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Basis for viscoelastic modelling of polyethylene terephthalate
(PET) near Tg with parameter identification from multi-axial
elongation experiments

Yun Mei Luo & Luc Chevalier & Eric Monteiro

Abstract The mechanical response of Polyethylene Tere-
phthalate (PET) in elongation is strongly dependent on
temperature, strain and strain rate. Near the glass transition
temperature Tg, the stress vs strain curves present a strain
hardening effect vs strain under conditions of large defor-
mations. At a given strain value, the strain rate has also an
increasing influence on the stress value. The main goal of
this work is to propose a visco-elastic model to predict the
PET behaviour when subjected to large deformations and to
determine the material properties from the experimental
data. The visco-elastic model is written in a Leonov like
way and the variational formulation is carried out for the
numerical simulation using this model. To represent the
non–linear effects, an elastic part depending on the elastic
equivalent strain and a non-Newtonian viscous part
depending on both viscous equivalent strain rate and cumu-
lated viscous strain are tested. The model parameters can
then be accurately obtained through the comparison with the
experimental uniaxial and biaxial tests.

Keywords Identification . Visco-elastic . Nonlinear
behaviour . Experimental uniaxial and biaxial tests .

Numerical simulation

Introduction

Polyethylene terephthalate (PET) under conditions of large
deformations, during high strain rate elongation at tempera-
ture near the glass transition Tg, exhibits a pronounced

nonlinear behaviour where non linear viscous and elastic
effects appear. Both hyperelastic [1, 2] and viscoplastic [3]
approaches cannot represent accurately this behaviour. In
addition, classical visco-elastic models such as the Upper
Convected Maxwell (UCM) model [4] or the Giesekus
model do not adequately demonstrate this reaction. Cheva-
lier and Marco [5] have performed biaxial tension tests near
Tg with a range of strain rates from 0.02 s−1 to 2 s−1. As
illustrated in Fig. 1, a significant strain hardening effect was
observed for the PET behaviour during these tension tests.
Furthermore, they also carried out the relaxation tests [6].
The parameters like the relaxation time have been identified
from these tests and clearly demonstrate the contribution of
a viscous part in a highly elastic macromolecular network.
The influence of temperature and strain rate on the relaxa-
tion time was mentioned: for a given strain rate, the relax-
ation time increases with the temperature; for a given
temperature, the relaxation time increases when the strain
rate decreases.

Therefore, a visco-elastic behaviour should reproduce
more accurately the experimental responses.

In the first section of this paper, inspired by Figiel and
Buckley [7], the assumption of an additive decomposition of
elastic and viscous strain rate tensors (D ¼ De þ Dv ) was

adopted to describe the kinematic structure of the constitu-
tive models. This choice, together with the assumption of
zero viscous spin and the Oldroyd derivation of the elastic
left Cauchy-Green tensor Be, lead to a differential equation

of the Be which is more stable than UCM or Giesekus model

during the numerical simulation. The form of this equation
is similar to the Leonov equation which is a differential
equation of the elastic Finger tensor and the irreversible
strain rate tensor (see [8] and Appendix A for details).

The numerical implementation is then presented and
compared with analytical solution of uniaxial and biaxial
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elongation in the linear case (i.e. constant values of shear
modulus G and viscosity η). The modelling for uniaxial and
biaxial elongations does not highlight any singularity, but it
does not show the strain hardening effect which occurs in
the experimental results.

Recently, experimental uniaxial and biaxial tests performed
on PET were carried out by Menary et al. [9] in Queen’s
University of Belfast. These tension tests were performed with
various tension speeds (from 1 s–1 to 32 s–1) and various
temperatures. Here we focus on the influence of the strain rate
and we consider only the tests performed at temperature
90 °C. In order to represent the PET behaviour during the
tests, the nonlinear forms of elastic and viscous characteristics

G(εe) and η("
�
v; "v) are proposed. The model parameters can be

finally identified through the comparison with the experimen-
tal uniaxial and biaxial tests.

