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ABSTRACT 

The paper presents an energetic method of helicopters dynamics analysis to study the air resonance (AR) 

phenomena. First, a brief state of art of AR phenomena is presented and a simple energetic explanation is given. 

Then part of the state of art is devoted to the Bond Graph (BG) and Multi-Bond Graphs (MBG) modeling method 

showing several advantages of the tool and few examples of MBG researches applications. This work proposes a 

macroscopic energetic description of a helicopter through the Word Bond Graph representation. The MBG is then 

used for Rotor/fuselage structure modeling in order to study the AR phenomena instability. The MBG model results 

are presented and show the potential of the MBG method to predict such a complex phenomenon. 

 

 

NOTATION 

f = force on the blade due to shaft motion (N) 

Fbl = force on the blade due to lead-lag motion (N) 

Fxr, Fyr  = force on the hub due to lead-lag motion (N) 

 = force on the blade due to lead-lag motion (N) 

M = lead-lag moment due to the longitudinal/lateral 

shaft motion (Nm) 

p,q,r = helicopter roll, pitch and yaw rates (deg/sec) 

xsh = shaft longitudinal displacement (m) 

 = lead lag degree of freedom (rad) 

  = natural lead-lag frequency (rad/sec) 

Ω  = rotor rotational speed (rad/sec) 

 = blade azimuth angle (rad) 

INTRODUCTION 

Rotorcraft are complex systems and are thus sources of 

recurring (especially for many new design projects) and not 

so well understood problems. Considering a specific 

phenomenon, implying interactions between many 

subsystems, the analysis of the system from a global but 

"sufficiently" detailed point of view becomes necessary. 

                                                 
Presented at the AHS 69th Annual Forum, Phoenix, Arizona, 
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Helicopter Society International, Inc. All rights reserved. 

However, analyzing the whole system remains a quite 

difficult task. This is mainly due to: 

- The composition of the system from several 

subsystems with multiple interactions combined with 

a separately-built knowledge of each subsystem, 

generally owned by separate company divisions, 

leads to a difficult global analysis of the numerous 

relations between system components and their 

environment; 

- The multidisciplinary nature of the subsystems: 

numerous subsystems include parts related to many 

fields of physics (e.g. mechanics, hydraulics, 

aerodynamics…), and this superposition of different 

technologies is generally associated with the use of 

many different modeling tools. 

Designing such complex systems may be a difficult task and 

requires a system approach. Physical models are essential so 

as to predict the system dynamic behavior. They should be 

available in different stages of design and should be 

consistent enough, i.e. with the required accuracy to deal 

with the specific considered problem. 

Usual global modeling methodologies are mainly based on a 

subsystem-by-subsystem approach. The implication of 

different design teams, each one addressing specific 

disciplines, results in the use of different modeling methods 

and tools. The resulting global transfer functions, one for 
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each subsystem, are assembled in a global model through 

classical block diagrams as a common language. This 

generally leads to a mathematical view of each subsystem 

(e.g. for a position controller design the system’s response to 

a specific input is analyzed to identify equivalent transfer 

functions between control inputs and output positions), 

without any energetic consideration, and usually causes loss 

of the link with physical equations and the associated 

modeling assumptions. It follows that engineers working in 

multidisciplinary fields need complementary tools to support 

complex multiphysics systems modeling in such a way as to 

have unified descriptions, preserving dominant physical 

parameters and highlighting power transfers between 

subsystems and, within each subsystem, between elements. 

This work is part of the “Complex Mechanical Systems 

Dynamics” project, funded by the European Aeronautic 

Defense and Space (EADS) foundation. This project focuses 

specifically on helicopters dynamics and has as main 

objective to work on methodologies and analysis tools which 

may facilitate understanding of complex dynamic 

phenomena and may support or facilitate design and control 

activities. The present paper introduces the so-called “Bond-

Graph” energetic approach of modeling, and applies it to 

conventional single main and tail rotor helicopters. The 

long-term ambitions of the project are to obtain a unified as 

complete as possible helicopter description, giving the 

ability to go from a global vision to details of subsystems 

dynamic behaviors - according to specific needs - and to 

address innovative rotorcraft architectures predesign. 

The Bond Graph (BG) technique was invented in 1959 by 

Professor Henry Paynter of the Massachusetts Institute of 

Technology to model dynamic systems of multidisciplinary 

nature [1]. A bond graph consists in a graphical 

representation of a system dynamic behavior, depicting 

exchanges of power between basic elements such as inertia, 

compliances, dissipations, conservative power 

transformations, gyrator actions and sources. Since their 

invention, Bond Graphs have been applied to various fields 

of physics, such as thermodynamics, chemistry, biology, 

electronics, acoustics, solar and nuclear systems, and 

economics [1], [2] and [3]. 

The main objective of this paper is to initiate a first step 

towards a different vision of helicopters dynamics analysis 

through an application of Bond Graph methodology to well-

known helicopter flight dynamics phenomena: air resonance 

phenomena. 

The air resonance (AR) phenomena are aeroelastic 

instabilities that occur in hingeless (rigid) and bearingless 

rotors due to couplings between the rotor lead-lag motion, 

pitch and roll motions of the body and rotor flap regressing 

mode. Air resonance is usually not a problem in articulated 

rotor systems since they have low flapping stiffness and 

corresponding low body natural frequencies. The air 

resonance possibility for a rigid rotor exists because the 

relatively high rotor stiffness causes body pendulum modes 

to occur at frequencies which are sufficiently high to couple 

with the lead-lag mode. The dynamic characteristics of AR 

modes are complex functions of the blade flapping stiffness, 

rotor inertia, body inertial properties, and rotor 

aerodynamics [4], [5] and [6] A simple perturbation, e.g. 

caused by a pilot action on cyclic controls or a wind gust on 

the fuselage, can lead to instability appearing mainly in the 

aircraft roll motion [7]. AR can be solved by increasing the 

damping levels. This may be accomplished through: 1) the 

use of lag dampers, however this results in extra weight, 2) 

introducing aeroelastic couplings in the rotor [6] resulting in 

“damperless” configurations. However, understanding the 

role of aeroelastic couplings in AR as a mean to prevent this 

instability is complex and although much progress has been 

made, AR is still a complex and difficult to predict 

aeroelastic instability. 

This paper is organized as follows. Section 2 is devoted to 

the description of a usual simple energetic approach to 

understand the AR phenomenon, and to a short introduction 

to Bond Graphs. Section 3 proposes an energetic modeling 

of part of a single main and tail rotor helicopter using BG. 

