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Abstract. Fractal functions are used to model a metallic interface. An analytical model described 

by three partial differential equations is built to model time evolution of the surface during heating 

including three different mechanisms of diffusion: superficial diffusion (SD), volume diffusion (VD) 

and diffusion by evaporation-condensation (DEC). Initial topographies are modeled by Stochastic 

Weierstraβ functions
 
because of their ability to reproduce experimental roughness profiles. Applied

to an aluminum alloy at 550°C, a high number of roughness parameters and their variance are 

calculated. A classification method shows that the best geometrical approach that discriminates heat 

effect is the fractal dimension. The most popular parameter, Ra, badly discriminates processes 

(classification number = 58). The four order spectral moments of the roughness profile are correlated 

with the evolution of profile. It is shown theoretically that the superficial diffusion depends directly to 

the fourth spectral moment of the roughness profile. 

Introduction 

The fractal concept is of interest for analyzing surface topographies and it is often reported that 

the fractal parameter describes surface texture in more detail than conventional roughness parameters. 

Roughness parameters versus the length scale presents some scaling laws and often data yields 

detailed information on length scale dependent to the surface topography. Fractal functions are used 

to model a metallic interface and an analytical model is built to model time evolution of the surface 

during heating including three different mechanisms of diffusion: superficial diffusion (SD), volume 

diffusion (VD) and diffusion by evaporation-condensation (DEC). 

Multi-Physics Models of diffusion on rough surface 

To model the time evolution of surface during annealing, we used the formalism described by 

Herring [1,2] and Mullins [3,4]. The viscous displacement is neglected because it is very low for 

metallic surfaces if they are not constrained. We supposed that there are no foreign atoms at the 

interface (vacuum heating). The surface diffusion is driven by surface curvature gradients. The 

surface self-diffusion flux of atoms Js, due to capillarity forces is everywhere proportional to the 

gradient of the chemical potential. The diffusion fluxes induce a variation of the surface profile and 

the kinetics of a surface element along the outward normal to the surface. By taking the surface 

divergence of Js, multiplied by the atomic volume, a basic differential equation describing the profile 

variation by surface diffusion is obtained (SD, Table 1). The evaporation rate over a clean surface is 

given by the Langmuir equation, derived from the kinetic gas theory. In the particular case of 

evaporation in vacuum, the incident flux of surrounding atoms toward the surface is negligible 

compared to the outward flux of the atoms from the surface to the vacuum. The net evaporization flux 
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Je is then obtained. The vapor pressure over a curved surface is related to the vapor pressure over a flat 

surface given by the Gibbs-Thompson equation which means that the evaporation flux increases as 

the local curvature increases. This evaporation flux causes a depletion of the surface profile and the 

related kinetics of a surface element along outward normal to surface is obtained by multiplying the 

flux Je by the atomic volume and the differential equations is then obtained (EVD, Table 1). 

Concerning the last mechanism,  Furthermore, the concentration of vacancies at the surface of a 

crystalline particle strongly depends on surface stresses that can be quantified with curvature. This 

gives rise to a distribution in the concentration of vacancies around any shape withnon-uniform 

curvature. The concentration of vacancies in the neck region is much higher than those vacancy 

concentrations on the particle surface faraway from the neck, which provides a driving force for 

diffusion.Vacancies  move out of the neck region, either by diffusing through the interior lattice 

(termed bulk or volume diffusion). The chemical potential of a crystalline material can be well 

approximated by the concentration of vacancies, and the driving force for the volume diffusion of 

vacancies can then be formulated according to Fick's law. A balance equation is then written in 

quasi-steady-state dimensionless. Differences in curvature along the particle surface produce stresses 

that subsequently produce differences in chemical potential. These chemical potential differences are 

translated to vacancy concentration differences. The resulting relation between mean curvature and 

vacancy concentration along the surface yields the celebrated Gibbs–Thomson equation.  Then the 

final differential equation is obtained (VD, Table 3). Finally, Under local equilibrium hypothesis 

between surface and volume and supposing that surface energy γ  is space independent, diffusion

could be modeled by three partial differential equations (Table 1) where Ω  is atomic volume, sγ the

surface energy, R  the radius of curvature, sn  the density of surface sites, sD  the surface 

self-diffusion coefficient, k  the Boltzmann’s constant, T the absolute temperature, z  the height of 

profiles, VD  the volume diffusion coefficient, 0P  the vapor pressure and M  is the atomic mass. 