An incompressible large strain visco-elastic model

Figiel and Buckley [7] have suggested building a visco-
elastic model adapted to highly elastic polymers as an ex-
tension of the hyper elastic approach used for rubber like
materials coupled with a viscous part. In their proposition
the viscous part has been supposed to be incompressible, the
volume variation under pressure has been assumed to be
purely elastic. In the following, considering the difficulty to
provide data to identify the volume variation, we differ
slightly considering both parts as incompressible. In the
linear case, both relations can be written:

σ ¼ 2G"e � peI
σ ¼ 2ηDv � pvI

ð1Þ

σ is the Cauchy stress tensor, Dv is the symmetric part of

the viscous velocity gradient and the double underscore

means it is a second order tensor. "e is the elastic part of

the Eulerian strain measure defined by:

"e ¼ 1

2
Be � I
� �

ð2Þ

where Be is the elastic part of the left Cauchy-Green tensor.

pe and pv are pressures associated with the incompressible
conditions of both parts:

detBe ¼ 1; div
*

Vv ¼ traceDv ¼ 0 ð3Þ

where
*

Vv is the viscous velocity.
The assumption of an additive decomposition of the

elastic and viscous strain rate tensors (respectively De and

Dv ) is adopted to describe the kinematic structure of this

model:

D ¼ De þ Dv ð4Þ

Combining Eq. 1 and the elastic and viscous strain rates
in the Oldroyd derivation of the elastic left Cauchy-Green
tensor, one can obtain the Leonov like Eq. 5 (see
Appendix A for details):

dBe

dt
þ 1

θ
Be:bBe ¼ 0 ð5Þ

where θ is the relaxation time, ratio of the viscosity η and
elastic shear modulus G. The subscript “^” denotes the
deviatoric part of the tensor. The Oldroyd derivation dBe dt=

is defined by:

dBe

dt
¼ �

Be þ BeΩ �ΩBe � a BeDþ DBe

� �
with a ¼ 1:

ð6Þ
where is Ω the global spin.

Fig. 1 Equi-biaxial tension test
results. Initial shape of the
specimen is square (50 mm side
length) [5]



Variational formulation for numerical simulation

Using the Eqs. 1, 2, 3, 4 and 5, the weak form of the
problem leads to a 4 field formulation (velocityV, the elastic
left Cauchy Green tensor Be and the pressures pe and pv

related to the incompressibility assumptions respectively for
the elastic and the viscous parts). The matrix form degener-
ates because more than one third of the entries on its diag-
onal are zeros. In order to solve this ill-conditioned problem,
we used a Zener like model by adding a Newtonian branch
in parallel as shown schematically on Fig. 2.

We chose a small value of the viscosity ηN in the New-
tonian branch (negligible in regard of η), so the behaviour
law in Eq. 1 can be written:

σ ¼ 2ηnD� pI
� �

þ 2G"e � peI
� �

σ ¼ 2ηnD� pI
� �

þ 2ηDv � pvI
� � ð7Þ

where p is the pressure associated with the incompressibility
condition of the global part. Furthermore, we can write the
Eq. 7 in the following way:

σ ¼ 2ηnDþ ⌢σ� pI � qI

with

⌢σ ¼ GbBe ¼ 2ηDv ) Dv ¼ G

2η
bBe ð8Þ

and

q ¼ pe þ G� G
trace Beð Þ

3
¼ pv

We assumed that the body and gravitational forces can be
neglected. In the plane stress cases of uni and equibiaxial
elongations, considering the incompressibility, the pressure
p is given by Eq. 9:

σ33 ¼ 0 ) pþ q ¼ �2ηN D11 þ D22ð Þ þ G

3

� 2

Be11Be22 � B2
e12

� Be11 � Be22

� �
ð9Þ

The visco-elastic model is implemented in the Matlab
environment using a finite element approach. A “2 fields”
variational formulation (global velocity V and the elastic left
Cauchy Green tensor Be) is proposed for the plane stress
incompressible problem. Some manipulations of Eqs. 5,
8 and 9 lead to the following weak form:

RV ¼ 2ηN

ð
Ω
D* :DdΩ þ G

ð
Ω
D* :bBedΩ þ 2ηN

ð
Ω
D* : I D11 þ D22ð Þ

dΩ�G

3

ð
Ω
D* : I

1

Be11Be22 � Be12
2 dΩ �

ð
@ΩF

V *FddS ¼ 0;

RBe ¼
ð
Ω
Be

* :
dBe

dt
þ G

η
BebBe

!
dΩ ¼ 0 ð10Þ

where the superscript * designates the virtual quantities
(associated to the test functions in the finite element meth-
od) and Fd the prescribed traction field over the boundary
@ΩF where the loads are imposed. The integral equations
are studied on the entire volume of the specimen Ω.

