hardness.

Material Characterization

Due to the complexity of the developed stresses, the

indentation test provides a valuable source of informa-

tion on the material properties. A wide variety of
instances are given in the published papers. As an

example, Frick et al. (2005) used AFMmeasurements of

the residual indentation depth before and after heating
shape-memory alloys to quantify their recovery

capabilities.

Different features of the residual indentation imprint
can be used to characterize the materials. Some studies

are based on the investigation of the pile-up patterns to

try to improve understanding about material behavior,

Fig. 2. NanoVision image of KMPR residual imprint. Pile-up can be observed.



while others are focused on crack growth or the
appearance of slip patterns.

The tendency of a material to pile-up or sink-in is

often used in order to characterize its behavior. Howell
et al. (2008) compared the behavior of four silicate

reference glasses by quantifying the amount of pile-up

as indentation depth increased. The amount of pile-up
was determined by using AFM representative line scans

of the bisector of the triangular indents. The pile-up

amount was then defined as the height above the surface
divided by the maximum indentation depth, multiplied

by 100. Similarly, Das et al. (2005) used the differences
in pile-up amounts to propose a classification of
materials into three main categories. The first category

gathered materials showing piling-up. The second was

dedicated to materials undergoing sinking-in, and the
last category to materials experiencing cracking.

Woodcock and Bahr (2000) examined the plastic zone

evolution taking place at the specimen surface with a
focus on the variation of the geometry of the indenter

and the chosen length scale during indentation. Results

showed that an indicator based on the quantification of
the plastic zone area provided a more robust method of

assessing a material’s response to plastic deformation at

very fine scales than the traditional use of hardness.
Other published works used the residual indentation

imprint for investigation about material behavior. Such

studies observed and tried to explain the pattern of the
plastic zone and its evolution as a function of loading or

crystal orientation. Zong and Soboyejo (2005) linked the

pile-up shapes of face-centered cubic single crystals
with their orientation. However, these findings still need

to be completed, since no relationships between the pile-

up shape and the activated slip systems were proposed.
On the other hand, Elban and Armstrong (’98) managed

to explain the impression shapes in single crystal

ammonium perchlorate, by identifying the slip systems
and crack planes activated during the indentation test.

Other studies examined cross-sections of residual

imprints to attempt to observe the physical phenomena
taking place under the indent. Demir et al. (2009)

studied the link between indentation size effect and

geometrically necessary dislocations through the detec-
tion of backscattered electrons.

Finally, material behaviors can be analyzed through

the examination of crack development, to aid under-
standing about the fracture mechanisms induced by

contact. This kind of analysis usually requires a cross-

section of the indent and then observation of the
obtained surface, using SEM or transmission electron

microscopy (TEM), as in the work by Carvalho and De

Hosson (2006). Formulae have also been developed to
calculate fracture toughness by measuring the length of

the surface cracks produced by indentation (Bhatta-

charya et al., 2009). Links between the material
composition and its behavior under indentation can

also be investigated by analysis of the angles of

subsurface cracks. Bertoldi and Sglavo (2004) showed
that, depending on the glass composition, the angles of

cracks observed on the cross-section of the indent were

different.

Residual Imprint and Simulations

The employment of residual imprints is also valuable

in molecular dynamics or finite element simulations of
the indentation test. Twomain uses can be identified: the

assessment of the indentation simulation results and the

exploitation of the imprint profile in inverse methods
(i.e., for identification of material parameters).

The use of the residual imprint can help to check

several types of hypotheses such as the validity of the
behavior law. Gadelrab et al. (2012) compared the

indent profiles obtained with the Drucker-Prager model

and the elastic-perfectly plastic behavior with experi-
mental measurements made with AFM. The value of the

friction coefficient is assessed by superimposing

experimental cross-section profiles with simulation
results. By comparing the height of the pile-ups, Karthik

et al. (2012) confirmed the choice of 0.2 for the

Coulomb friction coefficient.
Su and Anand (2006) compared the contours plots of

the equivalent plastic shear strain after unloading with

the corresponding micrograph of the cross-section
displaying shear-band patterns. For a better comparison,

both results were superimposed. To validate the

numerical modeling, Wang et al. (2008) compared the
simulated pile-up pattern with experimental AFM

results that had been published by Barshilia and Rajam

(2002) and Huang et al. (2005).
SEM images of the indentation imprints are also used

to evaluate the ability of developedmodels to predict the

crack front profiles, as recently proposed by Chen et al.
(2011).