Then, in Section 4, the proposed BG model is validated 

through a comparison with classical analytical modeling 

results, and simulation results are exposed, using 20-Sim 

software, to illustrate its capability to predict real dynamic 

phenomena such as air resonance. Finally concluding 

remarks are given and directions for future research are 

proposed. 

STATE OF THE ART 

This section first presents how air resonance (AR) can be 

predicted using a simple energetic explanation. Then, key 

elements of the BG methodology are given, and expected 

advantages of this tool, according to the project objectives, 

are exposed. 

A Simple Energetic Approach to understand the Air 

Resonance Phenomenon 

Energy is one of the fundamental concepts in science and in 

this way it is useful to understand the behavior of complex 

dynamic systems through the energies accumulated into their 

subsystems and the flow of energies between the sub-bodies. 

Ambitions in the present part are oriented first towards a 

simple explanation of AR phenomena with an energetic 

vision. 

There are numerous air resonance related publications. Early 

research work has been carried out by [8], he gives an 

introduction to helicopter Air Resonance and gives a simple 

theoretical treatment of the phenomena. Others work dealing 

with instability due rotor/structure coupling, taking examples 

of Air/ground resonance [7], [9], [10] and [11].  

The usual provided solution for this problem is purely 

mechanical employed in the design phase. It consists on 

adapting the according stiffness and damper for the lag 

motion of the blade, in order to obtain different 

eigenfrequency on flap and lag axis [6]. 

Global objectives of our research are to demonstrate first 

capability of the BG method to predict this phenomenon. 
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First, a simple energetic understanding of the AR problem is 

given. The approach used next is the so-called “energy flow” 

method and is a semi-qualitative method primarily based on 

BG [12]. The main idea of energy flow method is that any 

instability possesses a multiplicity of energy flow paths 

(vicious circles) in which energy is transferred from one 

degree of freedom to the other. The method follows the 

steps:  

1- The dynamical equations of motion are written as a 

set of second-order systems;  

2- Each degree of freedom (DOF) is considered as an 

excitation for the other DOF. Therefore, the coupling 

terms are external excitations for each separate 

degree of freedom;  

3- It is assumed that there is “virtual” damping in each 

degree of freedom such that an oscillation with 

constant amplitude results. The amount of damping 

does not depend on the actual damping;  

4- Next, one inspects whether there are any external 

excitations (coupling terms) in phase with the 

velocity of the degree of freedom considered.  If so, 

the coupling term - “excitation” - pumps energy into 

or extracts energy from the DOF.  

5- If there are degrees of freedom which mutually pump 

energy into each other, this indicates the possibility of 

dynamic instability. The reasoning here is that the 

added virtual damping must continuously dissipate 

energy to achieve the constant amplitude. If the actual 

damping is less, then the mutual energy exchange 

would tend to increase the motion amplitude. 

Usually, the AR instability is plotted in the so-called air 

resonance diagram, see Figure 1. This diagram gives the 

frequency of the lead-lag blade mode as seen in the 

nonrotating body frame as given by regressing lead-lag 

mode   and advancing lead-lag mode   as a 

function of rotor rpm. One can see the AR region where the 

body roll and/or pitch mode intersects the regressing lead-

lag mode. In the figure one can also see the representation of 

the “ground resonance” phenomenon, the equivalent of AR 

problem when the helicopter is grounded. For a soft in-plane 

rigid rotor (characterized by the rotating first lead-lag 

frequency lower than 1P,   ), a critical body 

frequency coincides with the regressing lead-lag frequency if 

the rotor over-speeds while on ground, and in air resonance 

if the rotor is slowed in flight. It is usually stated in the 

literature that, for a rigid rotor, no driving energy is available 

in the region to the left of   , whereas to the right of 

this point the existence of a source of driving energy is 

indicated [4]. Thus, a soft in-plane rotor is prone to ground 

and air resonance. 





A

DRIVING ENERGY 
AVAILABLE

DRIVING ENERGY 
NOT AVAILABLE

 

 
Figure 1. Diagram ground and air resonance [adapted from 4] 

Next paragraph will demonstrate by using energy flow 

diagram that indeed, point A in Figure 1 is dangerous for 

instability, describing how the vicious circle of instability is 

closed. The following simplified model is used (see 

Figure 2). It consists of a constant speed shaft (angular 

velocity ) which may translate longitudinally and laterally 

w.r.t. an inertial frame. A hub is connected to the shaft by 

means of a spring K , so that the hub may have a variable 

angular velocity  . To the hub is attached a massless 

beam with a concentrated mass m at its end. In order to 

balance the average centrifugal force, a counterweight is 

attached to the shaft. For the moment, the blade flapping 

motion is not included in the model as point A in Figure 1 is 

not giving explicitly the importance of flap motion in AR 

problem. 

xbl
ybl







 
Figure 2. Simplified model to represent the rotor/body motion 
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The angular velocity of the blade is: 

 bl bl(0,0, ) E    (1) 

The absolute displacement of the blade: 

 blr R(1,0,0) E  (2) 

The absolute velocity: 

   bl blx blr R(1,0,0) E R(1,0,0)[ ] E   (3) 

where [blx] represents the matrix time derivative of the unit 

vector  

0

{ } 0 { }

0

 
 

 
 
  

r q

E r p E

q p

 

that is in our case: 

 

0 0

[ ] 0 0

0 0 0



 

 
 

  
 
  

bl x
 

The absolute acceleration: 

   

  

2

bxl bl blx bl

2

bl

r R(1,0,0)[ ] E R(1,0,0)[ ] E

R ( ) , ,0 E

 

 

  

 
 (4) 

The force due to the “lead-lagging” mass on the hub is then: 

 bl x y blF (F ,F ,0) E  (5) 

According to D’Alembert principle1, this means the inertial 

forces:  

2

x

y

F mR( )

F mR





 

 
 (6) 

Lead-lag moment equation: 

yF R K 0    (7) 

2 0     (8) 

with 
2

K

mR



  . 

The force on the shaft, taking into account the extra counter-

weight is: 

   2

r x y r rF (F ,F ,0)[ ] E mR (1,0,0) E    (9) 

                                                 
1
 D’Alembert principle allows to convert dynamic problems 

in static ones. Typical usage of this principle consists of 

representing the statement of Newton’s second law F=ma by 

an “inertial load” equal to ma, but directed opposite to the 

acceleration, a. 