This strongly nonlinear problem (finite elastic displace-
ments, elastic left Cauchy Green tensor Be, with non constant

shear modulus G and viscosity η), is solved using a classical
Newton–Raphson iterative procedure (see Appendix B for
details).

On the other hand in the cases of homogeneous and plane
stress uniaxial and equibiaxial elongations, we can provide
an analytical solution. The Cauchy stress tensor σ and the

strain rate tensor D, writes:

σ ¼
σU 0 0
0 0 0
0 0 0

0
@

1
A and D ¼

"
�

0 0
0 � "

�
2= 0

0 0 � "
�
2=

0
B@

1
CA;

σ ¼
σB 0 0
0 σB 0
0 0 0

0
@

1
A and D ¼

"
�

0 0
0 "

�
0

0 0 �2 "
�

0
@

1
A

ð11Þ
One can solve Eq. 5 and then, substituting in Eq. 8, can

obtain the elongation uniaxial and biaxial stresses, respec-
tively σU and σB versus time or global elongation. For
uniaxial and biaxial elongations, the related elastic elonga-
tions λe are given from the differential relations:

l
�
e le= þ l2e � 1 le=

� �
3θ= ¼ "

�
; l

�
e le= þ le2 � 1 l4e

�� �
6θ= ¼ "

�

ð12Þ

where "
�

is the global strain rate. The related stresses are
then:

σU ¼ 3ηN "
� þG l2e � 1 le=

� �
σB ¼ 6ηN "

� þG l2e � 1 l4e
�� � ð13Þ

G

n Newtonian branch 

Fig. 2 Schematic representation of the proposed model. The visco-elastic
branch is represented as a Maxwell model but the formulation is quite
different. The Newtonian branch is placed in parallel for numerical reasons



From Table 1, one can evaluate the relaxation time θ=5 s.
Uni and biaxial elongations at constant extension rate "

�
are

considered. Figure 3 shows the results of the analytical
approach (see Eq. 13) and numerical simulation (Eq. 10
solved using finite elements) are equal, for both elongation
cases (uniaxial and biaxial) at a strain rate 8 s−1. Further-
more, it shows that the stress–strain curves for PET are
strongly dependent on the strain rate. As strain rate in-
creases, the whole stress level is found to increase. Even if
the modelling for uniaxial and biaxial elongations does not
highlight any singularity, the comparison with experimental
results of similar tests performed on PET at a temperature
slightly over Tg, is not satisfactory. First, the experimental
data presents a strain hardening effect (stress increases);
second, double the strain rate does not double the asymp-
totic stress (viscosity presents a softening effect with strain
rate); last, at the same value of the elongation λ, biaxial
stress is not twice the uniaxial stress. For all these reasons, a
non linear version of this model is necessary and discussed
in the following.

Towards non-linear visco-elastic modelling

Beyond the linear case, the structure of the visco-elastic
model allows to test all non linear behaviour of the form:

σ ¼ 2G0f "eð Þ"e � peI

σ ¼ 2η0g "
�
v; "v

� �
Dv � pvI

ð14Þ

where "e is the equivalent elastic strain, "
�
v is the equivalent

viscous strain rate and "v is the equivalent viscous strain. In
order to model the strain hardening effect, first, a hyperelastic
model is chosen for the elastic part. This choice is often done
by authors dealing with the strain hardening modelling. The
Yeoh model [2], for example, can be used but the results of
simulations show that, associated with the viscous part, using
the non-linear elastic part does not lead to a strain hardening
effect. This is understandable since the global strain rate,
which is the sum of an elastic strain rate and a viscous strain
rate (Eq. 4) is constant: consequently if the viscous part only
depends on the viscous strain rate, the strain in the viscous
branch will reach a constant value. Under the same stress
level, the elastic branch will stabilise at an elastic strain that
will remain constant even if the hyperelastic shows an

increasing evolution. A hyperelastic branch is not enough
for the visco-elastic model to present a strain hardening effect.
In this work, we assume that the elastic part is a constant and
the strain hardening effect is influenced by the nonlinear
viscous part: f "eð Þ ¼ 1, G ¼ G0.