The second use of the residual imprint in numerical

simulation is linked to the development of inverse
approaches. When the indentation test is performed

using a geometrically similar indenter (i.e., conical,

pyramidal), it is well known that a unique set of
mechanical properties cannot be found using a single

load-versus-displacement curve (e.g., Chen

et al., 2007). In order to overcome such limitations,
several research groups (e.g., Casals and Alcalá, 2005;

Lee et al., 2009) built a methodology for extracting the

yield strength, Young’s modulus, strain-hardening
exponent, and hardness from indentation experiments,

using the residual indentation imprint to select between

different sets of identified material parameters. Bolzon
et al. (2004) built a new inverse approach combining

data from load-versus-displacement curves and from the

indentation imprint. The indentation imprint was
described using the vertical displacements of simulated

points, which were taken at equally spaced positions in



order to reproduce AFM measurements. This process
considerably enriched the method and enabled more

accurate and robust results. However, the approach was

only based on simulated data, i.e. the numerical results
were not compared with experimental ones.

This first section shows that, even if the residual

indentation imprint has three predominant uses, the
methods and measurements employed remain very

different. This point is further discussed in the following

section.

Quantitative Information

Example: Pile-Up Quantification

Through a study of the pile-up quantification in the

literature, this section will give evidence that there is

lack of uniformity on the building of indicators.
Blunt and Sullivan (’94) have proposed one of the

first methods to accurately quantify the extent of pile-up.

A method was presented that progressively truncated
three-dimensional area maps in order to quantify the

pile-up volumes. In other methods, length or height

measurements were compared. Mordehai et al. (2011)
measured maximum height of the pile-up to understand

the development of the deformation. In order to evaluate

the height evolution, the film height, prior to indenta-
tion, was considered as the reference. On the other hand,

Zhou et al. (2008) defined the pile-up height by

subtracting the contact height from the total height of
the imprint. As shown in these first two examples, the

selected reference for the measurement of the pile-up

height is not unique and varies among different research
groups.

Some authors focused analysis on the evolution of the

pile-up as a function of the indentation depth. Bellemare
et al. (2007) proposed a ratio in which the pile-up height
is divided by the residual indentation depth, i.e. the

maximum height over the maximum depth of the indent.
This ratio is used by several authors (e.g., Choi

et al., 2008; Huang et al., 2010).
In other papers, the pile-up is quantified through an

in-plane measurement of its extent (Cabibbo and

Ricci, 2012). Zhang et al. (2011) focused the compari-

son on the geometries of the indentation, quantitatively
measured by defining a ratio between two parameters,

using a profile of the cross-section of the imprint. The

numerator represented the distance including the pile-up
and the indentation width, while the denominator was

the range of indentation without pile-up. Beegan et al.
(2005) used AFM images to calculate both the plastic
area and the volume, including the piled-up material. It

was assumed that the pile-up formed an arc of a radius r

at the indent edge, as shown in Figure 3.
A final method rests on the estimation of the

deformation through the measurement of the radius of

the pile-up. Woodcock and Bahr (2000) used such a

method to evaluate the relationship between the plastic

zone size and the contact radius. To do so, a section was
drawn along the major axis of each pile-up lobe, and the

lobe radii were measured by analyzing the AFM

measurement results with image software. The estimat-
ed radii were averaged to obtain the mean maximum

extent of plastic deformation. Similarly, Zong and

Soboyejo (2005) used the pile-up radius to study the
evolution of the deformation as a function of the

indentation depth.

Overall, the literature review clearly highlights the
absence of specific and standardized approaches for

pile-up quantification.

A dominant Technique?

It is worth noting that a review of a large number of

published papers indicates that there is a lack of

supremacy of an experimental technique for the
examination of the residual imprint. The selected

method seems to be guided by the targeted application.