With 

cos sin 0

[ ] sin cos 0

0 0 1

 

  

 
 

 
 
  

the rotation matrix from 

 rE to  blE ;    bl rE [ ] E  

  linearized 2

r rF mR 2 , ,0 E

Cor. Cf. Inert.

     
 (10) 

Case 1: 

Firstly, consider the AR situation as represented by point A 

in Figure 1 and assume that the values of the 

eigenfrequencies are: 

sh

1

2

1

2





 

 

 (11) 

Assume an oscillatory motion: 

 0 0 0

1
cos t cos t cos

2 2



    

   
      

   
 (12) 

It follows that: 

 0 0

1
sin t sin

2 2
 


    

 
      

 
 (13) 

 2 2

0 0

1
cos t cos

4 2
 


    

 
      

 
 (14) 

First, describe the lead-lag motion as an external excitation 

for the shaft. The effective forces on the hub due to the blade 

lead-lag motion can be found by substituting (13) and (14) 

into equation(10): 

 

2

xr 0

2 2

yr 0

F 2mR mR sin (Coriolis)
2

5
F mR mR cos (cf inertia)

4 2


 


  

 
      

 

 
      

 

(15) 

Since one investigates the system at resonance, and because 

the external lead-lag motion excites the shaft in a resonant 

point, it follows that the blade lead-lag motion gives rise to a 

shaft motion 90 deg phased w.r.t. the lead-lag motion. Using 

(12) and (15), the motion of one blade over 4 periods and the 

force on the shaft can be represented (each lead-lag cycle 

takes two revolutions) as shown in Figure 3. 

One can see that, regarding the forcing terms acting on the 

shaft, a force will be exerted on the shaft to the right. One 

revolution later, at  maximum lag occurs with an 

attendant force on the shaft to the left, etc. If it is wished, 

this may be also checked by substituting into the 

equations of motion. Concluding, there is a “rotating” force 

acting on the shaft, against the rotor direction of rotation. 



 5 

xbl

0

Fyr

0

Fxr

Fyr

Fxr
Fyr

0

=0   3 4







 
Figure 3. Lead-lag motion of one blade as external excitation for the 

shaft and the corresponding force on the shaft  

Secondly, describe the shaft motion as an external excitation 

for the blades. Assume that the shaft can move only 

longitudinally (direction x0), being excited in its 

eigenfrequency sh

1

2
   . The blades will move up and 

down with the shaft with acceleration shx . Looking at (12), 

the shaft longitudinal displacement will be: 

 sh sh0 sh sh0x x cos t x cos
2




 
   

 
 (16) 

D'Alembert principle will be used next to determine the 

force on blade due to the shaft motion: 

0f f cos
2

 
   

 
 (17) 

and the motion of the shaft during 4 periods is now as 

represented in Figure 4 

D’Alembert

0

=0   3 4

 

D’Alembert

D’Alembert

 
Figure 4. Longitudinal shaft motion as external excitation for the 

blade and the corresponding force on the blade 

One can see that: 

- Fxr is in phase with shx , thus energy input goes in 

the shaft. 

- An extra lead-lag moment as a result of the shaft 

acceleration is out of phase with  , so there is no 

energy input from the shaft to the blade. 

The extra lead-lag moment due to the longitudinal shaft 

motion can be calculated as: 

   

 

linearized

0

0 0

0 0 0

M fR sin f R cos sin cos
2

f R cos sin cos cos
2 2

1 3 1
f R sin sin f R 1 2cos cos 2

2 2 2 2


    

 
  


   

 
      

 

    
      

    

 
    

 

 (18) 

Equation (18) does not contain any component in phase with 

lag velocity(13). 

Assume now that the shaft can move only laterally (direction 

y0). The shaft lateral displacement will be: 

 sh sh0 sh sh0x x sin t x sin
2




 
   

 
 (19) 

The lateral force on blade due to the shaft motion is given 

according to D'Alembert principle as: 

0f f sin
2

 
  

 

 (20) 

The lateral shaft motion during 4 periods can be represented 

now as seen in Figure 5: 

xbl

0

0

0

=0   3 4

 

D’Alembert D’Alembert

 
Figure 5. Lateral shaft motion as external excitation for the blade and 

the corresponding force on the blade 

One can see that: 

1- Fyr is in phase with shy , so energy input goes in the 

shaft.  

2- An extra lead- lag moment as a result of the shaft 

acceleration is in  phase with  , thus there is energy 

input from the shaft to the blades 

The extra lead-lag moment due to the lateral shaft motion 

can be calculated as in (21). In this case, relation (21) does 

contain a component in phase with lag velocity(13). This 

shows that, in ground resonance (represented as an 

intersection point between shaft and blade lead-lag 

frequency in the   diagram, the lateral shaft motion 

combines with blade lead-lag motion. 
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    

    

 

linearized

0

0 0

0 0 0

M fR cos f R sin cos sin

2

f R sin cos cos sin

2 2

1 3 1 1 1
f R sin sin f R c os 2

2 2 2 2 4 4


    

 
  


  

    

  

  
 
  

 (21) 

The next question is what is the role of flapping motion in 

the AR mode? Reference [13] demonstrated that Coriolis 

force on the blade due to flap velocity has a destabilizing 

effect on the motion. If the term representing the inclination 

of the flapping moment w.r.t. flapping velocity would have 

been included in the lead-lag equation, one would found that 

energy is pumped from the lag motion into the flap motion. 

In the case of the roll-flap-lag dynamic system [13] 

represented the energy flow for the dynamic system as seen 

in Figure 6. 

Flow 1

Flow 2







0K 

0K 

0pK 

Flow 1

Flow 2







0K 

0K 

0pK 

 
Figure 6. Energy flow in the roll-flap lag system [13] 

One can see that body roll angle  couples to the lead-lag 

motion  in the case when the fuselage roll rate gain Kp≠0, 

driving the lag motion unstable. The lag drives the flap  

unstable and, as a result, the flap, in certain conditions (roll 

attitude gain K≠0) , flaps pumps energy into the lead-lag 

motion driving the AR mode unstable. , In an attempt to 

understand the major source of damping in the AR mode, 

[14] demonstrated that, in general, typical soft in-plane 

rotors have a powerful damping available in the flap mode 

(3 to 6 times that of a typical articulated rotor) which damps 

the roll motion and does not result in AR instability. Only 

when rotor flapping is modified by the influence of an 

external control system such as stability augmentation or 

gyro bar, the powerful flap damping available in such rotor 

modifies driving the AR mode unstable. This was the case 

explained by [15] for the EC135 helicopter. The authors 

developed an air resonance controller for the EC135 to 

alleviate the AR mode. According to their study it appeared 

that, in the basic helicopter operation condition, air 

resonance was not an issue for the pilots operating the 

EC135, the air resonance instability manifesting as a body 

roll oscillation which was existent but below the pilot 

perception level. However, when the helicopter was 

enhanced with an Attitude command/Attitude Hold (ACAH) 

control system for flying attitude command or flight path 

following tasks, it became apparent that, increasing too 

much the roll rate feedback gain, drove unstable the air 

resonance mode. This time the oscillation was perceived by 

the pilot as an oscillatory ringing in the helicopter roll 

response at a frequency of about 1.8Hz in the case of EC135. 