One can first identify the initial shear modulus G0: its
value can be estimated from the initial slope of the global
experimental strain–stress curves because there is no vis-
cous strain at the very beginning of the test. Table 2 shows
that G0 does not vary much from one strain rate to another.
The value of G is chosen as 8 MPa.

Consequently, we focus on the non-linear viscous part of
the model chosen as in Cosson and Chevalier [3] that
identified a non linear incompressible viscoplastic model,
which represents macroscopically the strain hardening effect
observed during tension for high strain. We chose the same
form of the viscous model:

η ¼ η0h "vð Þ: "
�
v

"
�
ref

!m�1

ð15Þ

The hardening effect is related to the h function which
increases continuously with "v that can be obtained by
comparison with the experimental tests.

Menary et al. [9] recently provided experimental tests
at different strain rates for TF9 grade PET under
equibiaxial deformation at temperature 90 °C. In order
to identify the h function, we proposed the following
way:

– For each strain rate, the stress–strain curve of the
equibiaxial test, the evolution of the related elastic
elongations λe can be obtain from Eq. 13:

σB � G l2e � 1 l4e
�� �) le

6 � le
4 σB

G

� �
� 1 ¼ 0

) le
2 ¼ S

3
þ 1

6
108þ 8S3 þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81þ 12S3

p� �1=3
þ 2S2

3 108þ 8S3 þ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81þ 12S3

p� �1=3

ð16Þ

where: S=σB/G.

– Then, for each strain rate and for different value of the
exponent m, the η0h function can be computed from the
equation following:

η0h "vð Þ ¼ G

6

l2e � 1 l4e
�� �

"
�
v

"
�
ref

� �m�1

Dv

ð17Þ

where "
�
ref is a reference strain rate that can be taken equal to

1 s−1 for sake of simplicity. Dv ¼ "
� �l

�
e le= in the case of

Table 1 Material pa-
rameters used for the
numerical and analytical
comparison are taken
from [7]

Property Value

Viscosity η 16.5 MPa.s

Viscosity ηN 200 Pa.s

Shear modulus G 3.29 MPa



equibiaxial test. Equation 17 gives the η0h evolution versus
the equivalent viscous strain "v for each strain rate condition.
The equibiaxial tests have been carried out for five global
strain rates (1 s−1, 2 s−1, 4 s−1, 8 s−1, 16 s−1).

– Each tension speed gives a different function η0h versus
"v for each value of exponent m. When we fixed the
parameter m, we can sum the differences between each
η0h curve from each strain rate. The minimal dispersion
is obtained for m equal to 0.25 as shown in Fig. 4.

Figure 4(a) illustrates the influence of the parameter m on
the dispersion between the η0h functions. With the optimal
value of m, we obtained a similar evolution for the 5 curves
of η0h for each strain rate as shown in Fig. 4(b).

– We obtained a master curve for η0h which highlights an
asymptotic value for the equivalent viscous strain "v at
about 2.1. This leads to an important increase of the

(a)

(b)

Fig. 3 Uniaxial (a) and biaxial
(b) responses of the linear form
of the visco-elastic model;
Analytical results VS numerical
results at a strain rate 8 s−1

Table 2 The numerical value of G0

Strain Rate(/s) 1 2 4 8 16

G0 (MPa) 7.2 8.1 7.7 7.9 8.9

Min G0 (MPa) 7.2

Max G0 (MPa) 8.9



viscosity and a zero viscous strain rate when strain
reaches this asymptotic value.