As an example, the assessment of the simulation results
requires a method that provides the pattern of the

deformation around the residual indent. That pattern can

then be compared with the out-of-plane displacement,
calculated with the finite element simulation. Liu et al.
(2008) carried out nanoindentation tests on single-

crystal copper having different orientations. The
computed out-of-plane displacements were compared

with AFM images of the indent imprints. Instead of

using the cross-section of the imprint, the focus was on
the measurement of the plastic zone around the indent,

with only a qualitative description given of the

symmetry of the pile-up distribution. Eidel (2011)
qualitatively evaluated the difference between the

calculated pile-up topography and the experimental

one by using SEM images, although that research also
focused on the comparison of the pile-up symmetries.

Hence, SEM andAFM images can thus be chosen for the

same purpose. Contrary to the SEM, it should be noted
that the AFM gives a quantitative estimation of the out-

of-plane displacements. However, as in most papers,

Fig. 3. Cross-section showing the definition of r, the radius of
the pile-up.



this quantitative information remains unused by the
researchers. Alcalá et al. (2008) also used SEM images

in order to compare the simulated residual imprint

morphology with experimental measurements, in order
to assess whether the simulated imprint shapes could be

reproduced for an arbitrary distribution of grain

orientations.
While the literature on the topic is abundant, there is

no objective evaluation of the advantages and dis-

advantages of the different experimental techniques,
except in select cases. An et al. (2011) showed that the

SEM gave better results than the AFM when studying

the deformation mechanisms and fracture behavior of
TiN coating on a Si (111) substrate. It was found that the

AFMmeasurements could give an erroneous estimation

of the diameter of the interfacial fracture between the
coating and the substrate. Indeed, the blister measured

with the AFM did not correspond to the diameter of the

interfacial fracture.
Carefully comparing the range of application of the

measurement techniques, it is evident that their accuracy

and advantages will probably help to significantly
expand the use of the residual imprint test.

Difficulties

Despite the lack of uniformity of the measurements
and methods, some difficulties are common. Among the

problems is the selection of an appropriate reference, in

order to share a common scale between the different
measurements of the residual indents. Bellemare et al.
(2007) determined the pile-up height and the residual

indentation depth after linearly interpolating the original
position of the surface obtained from profilometry. In

order to ensure that the area chosen as the original

surface position was not affected by the deformation,
points were selected that were at a distance of four times

the residual radius of contact from the centre of the

indent. Similarly, Stelmashenko et al. (’93) determined
a zero-level plane corresponding to the undisturbed

surface around the indentation, using a least square

method. Arivuoli et al. (2000) chose to subtract the
AFM profile measured before the indentation to the one

measured after the indentation. That process enabled the

calculation of the real pile-up, by removing the influence
of surface roughness. The determination of the surface

reference position is a key point when dealing with the

measurement of the topography of the imprint. Howev-
er, this reference and its determination may change from

one measurement technique to another.

Roughness is also a common difficulty when dealing
with profile measurements (e.g., Randall et al., ’96).
Some studies underlined the difficulty in localizing the

indent impression when the experiments were carried
out on rough surfaces (e.g., Babu and Kang, 2010).

Others attempted to overcome the problem by increas-

ing the load at which the material is studied. Barshilia
and Rajam (2002) chose a load of 25 mN for the AFM

investigation. Difficulties arose in assessing the pile-up

formation at 7 mN, because it was of the same order of
magnitude as the roughness (average roughness of 30–

40 nm). Similarly, Kese et al. (2005) failed in finding

the pile-up height at low loads. For higher loads, that
height was estimated as the upper point of the distinctly

formed ridge. The latter changed to a plateau for lower

loads. Thus, the contact perimeter was defined as the
point of departure of a tangent parallel to the face of the

pile-up.

Another difficulty arises when the deformation
around the indent is not symmetric. For the sake of

simplicity, only one profile is measured through an

indent. For instance, Jee and Lee (2010) compared the
response of different polymers using the indentation

profiles. A line parallel to the baseline of the triangle and

crossing the deepest point was considered. Then, the
profiles obtained for all the studied polymers were

superimposed. Top-viewAFM images were also shown,

but no comments were made on the symmetry of the
deformation around the indents. On the other hand,

Beegan et al. (2003) measured profiles of the Berkovich

residual impression by sweeping the indent AFM image
perpendicular to the edge of the triangle to the opposite

corner, for each edge of the triangle. However, no

treatment was made to attempt to overlay the obtained
profiles in order to compare them. Similarly, Navama-

thavan et al. (2006) drew three profiles across a Vickers

indent impression, showing the irregular shape of the
indent, due to material pile-up occurring at only one side

of the pyramidal indent. Zhou et al. (2008) also

emphasized the fact that, for the studied material,
pile-up only occurred at the indent edge of the

Berkovich imprint and not at the corners of the triangle.