It was demonstrated that in this case the helicopter was PIO 

prone when applying the ADS-33 bandwidth criterion. In 

order to damp the air resonance mode when rate feedback 

was used, the authors developed an air resonance controller 

which effectively damped the coupled body-roll air 

resonance mode, independently from the main flight control 

system. 

Appendix A demonstrates further using energy flow method 

the cases when the intersection of the body mode with the 

lead-lag mode is on the two other branches of the air 

resonance diagram. It will be shown that the circle of vicious 

energy is not closed and no instability can appear as 

concerns the AR mode. 

Bond Graph Basics 

The usual modeling approach based on a concatenation of 

equivalent transfer functions, one per subsystem, gives a 

mathematical view of the system, generally associated with a 

loss of physical sense, of dominant physical parameters, and 

of modeling hypotheses [16]. This way, knowledge 

capitalization remains a quite difficult task, and products 

evolutions necessitate partly starting again the modeling 

process. For these purposes, complementary methods, 

offering powerful unified modeling languages, have been 

designed to support and simplify complex multiphysics 

systems modeling and analysis, and to minimize physical 

misunderstood. Among these tools, Bond Graph (BG) [1] is 

chosen for its different interesting stages of modeling and 

analysis, and its ability to manage different detail levels for 

subsystems dynamic behavior description: 

1- Bond Graphs represent energy transmission into 

systems through power bonds, highlighting 

generalized effort and flow variables - power 

variables - between components. In mechanical 

engineering, forces and torques are effort variables, 

while speeds are flow variables - respectively 

voltages and currents in electrical engineering, 

pressures and flows in hydraulics, etc. Each bond is 

represented by a half arrow and defines a 

bidirectional connection, so-called power bond, each 

direction being associated with either an effort or a 

flow variable [1]-[2]. 

2- First step in the BG methodology consists in a 

functional analysis of the considered system, in order 

to build a word description, so called word bond 

graph [3], of its global architecture. It consists in a 

decomposition of the system into subsystems and a 

description of their different power interactions. Each 

subsystem can then be described through another 

word BG, and so on. 
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3- Then, a more detailed description of each subsystem 

is conducted. For that, fundamental energy processes 

are defined by specific elements. Depending on their 

power function and connections, five main types of 

elements can be distinguished [3, 16]: 

o Energy sources ('Se', 'Sf', respectively effort and 

flow sources); 

o Energy accumulation elements ('I', 'C', 

respectively inductive and capacitive 

accumulators); 

o Perfect transformation ('TF', or 'MTF for 

modulated 'TF') elements, without energy 

accumulation or dissipation; 

o Perfect coupling elements for energy 

distribution ('0', '1', respectively for common 

effort and common flow junctions); 

o Dissipative elements ('R'), representing the 

system energy losses. 

4- Finally causal analysis is carried out to generate a, so-

called, causal BG model. Causalities are assigned 

following a sequential causality assignment 

procedure with specific rules [3]-[17]: Sources 

naturally impose their causality constraint to their 

nearest element. Then, integral causality is generally 

preferred for a natural representation of accumulation 

processes. However, in some cases, causality 

conflicts can occur and lead to the use of 

accumulation elements represented in a derivative 

form. Depending on the chosen modeling 

assumptions for a system, some of its energy storage 

elements can be partly represented with derivative 

causality. This can occur, for example, when a 

mechanical shaft is considered as a perfectly rigid 

element between two inertial accumulators. In this 

case, one can modify the modeling assumptions, 

taking into account the stiffness of the shaft, so as to 

really consider two degrees of freedom, and thus two 

independent inertial accumulators. 

The BG methodology can thus be considered as a quite 

complete tool supporting, in a graphical way, the entire 

modeling process, from the system structural analysis to the 

causality assignment and assumptions management. Bond 

Graphs are usually classified among "energetic" modeling 

tools because of their ability to represent and manage power 

transfers, and thus to give access to energy through simple 

integrations. With its "word" level, the BG representation 

offers the possibility to evolve gradually from a macroscopic 

system description to a more detailed view giving access to 

elementary accumulation and dissipation processes. This BG 

property matches the multi-level representation objective of 

the project. In addition, each elementary process is 

associated with its corresponding equations so that the 

global system equations can be derived. Specific BG 

graphical rules [3] can also support model analysis and will 

be studied in future work. 

Multi-Bond Graphs for 3D Multi-body Systems 

Initially developed with a scalar form, Bond Graphs have 

been more recently extended to a vector form, so-called 

"multi-bond graph", to deal with three dimensional (3D) 

multi-body systems [3]. Indeed, a scalar bond graph method, 

as previously presented, could also be applied to multi-body 

systems. However, for complex systems, such scalar graph 

would quickly become too complicated to remain useful, and 

its ability to give an overall structural vision of the system 

would be lost. For example, [18] proposes a scalar bond 

graph model of a multidisciplinary nonlinear system 

involving multi-body system dynamics, hydraulic actuation 

system dynamics, and electronic controller dynamics. For 

the sake of clarity and efficiency, authors intend, in their 

future work, to convert the proposed scalar model into a 

multi bond representation. Thus, bond graphs have been also 

chosen for this project because it now provides a 

methodology to address 3D multi-body systems. 

Multi bond graph (MBG) methodology can be seen as an 

extension of the classical scalar BG method. The multi-bond 

notation was introduced by Bonderson [19], and then 

improved by Breedveld [20]. In this last notation, bonds 

have been extended to multi-bonds representing effort and 

flow vectors, and scalar elementary components 

(dissipations, accumulations, etc.) representing fundamental 

energy processes were extended to the corresponding multi-

port elements. Finally Tiernego and Bos [21] proposed a 

systemic approach to model a freely moving rigid body and 

Borutzky, in [3], described a multi-bond graph library with 

the related multi-bond notations and proposed a systematic 

modeling approach for moving rigid bodies and various 

types of mechanical joints. Then the method has been 

illustrated by a simple application to a planar pendulum. 