– The last step of the identification is to propose a model
to represent the curve of the function h shown in Fig.
4(b). We can choose the η0h function which varies
exponentially with the viscous strain εv:

η0h "vð Þ ¼ exp a"v
3 þ b"v

2 þ c"v þ d
� � ð18Þ

With the exponential model, even if the steep part of the
curve is not perfectly represented, a good representation of

the η0h data can be obtained (Fig. 4). Therefore, the char-
acteristics of the PET for this model are:

m ¼ 0:25; a ¼ 7:355; b ¼ �10:958; c ¼ 5:168; d ¼ �3:727:

It is clearly a phenomenological modelling where viscosity
functions and shear elastic modulus evolution have no phys-
ical interpretation but we choose to limit our model to an
additive composition of a spring and a dashpot for two rea-
sons: (i) to limit the number of parameters and the complexity
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Fig. 4 a Minimization of
differences between h "vð Þ
function. An optimal value is
obtained for m=0.25; b The η0h
evolution versus the equivalent
viscous strain "v when m=0.25
and the η0h function from
Eq. 18



of the model (ii) to propose an identification method easy to
implement from uniaxial or biaxial tension tests.

In the following, we implemented this set of parameters
into the stress–strain curve. Figure 5 shows that using the
visco-elastic model with a non linear viscous part, we can
obtain a substantially good representation of the strain hard-
ening effect for different strain rates. The main difference
between experimental data and the modelled biaxial
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Fig. 5 a The data experimental
[9]; b The results of the visco-
elastic model

Table 3 Errors between
the experimental and the
results of the model

Strain Rate (/s) Absolute Error (%)

1 8.8

2 9.9

4 8.4

8 7.1

16 12.8



behaviour is the beginning of the stress–strain curve (when
the strain is lower than 0.3): the experimental data initial
slope seems to increase when the strain rate rises. This is in
contradiction with the results of the model.

The relative differences between the experimental data
and the results of this model are shown in Table 3.

Menary et al. [9] have also provided results on biaxial
elongation tests at several temperatures (90 °C, 95 °C, 100 °C,
105 °C, 110 °C). Here we focus on a given strain rate: 8 s−1. The
global stress decreases in the stress–strain curve when the tem-
perature increases. Since the viscosity usually depends on tem-
perature, we add a function of temperature g(T) on the viscous
model to represent this dependence. Therefore, Eq. 15 can be
rewritten in the following form:

η ¼ η0gðTÞh "vð Þ: "
�
v

"
�
ref

!m�1

ð19Þ

To identify the influence of temperature, we chose
Williams-Landel-Ferry (WLF) model [10] which has proved
to be widely applicable and we identified the WLF param-
eters C1 and C2 from the experimental data.

ln aTð Þ ¼ �C1 T � Tref
� �

C2 þ T � Tref
ð20Þ

One selects the reference parameter Tref as: Tref=90°C. It
appears that the shift aT depending on temperature allows an
approximate superposition. In this case, the coefficient C1

and C2 are obtained by a least-square fit of Eq. 20: C1 ¼ 2
:71, C2 ¼ 37:64oC.

We have implemented this set of parameters in order to
reproduce the stress–strain curve (Fig. 6). For high temper-
atures, the experimental results show a very small strain
hardening effect which is overestimated by the model. It is

because we choose only one function of temperature in the
viscosity. But if a dependence on the temperature was cho-
sen in the h function it could represent the influence of T on
the asymptotic viscous strain. The representation of the
experimental results could be more accurate.

Conclusions

A basic visco-elastic model is proposed in the first part of
the paper by introducing both an elastic part and a viscous
part that lead to a Leonov like equation. Secondly, the weak
form of the problem is achieved for the numerical simula-
tion: simulations fit with analytical solution for uniaxial and
biaxial tension tests. This visco-elastic model does not high-
light singularities in the uniaxial or biaxial elongations for
high strain rate and lead to a stable numerical scheme.

Considering the experimental results [5, 9], the behaviour
of PET near Tg exhibits a strain hardening effect, that
implies a non-linear viscous model to represent the viscous
part of the behaviour behaviour. An identification procedure
is proposed and leads to a good representation of the exper-
imental data’s of biaxial elongation tests.

In further work, we intend to simulate the stretch-blow
moulding process together with an improvement of the
behaviour law where the viscosity could be related to mi-
croscopic variables like crystallization ratio or shape factor
of the microstructure. We can also model and identify accu-
rately the temperature effect on PET behaviour. This model
may be implemented to simulate using finite elements, the
stretch blow moulding process for example.