The estimations of perimeters, areas, or volumes are
still current issues in topographic measurements

because they are scale-dependent (Brown and

Siegmann, 2001; Cantor and Brown, 2009). Thus, the
determination of the relationships between pile-up

appearance and work hardening requires the choice of

an appropriate scale.
As indicated in the previous sections, the imprint

could give valuable information about material behav-

ior. However, its characterization raises several ques-
tions: What is the best way to determine the reference of

a surface? How is the roughness effect to be treated? Is

the measurement of one profile enough to describe the
behavior of a material? What profiles would be selected

when a lack of symmetry occurs? Several answers can

be given and will need to be assessed. For instance, for
the indent profiles, some may use only one profile of the

imprint, even if it does not perfectly fit the experimental

reality. Others may try to build some averaging
technique or a statistical method that may better

represent the experimental reality. Similar approaches
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Ü
rg
en

(2
0
1
1
)

S
E
M

JE
O
L
5
4
1
0
S
E
M

an
d
JE
O
L

JS
M
-7
0
0
0
F
F
E
-S
E
M

—
—

d
m
a
x
�

5
m
m

C
u
-A

l
in
te
rm

et
al
li
cs

V
ic
k
er
s

P
h
as
e

T
o
lo
ca
li
ze

th
e
in
d
en
ta
ti
o
n
im

p
re
ss
io
n
s
in
to

th
e
st
u
d
ie
d
p
h
as
es

B
ab
u
an
d
K
an
g

(2
0
1
0
)

A
F
M

—
—

—
d
m
a
x
�

3
m
m

A
l-
b
as
ed

h
y
b
ri
d
co
m
p
o
si
te
s

co
n
ta
in
in
g
g
ra
p
h
it
e
n
an
o
fi
b
er
/

al
u
m
in
a
sh
o
rt
fi
b
er

B
er
k
o
v
ic
h

M
M
C
s

P
il
e-
u
p
o
b
se
rv
at
io
n

B
ar
n
o
u
sh

et
a
l.

(2
0
1
0
)

A
F
M

—
—

—
d
m
a
x
�

1
.5

m
m

H
ig
h
p
u
ri
ty

al
u
m
in
u
m

B
er
k
o
v
ic
h

P
o
p
-i
n

P
il
e-
u
p
o
b
se
rv
at
io
n

B
ar
sh
il
ia

an
d
R
a-

ja
m

(2
0
0
2
)

A
F
M

—
2
–
3
m
m

<
1
n
m

d
m
a
x
�

5
m
m

C
u
/N
i
m
u
lt
il
ay
er

co
at
in
g
s

B
er
k
o
v
ic
h

C
o
at
in
g
s

P
il
e-
u
p
sh
ap
e
is

o
b
se
rv
ed

B
ee
g
an

et
a
l.

(2
0
0
3
)

A
F
M

S
u
rf
ac
e
P
ro
b
e
M
ic
ro
sc
o
p
e

T
o
p
o
m
et
ri
x
E
x
p
lo
re
r

1
0
m
m

3
–
1
0
n
m

d
m
a
x
�

9
m
m

C
o
p
p
er

fi
lm

s
o
n
o
x
id
is
ed

S
i

su
b
st
ra
te
s

B
er
k
o
v
ic
h

C
o
at
in
g
s

T
o
ca
lc
u
la
te

th
e
to
ta
l
p
ro
je
ct
ed

co
n
ta
ct

ar
ea

to
d
et
er
m
in
e
th
e
fi
lm

h
ar
d
n
es
s.
T
o
d
et
er
m
in
e

th
e
ex
te
n
t
an
d
n
at
u
re

o
f
th
e
p
il
e-
u
p
fo
u
n
d

ar
o
u
n
d
in
d
en
ts

B
ee
g
an

et
a
l.