Initially, the MBG method was only used to simplify the 

graphical representation of complex mechanical multi-body 

system, without causality assignment capabilities. This last 

operation required to explode the MBG model into its 

equivalent scalar BG form. This limitation has been recently 

issued thanks to a specific MBG causality assignment 

procedure. Reference [22] explains how equations of motion 

can be derived from a MBG through an application to a 

planar RRS mechanism and a spatial crank-slider 

mechanism. 

Multi-bond graph representation of a rigid body and a 

mechanical joint will be illustrated in the next section 

devoted to helicopter multi-bond graph modeling. 

A further advantage of bond graphs and multi-bond graphs is 

the existence of specific software, dedicated to BG and 

MBG models structuration, simulation and analysis. In the 

present study, the 20-sim software is used. This software 

includes a backward differentiation method, able to solve 

problems with numerous occurrences of derivative 

causalities and algebraic loops, frequently observed in multi-

bond graph representations [22]-[23]. 
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Multi-Bond Graphs Applications 

Many researches show applications and advantages of multi-

bond graphs (MBGs) for various objectives. Borutzky [3] 

presents a brief survey on MBGs including references to 

MBG applications, especially in robotics and automotive 

industry. He also pointed out applications of MBG in 

different areas such as human body or mobile robots 

modeling. Other recent papers can be cited for various 

applications, for example: 

- In [24], authors propose a modeling of electric 

vehicles dynamics with MBG to facilitate dynamic 

behavior analysis and understanding. 

- In [25], authors propose an application of vector 

Bond graphs to the modeling of a class of hand 

prostheses. They indicate that this method is useful 

for simulations and control design of such 

biomechanical systems. 

Multi bond graphs have also been applied to some 

interesting applications in aeronautics: 

- In [26], authors propose a bond graph dynamic 

modeling of a quad-rotor helicopter. They first 

present an open loop unstable model and propose 

closed loop controllers to ensure the rotorcraft 

stabilization. The rotorcraft is then controlled, from 

an initial roll, pitch, yaw and altitude configuration, 

to a desired steady state. In this paper, the BG has 

been chosen to facilitate model construction and 

troubleshooting. 

- In [27], a MBG model of a scanner servo-control for 

the orientation of a fighter aircraft is proposed. The 

studied system is composed of an aircraft rigid body 

and a scanner, containing a gimbal box and an 

antenna. The azimuth and elevation movements of 

the scanner are controlled by servocontrols. MBG has 

been applied for this complex system because of its 

capability to integrate various physical domains 

(electrical, mechanical and system control) with 

multiple degrees of freedom. The obtained model has 

been used to study servocontrols on the scanner of the 

radar, part of a real fighter aircraft. 

These two last examples illustrate advantages of multi bond 

graphs through their application to relatively simple 

aeronautic cases compared to single main and tail rotor 

helicopters. The first one considers the aircraft as a single 

freely moving rigid body to be positioned thanks to four 

controllable forces. This modeling assumption can be 

sufficient for typical drone systems, but is not adapted any 

more to deal with more complex helicopters in which some 

major subsystems and their interactions have to be 

considered. The second example exposes a more complex 

system, representing several subsystems with multiple 

interactions and related to many fields of physics. However, 

our objective is different, seeking to address instability 

problems which take origin in inertial couplings between 

several moving bodies in interaction with aerodynamics. 

The BG and MBG methodology corresponds to a generic 

graphical description to support the development of a model, 

from the first chosen assumptions to simulation of the 

dynamic behavior for validation purpose. Furthermore, the 

scalar BG method can be used to address other issues related 

to control design such as, for example, analysis of 

controllability and observability structural properties [3]. 

Thus, the first steps exposed in this paper consists in using 

MBG to model part of a single main and tail rotor helicopter 

and in illustrating its ability to predict known phenomena 

such as air resonance. Future ambitions will be oriented to 

investigate the potential of existing scalar BG analysis 

methods in application to MBG models and to exploit MBG 

graphical form for controller design objectives. 

MULTI-BOND GRAPH ENERGETIC 

MODELING OF A HELICOPTER 

This section introduces a first step toward an energetic 

modeling of a single main and tail rotor helicopter. First, a 

macroscopic energetic analysis of generic helicopter 

architecture is proposed to establish a macroscopic word 

multi bond graph, including the transmission linkage 

between engine power source and the two rotors. Then, the 

main rotor and helicopter body subsystems are considered so 

as to address AR phenomena. The corresponding word MBG 

is proposed and MBG modeling of a rigid body is explained 

through the example of one rigid blade model. 

Macroscopic representation of a helicopter 

A functional and energetic analysis is conducted to establish 

a word bond graph description of a classical helicopter. It 

consists in a decomposition of the studied system into 

subsystems and a description of their power interactions. 

When achieving a global energetic analysis of a system, a 

few key questions have to be addressed first. The first one 

concerns the identification of energetic sources to delimitate 

the modeling study boundaries. From a mechanical point of 

view, the helicopter engine is supposed to be the main power 

source. Then, additional mechanical sources have to be 

considered to take into account interactions of the helicopter 

with its environment. For example, one can consider 

external sources corresponding to the contact with the 

ground or multiple interactions with environing air. In the 

present study, no interaction with the ground is considered. 

Another question concerns destinations of energy. In 

helicopters, energy is essentially distributed between rotors, 

interacting with the aerodynamic environment to generate 

forces applied to the helicopter body, and the control of the 

helicopter body motion, also interacting with its 

aerodynamic environment. 

The chosen boundaries for the model thus appear as sources 

on the macroscopic word multi-bond graph depicted in 

Figure 7: three aerodynamic sources, respectively interacting 

with the body and the main and tail rotors, and one engine 

mechanical source. 
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Figure 7. Macroscopic representations of helicopter dynamics in word Bond graph representation 

 

The linkage between these sources is composed of a set of 

gearboxes, shafts and bell cranks, and the main and tail 

rotors (respectively MR and TR). These last are linked to the 

helicopter body through pivot joints of the MR and TR 

gearboxes, allowing power transmission to the fuselage. The 

pilot is carried by the helicopter body and interacts with the 

main and tail rotors through control channels. 