Traditionally, for this approach CGS system is used. 

Table 1. Partial derivative equations used to model interfacial diffusion. 

Diffusion SD VD EVD 

Partial 

Differential 

Equations 

x

z
B

t

z
4

4

∂
∂

−=
∂
∂

ss
s

2

D
kT

n
B γ

Ω
=

( )
( )∫∫

∞∞

ξπ
−=

∂

∂

00

3

t,R

1
dwwxcosw

2
C

t

R1

with 
x

z

R

1
2

2

∂
∂

−=
kT

D
C VγΩ

=

x

z
A

t

z
2

2

∂
∂

−=
∂
∂

( ) M2kT

P
A

2

3

0s

2

π

γΩ
=

To solve these equations, it is necessary to introduce an initial profile at 0t = . Stochastic Weierstrass

function [5,6] are used because their good agreement with experimental roughness profiles. Although 

Weierstrass function is nowhere derivative, it possesses all derivative components. It is then possible 

to apply partial differential equations on each component and then obtain a new fractal function. Each 

component ( )0,xzn  of Table 1 is modified during heating process and gives a new component 

( )t,xzn . The values of ( )t,xzn  is calculated by finding solution with separate variables

( ) ( ) ( )txt,xzn ΨΦ=  and supposing that profiles modification is due to the independent and

simultaneous action of the three diffusion processes (SD, VD, EVD). After applying the calculations 

(see appendix 1), by summing all components of the Weierstrass function, one obtains the following 

equations that characterizes the time evolution of profiles: 

( ) ( ) ( )( )∑
∞

=

− ω+ω+ω−φ+ωω=
0n

n2n3n4

n

nnH

n tACBexpxcosat,xz (1) 



Where ( )0,xz  represents the initial profile ( )t,xz  at diffusion time 0t = , H  the Hölder exponent

( [ ]π∈ 2,0H ), ω  a pulse with 1>ω , na  normalized Gaussian random numbers and nφ  uniform

random numbers bounded in [ ]π2,0 .

This equation shows that amplitude decays exponentially. For each component, the decay is governed 

by three time constants characteristic of each diffusion mechanism (figure 1). 
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Where λ  is the wavelength ( n

n 2 λπ=ω ).Threshold critical wavelength are given by CB⇔λ , 

(threshold volumic diffusion and superficial diffusion) and AC⇔λ  (threshold volumic diffusion and 

evaporation-condensation).  
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Fig. 1. Values of the exponential terms of 

decay coefficient of each diffusion 

component n4Bω , n3Cω  et n2Aω  for

different frequencies value γ  with 1−λ=γ  .

Applied on the aluminum sheet annealed at 

550°C, one gets CGS103.2A 13−= , 

CGS10B 19−= , CGS10C 15−= .

A low time constant implies a high exponential decay and more important is the diffusion mechanism. 

When profile wavelength increases (lower harmonics in Eq. (1)), then time constant increases and 

high frequency component decreases in amplitude. However, fractal aspect of profile is given by 

these frequencies and then the superficial diffusion (adatoms and advacancies motions) will be 

responsible of the “loss of fractality” of profile. Equation (1) contains, for lower n , a preponderant 

decay term given by A , for middle n  the decay is given by C  and by B  for greater n . 

Theoretical fractal dimension of diffusion processes 

In this part, it will be shown that the fractal dimension will be equal to unity when the diffusion 

processes are active ( 0t > ). In fact fractal dimension becomes unchanged if the p  first terms (lower

frequency components) are suppressed ( p  is chosen to respect the following inequality: 
p3p4 CB ω>>ω ). Missing out Gaussian amplitudes that leave fractal dimension of profile unchanged

[7,8], equation (2) becomes: 

( ) ( ) ( )∑
∞

=

− ω−ωω=′
pn

n4nnH

n tBexpxcosx,tz (3) 