(2
0
0
4
)

A
F
M

S
u
rf
ac
e
P
ro
b
e
M
ic
ro
sc
o
p
e

T
o
p
o
m
et
ri
x
E
x
p
lo
re
r

1
0
m
m

3
–
1
0
n
m

d
m
a
x
�

5
m
m

C
ar
b
o
n
n
it
ri
d
e
an
d
co
p
p
er

fi
lm

s
d
ep
o
si
te
d
o
n
si
li
co
n

su
b
st
ra
te
s

B
er
k
o
v
ic
h

C
o
at
in
g
s

T
o
o
b
se
rv
e
p
il
e-
u
p
an
d
cr
ac
k
in
g
o
cc
u
rr
en
ce

B
ee
g
an

et
a
l.

(2
0
0
5
)

A
F
M

S
u
rf
ac
e
P
ro
b
e
M
ic
ro
sc
o
p
e

T
o
p
o
m
et
ri
x
E
x
p
lo
re
r

1
0
m
m

3
–
1
0
n
m

d
m
a
x
�

5
m
m

S
p
u
tt
er

d
ep
o
si
te
d
co
p
p
er

fi
lm

s
o
n
o
x
id
is
ed

S
i

su
b
st
ra
te
s

B
er
k
o
v
ic
h

C
o
at
in
g
s

T
o
o
b
se
rv
e
if
p
il
e-
u
p
o
cc
u
rs

an
d
to

ca
lc
u
la
te

th
e
co
rr
es
p
o
n
d
in
g
v
o
lu
m
e

B
el
le
m
ar
e
et

a
l.

(2
0
0
7
)

P
ro
fi
lo
m
et
er

T
en
co
r
P
1
0

—
—

O
rd
er

o
f

m
ag
n
it
u
d
e:

m
m

P
u
re

n
ic
k
el

w
it
h
d
if
fe
re
n
t

g
ra
in

si
ze
s

C
o
n
ic
al

P
il
e-
u
p

T
o
m
ea
su
re

p
il
e-
u
p
h
ei
g
h
t

B
er
to
ld
i
an
d
S
g
la
v
o

(2
0
0
4
)

S
E
M

an
d

o
p
ti
ca
l

—
—

—
d
m
a
x
�

1
5
0
m
m

S
o
d
a-
b
o
ro
si
li
ca
te

g
la
ss

V
ic
k
er
s

C
ra
ck
s

T
o
o
b
se
rv
e
th
e
g
eo
m
et
ry

o
f
th
e
cr
ac
k
s

B
h
at
ta
ch
ar
y
a
et

a
l.

(2
0
0
9
)

S
E
M

F
E
I
Q
u
an
ta

2
0
0
F
E
G

S
E
M

—
—

d
m
a
x
�

9
m
m

S
il
ic
o
n
p
ar
ti
cl
es

in
A
l-
1
8
.5
w
t

%
S
i
al
lo
y
s

V
ic
k
er
s

C
ra
ck
s

T
o
m
ea
su
re

th
e
cr
ac
k
le
n
g
th

to
ca
lc
u
la
te

fr
ac
tu
re

to
u
g
h
n
es
s

T
E
M

JE
O
L
2
0
1
0
F
an
d
P
h
il
ip
s

C
M
1
2

—
—

—
S
il
ic
o
n
p
ar
ti
cl
es

in
A
l-
1
8
.5
w
t

%
S
i
al
lo
y
s

V
ic
k
er
s

C
ra
ck
s

T
o
in
v
es
ti
g
at
e
in
d
en
ta
ti
o
n
-i
n
d
u
ce
d

su
b
su
rf
ac
e
d
am

ag
e
an
d
fr
ac
tu
re

fe
at
u
re
s

P
ro
fi
lo
m
et
er

W
Y
K
O

N
T
1
1
0
0

—
—

d
m
a
x
�

9
m
m

S
il
ic
o
n
p
ar
ti
cl
es

in
A
l-
1
8
.5
w
t

%
S
i
al
lo
y
s

V
ic
k
er
s

C
ra
ck
s

T
o
m
ea
su
re

p
il
e-
u
p
.
C
o
u
p
le
d
w
it
h
S
E
M
,

st
at
is
ti
ca
l
an
al
y
si
s
o
f
th
e
fr
eq
u
en
cy

o
f

su
b
su
rf
ac
e
la
te
ra
l

B
lu
n
t
an
d

S
u
ll
iv
an

(’
9
4
)