One can note that no particular rule imposes to decompose 

the system with a specific or homogenous detail level of 

subsystems. Figure 7 illustrates this point describing engine 

power transmission to the two rotors through "shafts & 

gearboxes" subsystems associated with "pivot links". The 

latter, referring to a much more detailed level of description, 

also could be included within the "shafts & gearboxes" 

subsystems. In the same way, "engine", "gearboxes" and 

"shafts & gearboxes" could be grouped in a single more 

macroscopic "engine mechanical power source" subsystem 

with two output power bonds, while preserving the two 

"pivot links" representation. One can also note that both 

scalar and multi-dimensional power bonds are 

simultaneously used within the same bond graph 

representation: Power transmission from the engine to the 

two pivot links is depicted in scalar form, using classical 

power bonds from scalar bond graphs, while multi-bonds are 

required to describe power transmission between 

aerodynamic sources, rotors, helicopter body, pilot and 

control channels subsystems. Each scalar bond is thus 

associated with a couple of power variables, including an 

effort – torque – and a flow – rotating speed – variable, 

while multi-bonds are associated with a couple of effort and 

flow vectors. At this macroscopic representation level, for 

the sake of simplicity, both 3-dimentional rotational and 

translational components have been grouped into single 

multi-bonds. However, these 6-dimentional power bonds 

will be split into the corresponding two 3-dimentional power 

vectors when a multi-bond graph will be built for simulation 

purpose. 

This Word BG gives an energetic macroscopic description 

of the helicopter and provides a methodological support to 

simplify analysis of power paths between subsystems. It 

corresponds to a first level of the desired multilevel 

representation of helicopters. 

To address air resonance phenomena prediction through a 

bond graph model simulation, we will now focus on the 

multi-bond graph modeling of the main rotor subsystem. 

Bond graph modeling of the main rotor subsystem 

For this first helicopter bond graph modeling, we selected air 

resonance as an interesting instability phenomenon to be 

addressed. Indeed, this phenomenon implies complex 

couplings between roll and/or pitch motions and blades flap 

and lead-lag motions occurring in a rotating frame w-r-t the 

helicopter body frame. If this paper intends to demonstrate 

bond graph tools ability to predict such phenomena, future 

work ambitions are oriented towards the exploitation, 

through some specific properties, of bond graphs graphical 

and power oriented form to analyze conditions of occurrence 

of such phenomena since early design stages. One can also 

imagine exploitation of such tools for control design 

purpose. 

Helicopter modeling activities are thus now focused on the 

bond graph modeling of the main rotor subsystem. The 

proposed model has also to include a simplified lumped 

parameters model of the fuselage and a relatively simple 

aerodynamic model. Modeling main assumptions are chosen 

as follows: 

- The fuselage is considered as a single rigid body, 

described by its inertia and mass matrices, with 6 

degrees of freedom. 

- As the tail rotor action will not be modeled, the yaw 

motion is artificially blocked. 
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- The roll and pitch instantaneous centers of rotation 

are both fixed to a single point aligned with the main 

rotor axis and above (at 0.7 m) the rotor hub pivot 

joint center. The vertical position of this point is also 

artificially fixed to ground so as to avoid a complex 

search of steady flight conditions to simulate 

helicopter hover. 

- The link between the fuselage and the main rotor 

pivot link is supposed to be infinitely stiff. 

- The critical body frequency on the roll axis is 

supposed to be at 1.3 Hz and reproduced thanks to the 

roll term of the fuselage inertia matrix associated 

with the corresponding equivalent roll axis stiffness. 

- The engine speed control is supposed to be perfect, so 

the engine mechanical source, including gearboxes 

ratios, is modeled by a perfect controllable rotational 

speed source (at 27.75 rad∙s
-1

) applied to the rotor hub 

whatever the load torque is. 

- Blades are considered as rigid bodies, modeled by 

their inertia and mass matrices. 

Some of these assumptions and additional notations are 

illustrated through Figure 8 depicting the considered lumped 

parameters model of the rotor-fuselage subsystem. 

In the present study, we consider a four-bladed helicopter. 

Each of the blades is linked to the rotor hub through an 

equivalent ball joint. To facilitate access to the relative blade 

angular position signals w-r-t the hub, these joints are 

modeled thanks to three successive and collocated pivot 

links, as depicted in the rotor word multi-bond graph of 

Figure 9. Starting from the hub, the two first pivot joints 

correspond respectively to the lead-lag, ς, and the flap, β, 

motions of the considered blade, while the third one 

corresponds to its pitch angle, θ, and is controlled by the 

pilot. The pilot control action is modeled by three perfect 

modulated velocity sources, one for each of the considered 

helicopter control axes: two for the roll and pitch controls, 

acting on the cyclic blade pitch angle, and one for the 

collective pitch angle. These three velocity sources act on 

blades pitch angle through a Coleman transformation and are 

thus controlled by sigmoid signals so as to ensure a smooth 

pitch positioning. This kinematic model of the pilot and 

control channels subsystems is not represented in Figure 9 

for the sake of simplicity. 

In the word MBG of Figure 9, one can distinguish three 

types of multi-bond graph elements: 

- Moving rigid bodies, such as the fuselage, the rotor 

hub and the four blades. 

- Joints, such as pivot links used between the hub and 

the fuselage and for blades connections with the hub. 

- Multi-bond graphs power bonds (half-arrows). 

Blades

(1, 2, 3, 4) 

Hub

Fuselage

Φ

β

y

z

x

 
Figure 8. Lumped parameters model of the rotor-fuselage subsystem 

Each joint or body element is linked to another element 

through two parallel power bonds, respectively for the 

rotational and translational power transmissions. Each power 

bond thus carries a three-dimensional flow (rotational or 

translational speeds) vector, associated with the 

corresponding three-dimensional effort (torques or forces) 

vector. 

Aerodynamic lift forces Fl are applied on each blade z-axis 

as functions of both the rotor speed (Ω) and the blade pitch 

angle (θ), as described in (22) where ρ, α, Cz and R 

respectively stand for the air density, the airfoil chord, the 

lift coefficient and the rotor radius. This simplified first 

aerodynamic model does not take into account the induced 

velocity, and the influence of the flap and lead-lag motions 

of blades are neglected. Aerodynamic drag forces on blades 

are also supposed to be negligible. 

3
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Figure 9. Word MBG of the rotor subsystem 
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Figure 10. MBG of a moving rigid body - Example of a blade 

The aerodynamic model do not appear in Figure 9 word 

MBG of the rotor since it has been included within each 

blade rigid body model, as depicted on the right hand side of 

Figure 10: A modulated effort source (MSe) generates the 

blade lift force on the third dimension of F2 force vector, 

while null forces are generated (Se and Se1 sources) for the 

x and y dimensions w-r-t the blade reference frame. 