Naively it might be expected that a continuous function must have a derivative, or that the set of 

points where it is not differentiable should be "small" in some sense. This might be because it is 

difficult to draw or visualize a continuous function whose set of non differentiable points is 

something other than a finite set of points. The Weierstrass function could perhaps be described as 

one of the very first fractal studied, although this term was not used until much later. The function has 

detail at every level, so zooming in on a piece of the curve does not show it getting progressively 

closer and closer to a straight line. Rather between any two points no matter how close, the function 

will not be monotone.  To obtain this fractal aspect, signal frequencies nω  must not decrease quicker

than amplitude because final component will vanish and leads to a non fractal function (i.e. classical 

Fourier series). 

let: 
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=G amplitude × frequency 
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For 0t = , fractal dimension is given by H2 −=∆ . As far back as superficial diffusion is active

( 0t > ), profile loses its fractality (any diffusion process or coupled diffusion processes will lead to

same conclusion). 

Some defects could be formulated to our approach: 

• Herring’s equations model macroscopic phenomena meaning that the time must be great

with regards to the frequencies jump sΓ  of (ad)atoms and (ad)vacancies: s/1t Γ>> .

• Herring’s equations suppose that profiles are derivative down to four orders. However,

Weierstrass function gets no derivative. 

These remarks show that profile can be considered as fractal on a measure range [ ]maxmin d,d  where 

Weierstrass function models well experimental profiles and where Herring’s equations well describe 

phenomenological diffusion processes. Under these hypotheses, Weierstrass’ function can be seen 

mathematical derivative because of the finite number of components. Fractal dimension is then being 

considered as a local fractal dimension. 

Diffusion modeling on aluminum 

Applied on the aluminum sheet annealed at 550°C, one obtains the numerical data:  s/cm10D 24

s

−= , 

s/cm10D 28−= , CGS10B 19−= , CGS10C 15−= , 23M = , 231018.1 −=Ω , CGS103.2A 13−= . thanks 

to the Shannon’s theorem, the highest frequency is the half of the critical minimal length that is given 

by the lattice parameter cm105a 8−= and leads to 44n c = . One retains the following Weierstrass

function parameters: 2=ω , [ ] s2..1t 30∈ , [ ] cm1.0..0x ∈  et 0H =  ( 2=∆ ); we have first calculated

the values of the exponential term for each component of diffusion ( n4Bω , n3Cω  et n2Aω ) at

different frequencies (Fig. 1). Threshold critical wavelength are given by m8CB µ=λ ⇔ , 

( 1300CB =γ ⇔ cm-1) (threshold volumic diffusion and superficial diffusion) and m400AC µ=λ ⇔

( 24AC =γ ⇔ cm-1) (threshold volumic diffusion and evaporation-condensation). During heating,

diffusion will be active by evaporation-condensation for wavelength of profiles greater than m400 µ ,

by volumic diffusion for wavelength lying between 8 and m400µ  and by superficial diffusion for

wavelength lower than m8µ . The exponential terms shows decay from the higher frequencies to the

lower frequencies. Evolution during heating of a profile of 0.1 cm length and 2=∆  fractal

dimension is shown on Fig. 2 and it can be seen that the profile becomes smoother when the 

annealing time increases. 
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Fig. 2. Evolution of the surface topographies of aluminum interface simulated with a Weierstrass 

function with fractal dimension of 2=∆ . This interface is submitted to a superficial diffusion 

processes, a volumic one and an evaporation-condensation. Heating temperature is 550°C, profile 

height is measured in µm and scanning length in cm. Heating time increases according to the power 
p2  seconds, ( 30≤p ). Curves are discretized in 1000 points. (Notations: " : second, ' : minute, h : hour, 

d : day). 



Roughness parameter calculation 
It was shown theoretically that fractal dimension is equal to 1 as soon as diffusion processes are active. 

However, what about the numerical estimation of the fractal dimension? What are the roughness 

parameters that best discriminate the effect of heating on the substrate? To answer these questions, a 

high number of roughness parameters used in the characterization of the surface topography are 

calculated. For each roughness parameter, a variance analysis is performed. The Fisher variable F is 

then considered as to be the variance of the roughness parameter estimation for all heating time 

divided by the variance of the same roughness parameter for each heating time. The greater F is, the 

more discriminate is the roughness parameters with regards to the annealing time. It could then be 

concluded that the roughness parameter very well characterizes the diffusion processes. By 

descending ordering F values, it could then be possible to classify roughness parameters by the power 

of discrimination. An original bootstrap technique allows us to give a 95 % confidence interval for 

each F value [9,10]. This classification shows (Fig. 3) that the best parameter is the fractal dimension 