Appendix A: Leonov like equation

The Oldroyd derivative of the elastic left Cauchy-Green
tensor Be writes:

dBe

dt
¼ B

�
e � LBe � BeL

T ðaÞ

where L is the global velocity gradient. Considering the

definition of Be, the time derivative writes:

B
�
e ¼ F

�
eF

T
e þ FeF

�
e
T ¼ F

�
eF

�1
e FeF

T
e þ FeF

T
e F

�T
e F

�
e
T

) B
�
e ¼ LeBe þ BeL

T
e ðbÞ

where Le is the elastic velocity gradient. Substitution in Eq.

(a) leads to:

dBe

dt
¼ Le � L
� �

Be þ Be LTe � LT
� �

¼ LvBe þ BeL
T
v ðcÞ

0 0.5 1 1.5
0

2

4

6

8

10

12

14

16

18

Nominal Strain 

T
ru

e 
S

tr
es

s 
(M

P
a)

Experimental-90oC

Experimental-95oC
Experimental-100oC

Experimental-105oC

Experimental-110oC

model-90oC

model-95oC

model-100oC
model-105oC

model-110oC
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where Lv is the viscous velocity gradient. The approach used

for dealing with the split between the elastic and viscous
strains is the additivity of the elastic and viscous strain rates,
but as explained in Figiel and Buckley [7] the spin partition
does not make physical sense and one can assume that the
spin is purely elastic. Consequently:

Ω ¼ Ωe ;Ωv ¼ 0 andLv ¼ Dv ðdÞ

So Eq. (c) writes:

dBe

dt
¼ DvBe þ BeDv ðeÞ

In the case of the linear behaviour laws, the deviatoric
part of the Cauchy stress tensor can be expressed two
different ways:

bσ ¼ 2Gb"e ¼ GbBebσ ¼ 2ηDv

)
) Dv ¼ G

2η
bBe ¼ 1

2θ
bBe ðfÞ

where θ is the relaxation time, ratio of the viscosity η and
elastic shear modulus G. It is easy to show that if the product
between Dv and Be does not necessary permute, the one

betweenBe and bBe does. So, combining Eqs. (e) and (f) leads

to the Leonov like equation:

dBe

dt
þ 1

θ
Be:bBe ¼ 0 ðgÞ

Appendix B: Newton–Raphson iterative procedure

The nonlinear problem (finite elastic displacements, elastic
left Cauchy Green tensor Be, non constant shear modulus G

and viscosity η), is solved using a classical Newton–Raphson
iterative procedure. The consistent linearization must be done
with Gâteaux operators and the linear form of the problem for
the increment ΔV and ΔBe is written in the following system:

DΔV RVf g½ � DΔBe RVf g½ �
DΔV RBef g½ � DΔBe RBef g½ �


 �
ΔV½ �
ΔBe½ �

� 
¼ � RV½ �

RBe½ �
� 

ðiÞ

where DΔV RVf g, DΔBe RVf g, DΔV RBef g and DΔBe RBef g are
the Gâteaux derivatives related to the increments:

DΔV RVf g ¼ 2ηn

ð
Ω
D* :D ΔVð ÞdΩ þ 2ηn

ð
Ω
D* : D ΔVð Þ : I

� �
I

� �
dΩ

DΔBe RVf g ¼
ð
Ω
D* : GΔBe

� �
dΩ �

ð
Ω
D* : G

1

ΔBe11ΔBe22 �ΔBe12
2 I

� �
dΩ

DΔV RBef g ¼ 2

ð
Ω
Be

* : BeΩ ΔVð Þ
� �

dΩ � 2

ð
Ω
Be

* : BeD ΔVð Þ
� �

dΩ

DΔBe RBef g ¼
ð
Ω
Be

* :Δ_BedΩ � 2

ð
Ω
Be

* : ΩΔBe

� �
dΩ � 2

ð
Ω
Be

* : DΔBe

� �
dΩ

þ
ð
Ω
Be

* :
G

η
BeΔB̂e

� �
dΩ þ

ð
Ω
Be

* :
G

η
B̂eΔBe

� �
dΩ
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