Through the example of one of the blades, Figure 10 gives 

the architecture of a rigid body multi-bond graph model 

based on [3]. The upper part 1 of the MBG represents the 

rotational dynamic behavior of the blade w-r-t its inertial 

coordinate frame, while the lower part 2 is for the 

translational motion of the blade center of mass w-r-t a fixed 

coordinate frame. The two corresponding '1' junctions 

correspond respectively to the rotational (Omega) and 

translational (VG1) velocity vectors expressed in these two 

coordinate frames. Both parts 1 and 2 are based on the 

Newton-Euler equations with respectively the blade inertia 

matrix (I1 element in part 1) associated with gyroscopic 

terms (Gyro) and the blade mass matrix (I element in part 2). 

The IMSe acting on the latter stands for Inertia Modulated 

effort Source and models the gravity effects applied to the 

blade center of mass. Part 3 describes the relations between 

the velocities V1 and V2 of the two hinge points of the blade 

and the velocity of the center of mass VG. These three 

velocity vectors are expressed in the body fixed coordinate 

frame. V1 corresponds to the velocity of the blade to hub 

joint, while V2 corresponds to the velocity of the point 

where the equivalent aerodynamic force F2 is applied (at 

70% of the blade length from the hub). The two TF elements 

are the corresponding coordinate transformations between 

the body center of mass and these two points. The modulated 

transformation element (MTF) between VG1 and VG 

represents the coordinate transformation between the inertial 

coordinate frame and the body fixed reference frame. 
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Figure 11. MBG representation of a joint - Case of a pitch pivot joint 

Finally, external moments M1 and forces F1, appearing on 

the left hand side of this blade body representation, are 

respectively associated with velocities Omega and V1, and 

correspond to the rotational and translational output power 

bonds of one of the pitch pivot joints (see Figure 9). 

The latter pitch pivot joint representation is given in 

Figure 11 as an example of joint multi-bond graph modeling. 

In this MBG, one can discern an upper part dedicated to the 

joint rotational degrees-of-freedom, while the lower part 

concerns the translational relations. 

As the considered joint example corresponds to a pivot joint, 

the translational (lower) part consists in an integral 

transmission of the translational motion from the previous 

body or joint to the next body or joint – in the present case, 

from the previous flap pivot joint to the next blade body (see 

Figure 9) – through a coordinate transformation between the 

previous and the next elements coordinate frames. This 

modulated transformation (MTF) takes into account the 

relative angular position of the considered joint d-o-f. The 

rotational part of the pivot joint also uses this last coordinate 

transformation between the reference frames of the two 

considered elements and allows management of the joint 

rotational d-o-f. In the considered case, the pitch angle d-o-f 

of the joint is controlled by the blade pitch control 

subsystem acting as a modulated velocity source (MSf). 

Relative velocities of the two other dimensions are 

maintained to zero by null flow sources (Sf_1 and Sf_2). 

SIMULATION RESULTS 

To illustrate the bond graph tool ability to predict instability 

phenomena such as air resonance, the particular case of a 

stiff in-plane rigid rotor is considered. Air resonance 

conditions of occurrence have been discussed using an 

energy flow method in section 2, with a detailed explanation 

given in Appendix A for intersection of the body mode with 

the lead-lag mode in the two other branches of the air 

resonance diagram of Figure 1. 
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Figure 12. Preparatory simulation phase and torque disturbance pulse 

on the helicopter roll axis 

 

Figure 13. One blade flap (A) and lead-lag (B), and fuselage roll (B) 

responses to Figure 12 simulations conditions (ωζ = 1.23∙ΩN) 
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Figure 14. Air resonance diagram - case of stiff in-plane rotors 

The multi-bond graph model exposed in the previous section 

has been prepared so as to reproduce a critical body 

frequency on the helicopter roll axis at fRoll = 1.34 Hz, and 

the equivalent stiffness associated with each blade lead-lag 

joint is firstly tuned in order to simulate a stiff in-plane rotor 

with a lead-lag frequency at ωζ = 1.23∙ΩN, where ΩN is the 

nominal operating rotor speed. 

For simulation purpose, the 20Sim bond graph software is 

used with a backward differentiation method numerical 

integration. 

As specific initial conditions calculations of each model 

body and joint would be a fastidious task for such a 

complicated 3-dimensional model with rotating bodies, all 

initial conditions are chosen to be null and a preparatory 

simulation phase is necessary to reach the desired operating 

conditions. This is illustrated in the simulation results 

exposed in Figure 12: The rotor is first accelerated to its 

nominal operating speed ΩN = 27.75 rad∙s
-1

, then the 

collective blade pitch angle is raised to θ0 = 0.2 rad so that a 

lift force is generated. These conditions are supposed to be 

equivalent to a hovering flight. Finally, a 9 kNm and 0.1 s 

torque disturbance is applied at 35 s on the helicopter 

fuselage roll axis in order to simulate a lateral wind gust. 

The resulting blade flap and lead-lag motions and helicopter 

body roll motion are given in Figure 13. 

One can observe the oscillatory response of the fuselage roll 

with a ωζ = 1.23∙ΩN lead-lag frequency, i.e., close to the air 

resonance region depicted in the air resonance diagram of 

Figure 14. Indeed, as exposed before, the AR is supposed to 

occur when |Ω - ωζ| is close to the roll critical body 

frequency ωRoll = 8.41 rad∙s
-1

 when Ω = ΩN. These coupling 

conditions are verified if ωζ = 1.3∙ΩN. 

The lead-lag response when these theoretical conditions of 

air resonance occurrence are reached is given in Figure 15. 

Figure 16 and Figure 17 give respectively the lead-lag 

response when ωζ = 1.38∙ΩN and ωζ = 1.45∙ΩN. 

Concluding, the MBG model correctly predicted the 

appearance of the AR phenomena as the rotor lag was 

stiffened. 

CONCLUSIONS 

This paper proposes a complementary method to the usual 

ones for helicopters dynamics analysis. It is based on a 

structural and energetic vision and applied first to air 

resonance phenomena. 

A global description of a helicopter is proposed using the 

word bond graph representation. Then a multi bond graph 

model of the main rotor and helicopter body subsystems are 

developed to address the AR phenomena. The model 

simulations are performed using the 20SIM software. 

The simulation results of the MBG model show appearance 

of the AR phenomena and the impact of the lag stiffness 

value for stiff-in-plane rigid rotor. 