(classification number 1, F=95356). The most popular and used parameter Ra badly discriminates 

processes (classification number=58, F=24, see fig 3.). The four order spectral moment 
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= ∫
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γ dẑ
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4
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4

4  where [ ]t,ẑγΡ  is the spectra, is correlated with the evolution of profile 

with 4Bmtz −=∂∂ . To compute 4m , the Power Spectral Density [ ]t,ẑ γΡ  is firstly determined using 

a classical Fast Fourier Transform and then a numerical summation is applied to compute this spectral 

moment. Then, effect of the superficial diffusion depends directly to the four moments and after 

computations, one obtains the following theoretical values:  
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This equation shows that the evolution of 4m  depends on time and the fractal dimension of profiles. 

This parameter calculated by Fast Fourier Transform is classified on position 15 with a F value of 760. 

From these results, any remarks can be drawn: 

- Calculated fractal dimensions tend to 1 when the time increases: why numerical fractal dimension is 

not equal to unity for 0t >  as it was theoretically shown? The demonstration we made supposes that

profile frequencies are infinite in the beginning of the diffusion processes, meaning that the amplitude 

of higher harmonics decays. Then we have calculated the value of the theoretical spectra (see 

appendix 2): 
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Z 2B2C2At2exp
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t,ẑ πγ+πγ+πγ−
ωγ

µ
=γΡ +
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This expression shows that a cut off appears for high frequencies and this frequency threshold 

increases exponentially with time. For 0t =  spectrum follows the power law ( )[ ] 1H21t,ẑ +γ∝γΡ  a 

well-known relation used to calculate the fractal dimension of profiles [7,11]. However, when 

diffusion is processed, this relation could not be used to calculate the fractal dimension. According to 

the Shannon’s theorem, the component frequencies greater than twice the sampling rate do not affect 

the calculation of fractal dimension. When frequencies are lower than twice the sampling rate decays, 

then calculated fractal dimension are affected and decreases monotonically with time. This remark 

shows that the calculated fractal dimension is always a local fractal one. 

Bootstrap analyses of variance shows that the fractal dimension computed by the ANAM method 

[12] is the best parameter to characterize the diffusion process. The first reason is that ANAM method 

is statistically a robustness parameter because its three integrations that accordingly to the central 

limit theorem decreases its variance estimation. The second reason is that ( )( )2H

4

4

tf
x

z −λ=
∂
∂  means that 

the morphology depends both on time and fractal dimension of the initial profile (except for 1=∆ ).
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Fig. 3. Left: plot of the bootstrap power discrimination for the roughness parameters of steel sheet. 

Higher is the F, better is the discrimination of the roughness parameter. Values of each roughness 

parameter are classified by decreasing order meaning that roughness parameters lies on the left are 

the best discriminant. The dashed line represents the significant level (at 95%); under this line, 

parameter discrimination is statistically irrelevant. Right:  Evolution of fractal dimension versus the 

heating time of an aluminium interface that is submit to a superficial diffusion processes, a volumic 

one and an evaporation-condensation. 

Conclusion 
We have modeled diffusion process on surfaces. The ANAM method allows to well characterize local 

fractal dimension. With experimental profile, this condition cannot be verified but this hypothesis is 

not so strong to apply ANAM method on experimental curves. It was shown that fractal dimension 

was the roughness parameter that better discriminates the diffusion processes. 
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Appendix 1, Demonstration of the diffusion equation on fractal surface. 

Let now introduce the Weierstrass functions : ( ) ( )∑
∞

=

− +=
0

cos0,
n

n

nnH

n xaxz φωω (a1) 

Where ( )0,xz  represents the initial profile ( )txz ,  at diffusion time 0=t , H  the Hölder exponent

( [ ]π2,0∈H ), ω  a pulse with 1>ω , 
na  normalized Gaussian random numbers and 

nφ  uniform random

numbers bounded in [ ]π2,0

   Although Weierstrass function is nowhere derivative, this function possesses some derivative 

components. It become then possible to use the theory of partial differential equations of diffusion on 

each component and then to reconstruct the fractal function. Let ( )0,xzn , a component of the 