P
ro
fi
lo
m
et
er

D
es
ig
n
ed

an
d
b
u
il
t
in
-h
o
u
se

—
—

d
�

0
.4

m
m

7
0
:3
0
b
ra
ss

V
ic
k
er
s

P
il
e-
u
p

T
o
ca
lc
u
la
te

th
e
v
o
lu
m
e
o
f
th
e
su
rf
ac
e

d
is
tu
rb
an
ce

B
o
le
ll
i
et

a
l.
(2
0
0
8
)

S
E
M

(w
it
h
F
IB
)

X
L
-3
0
,
F
E
I

—
—

d
m
a
x
�

4
0
m
m

P
la
sm

a-
sp
ra
y
ed

T
iO

2
o
n

g
ri
t-
b
la
st
ed

C
4
0
st
ee
l
p
la
te
s.

V
ic
k
er
s
an
d
B
er
k
o
v
ic
h

C
ra
ck
s

T
o
st
u
d
y
su
b
-s
u
rf
ac
e
cr
ac
k
in
g

C
ab
ib
b
o
an
d
R
ic
ci

(2
0
1
2
)

N
an
o
in
d
en
te
r

S
ca
n
n
in
g
P
ro
b
e

M
o
d
e

H
y
si
tr
o
n
©

U
B
I-
1

—
—

d
�

5
m
m

D
H
P
-c
o
p
p
er

in
b
o
th

H
5
8
an
d

an
n
ea
le
d
co
n
d
it
io
n
s

B
er
k
o
v
ic
h

P
il
e-
u
p

T
o
m
ea
su
re

th
e
re
al

co
n
ta
ct

ar
ea

C
ar
v
al
h
o
an
d
D
e

H
o
ss
o
n
(2
0
0
6
)

S
E
M

P
h
il
ip
s-
X
L
3
0
(s
)-
F
E
G

—
—

d
m
a
x
�

6
m
m

T
iN
/(
T
i,
A
l)
N

m
u
lt
il
ay
er

co
at
in
g
s
o
n
to

st
ee
l
su
b
st
ra
te
s

B
er
k
o
v
ic
h

C
ra
ck
s

O
b
se
rv
at
io
n
o
f
th
e
cr
o
ss
-s
ec
ti
o
n
o
f
th
e

in
d
en
ts

to
ex
am

in
e
th
e
fr
ac
tu
re

m
ec
h
an
is
m
s

T
E
M

JE
O
L
2
0
1
0
4
0
0
0
E
X
/I
I
an
d

JE
O
L
2
0
1
0
F
E
G

—
—

d
m
a
x
�

6
m
m

T
iN
/(
T
i,
A
l)
N

m
u
lt
il
ay
er

co
at
in
g
s
o
n
to

st
ee
l
su
b
st
ra
te
s

B
er
k
o
v
ic
h

C
ra
ck
s

O
b
se
rv
at
io
n
o
f
th
e
cr
o
ss
-s
ec
ti
o
n
o
f
th
e

in
d
en
ts

to
ex
am

in
e
th
e
fr
ac
tu
re

m
ec
h
an
is
m
s

C
as
al
s
an
d
A
lc
al
á
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to the one proposed byMarteau et al. (2012) to deal with
the scatter of the load-versus-indentation depth curves

could be adapted to the imprint study.

All these difficulties show that there is a need for
some standardization.

Conclusion and Perspectives

In this paper, three main uses of the indentation
imprint were identified: the validation and the under-

standing of the indentation results, the material

characterization, and the employment of the imprint
in finite element or molecular dynamics simulation for

the identification of material parameters. An overview

of these different aspects is presented in Table I.
Inspection of themethods used to quantify the pile-up

in the literature emphasized the lack of standardization

in the measurements. No studies were made to try to
identify which parameter is themost relevant to describe

the indentation imprint. Similarly, there is no prevailing

technique for the measurement of the imprint. Different
technologies are used for the same purposes. Some of

the difficulties encountered in the observation of

residual indentation imprint also have been discussed.
The different parts of this review clearly show that there

is a need for creating standardized morphological

indicators. The latter requires statistical evaluations of
the imprint for different materials, which would provide

more reliable experimental information for different

application fields and thus widen the use of the
indentation imprint.
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