Weierstrass function : ( ) ( )
n

nnH

nn
xaxz φωω += − cos0, (a2) 

This component ( )0,xzn will be modified during diffusion time leading to the profile ( )txzn , . Such 

topographical modification of this component ( )z x tn ,  under the superficial diffusion is computed by 

searching solution of the separate variables ( )xΦ  and ( )tΨ  such ( ) ( ) ( )txtxzn ΨΦ=, . By derivating Eq.a2 

by t  and x , the following equations are proposed: 

( ) ( ) ( )
( ) ( ) ( )




ΨΦ ′′′′=

Ψ′Φ=

txztxz

txttxz

n

n

44 ,

,

∂∂

∂∂
(a3) 

In the case of superficial diffusion 
x

z
B

t

z
4

4

∂
∂

∂
∂

−=  (see table 1) and finally, one obtained: 

( )
( )

( )
( ) B
t

t

x

x
−=

Ψ
Ψ′

=
Φ

Φ ′′′′
 (a4) 

As physically 0>B , then ( ) ( )tBt nΨ−=Ψ′ 4ω (a5) and after integration : 

( ) ( )tBt n4exp ω−=Ψ  (a6) 



The same mathematical demonstration is applied on volumic and evaporation diffusion (see table 1 

for equations) and leads to: 

( ) ( )tCt
nΨ−=Ψ′ 3ω                         (a7) and ( ) ( )tAt

nΨ−=Ψ′ 2ω                                                               (a8)

The profile evolution is due to the combined effects of the three independent diffusion mechanisms: 

( ) ( ) ( )tACBt
nnn Ψ++−=Ψ′ 234 ωωω (a9)  and then: ( ) ( )tACBt

nnn 234
exp ωωω ++−=Ψ  (a10) 

The diffusion component at the frequency 
nω  is 

finally: ( ) ( ) ( )( )z t x a x B C A tn n

nH n

n

n n n, cos exp= + − + +−ω ω φ ω ω ω4 3 2  (a11) 

By summing all frequency component, on gets the final equation that models the diffusion on surface: 

( ) ( ) ( )( )∑
∞

=

− ++−+=
0

234expcos,
n

nnn

n

nnH

n tACBxaxtz ωωωφωω  (a12) 

Appendix 2, The power spectrum of a surface submitted to diffusion processes 

The Fourier transform 
tw

z
,

ˆ , of the profile defined by equation  (Eq. a12) is not defined as a function 

and could be only defined as a distribution. This leads to ∑
∞

= +− 












+=

0 22

,,,
2

1

2

1
ˆ

n

nwnwtntw
Az

ππ

ω δδ  with 

( )( )tACBaA nnnnH

ntn

234

,,
exp ωωωωω ++−= −  where 

π

δ
2

nw
.is the Dirac impulsion. Let 

π
γ

2

n

n

w
= , a signal frequency, 

then amplitude spectra is [ ] ∑
∞

=

=Ρ
0

2

,,

,
4

ˆ

n

n

tn

tw

A
z γ

ω δ  (b1) 

As 
nγδ  is almost anywhere "null" expect in 

nγγ =  : [ ] ( ) ( ) ( )( )( )∑
∞

=

++−=Ρ
0

234

2

2

, 2222exp
4

ˆ

n

npppH

p

p

tp
ACBt

a
z γγ δπγπγπγ

γ
 (b2) 

This Spectra is always defined as a distribution. It will be of interest to approximate this distribution 

by a function. Then Dirac impulsion is approximate by a rectangle with width [ ]
1

, −pp
γγ  and height 

1

1

−−
pp

γγ
. As 

π
γ

2

n

n

w
= , discrete variable n  becomes a continuous one by letting ( )

ω
πγ

γ
log

2loglog +
≈ nn . A nδ  

variation gives a 
ωγ

δγ
log

 variation. As the smallest element could be only 1=nδ , then 

( )
ωγγ

γδ γ
log

11

0

==≈∑
∞

=
d

h
n

n
. Finally, by mean on the Gaussian for each component, one gets: 

( )[ ] ( ) ( ) ( )( )( )432

12

2

2222exp
log4

,ˆ πγπγπγ
ωγ

µ
γ BCAttz

H

Z ++−=Ρ
+

(b3) 
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