Future work will consist in adapting this model to study 

other problems. For example: AR for soft-in-plane rigid 

rotor and for Ground resonance problem. Ambitions are also 

oriented to exploit the graphical aspect of the model in order 

to facilitate analysis of structural properties for controller 

design objectives. 
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Figure 15. Lead-lag response when ωζ = 1.3∙ΩN 

 
Figure 16. Lead-lag response when ωζ = 1.38∙ΩN 

 
Figure 17. Lead-lag response when ωζ = 1.45∙ΩN 

 

 

APPENDIX A 

Case 2 

Consider next that the crossing of the shaft eigenfrequency 

with the regressing lead-lag mode occurs in point B, see 

Figure 18. 

 
Figure 18. Diagram ground and air resonance 

Assume also that the eigenfrequencies are: 

sh

2



 

 
 (23) 

The lead-lag motion as given by (12) becomes then: 

 0 0cos t cos2       (24) 

And the blade lead lag velocity and acceleration are: 

 0 0sin t 2 sin 2            (25) 

 2 2

0 0cos t 4 cos2            (26) 

Following the same procedure as above and describing first 

the lead-lag motion as an external excitation for the shaft, 

one can determine the effective forces on the hub due to the 

blade lead-lag motion as: 

 

2

xr 0

2 2

yr 0

F 2mR 4mR sin 2 (Coriolis)

F mR 5mR cos 2 (Cf. Inertia)

  

   

    

     
(27) 

The first harmonic of the hub forces due to the blade lead-

lag motion as seen by the shaft can be extracted by 

projecting these forces onto the shaft system of reference 

x0y0z0 as seen in Figure 19. 

2 2

x0 xr yr 0 0

2 2

y0 xr yr 0 0

1 9
F F cos F sin mR sin mR sin 3

2 2

1 9
F F sin F cos mR cos mR cos3

2 2

     

     

     

     

 (28) 

Using (24) and (27), the 1
st
 harmonic on the shaft can be 

represented as seen in Figure 20. 
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

xr

yr

Fxr

Fyr

 
Figure 19. Projection of hub forces induced by lead-lag motion on the 

shaft 

xbl

0

Fy0

0

Fx0

Fy0

Fx0
Fy0

0

=0 /  3/ 





 
Figure 20. Lead-lag motion of one blade as external excitation for the 

shaft and the corresponding force on the shaft, Case 2 

D’Alembert

0

=0 /  3/ 

0 

D’Alembert

D’Alembert

0 

0 
0 

0 

 
Figure 21. Longitudinal shaft motion as external excitation for the 

blade and the corresponding force on the blade, Case 2 

 

Describe next the shaft motion as an external excitation for 

the blades. Assume that the shaft can move only 

longitudinally (direction x0), being excited in its 

eigenfrequency sh  . The blades will move up and 

down with the shaft with an acceleration shx . Looking at 

(24), the shaft longitudinal displacement will be: 

 sh sh0 sh sh0x x cos t x cos    (29) 

The force on blade due to the shaft motion is according to 

D'Alembert principle:  

0f f cos   (30) 

and the motion of the shaft during one rotor revolution is 

represented as seen in Figure 21. 

The extra lead-lag moment due to the longitudinal shaft 

motion can be calculated as: 

    

    

linearized

0

0 0

0 0 0

M fR sin f R cos sin cos

f R cos sin cos 2 cos

1 1 1
f R sin 2 f R cos3 cos

2 2 2

     

    

   

     

 

 
  

 

 (31) 

One can see that (31) is out of phase with lag velocity (25), 

thus there is no energy passing from the shaft to the blades. 

Also, from (28) and (29), one can see that Fx0 is out of 

phase with shx , thus no energy input goes from the blades to 

the shaft.  

Assuming next that the shaft can move only laterally 

(direction y0) and following the procedure explained above, 

the shaft lateral displacement can be described as:  

 sh sh0 sh sh0x x sin t x sin    (32) 

The force on blade due to the shaft motion is according to 

D'Alembert principle:  

0f f sin   (33) 

and the lateral motion of the shaft during one rotor 

revolution is represented as seen in Figure 22. 

xbl

0

0

=0 /  3/ 

D’Alembert

D’Alembert

0 

0

0 

0 

0 

0 

 
Figure 22. Lateral shaft motion as external excitation for the blade and 

the corresponding force on the blade, Case 2 
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The extra lead-lag moment due to the lateral shaft motion 

can be calculated as: 

   

  

linearized

0

0 0

0 0 0

M fR cos f R sin cos sin

f R sin cos cos 2 sin

1 1 1 1
f R sin 2 f R cos 2 cos 4

2 2 4 4

     

    

   

    

 

 
   

 

 (34) 

One can see that (34) is also out of phase with lag velocity 

(25), thus there is no energy passing from the shaft to the 

blades. Also, from (28) and (32) one can see that Fy0 is in 

phase with shx , thus there is energy input going from the 

blades to the shaft. However, as no energy goes back from 

the shaft to the blades, this part of the regressing lead-lag 

mode branch as seen in Figure 18 is not dangerous for 

air/ground resonance instability as driving energy is not 

available.  

Case 3 

Finally, consider that the crossing of the shaft 

eigenfrequency with the advancing lead-lag mode occurs in 

point C, see Figure 18. Assume also that the 

eigenfrequencies are: 

sh 2





 

 
 (35) 

The assumed oscillatory lead-lag motion is then: 

 0 0cos t cos       (36) 

And the blade lead lag velocity and acceleration are: 

 0 0sin t sin            (37) 

 2 2

0 0cos t cos            (38) 

Describe first the lead-lag motion as an external excitation 

for the shaft, one can determine the effective forces on the 

hub due to the blade lead-lag motion as: 

 

2

xr 0

2 2

yr 0

F 2mR 2mR sin (Coriolis)

F mR 2mR cos (Cf. Inertia)

  

   

    

     
(39) 

The hub forces due to the blade lead-lag motion as seen by 

the shaft are obtained using (28) and Figure 19 as: 

2

x0 xr yr 0

2

y0 xr yr 0

F F cos F sin 2mR sin 2

F F sin F cos 2mR cos 2

   

   

    

   
 (40) 

Using (36) and (40), the shaft forces and the blade motion 

can be represented as seen in Figure 23. 

xbl

0

Fy0

0

Fx0

Fy0

Fx0

Fy0

=0 /4 / 3/4 





 
Figure 23. Lead-lag motion of one blade as external excitation for the 

shaft and the corresponding force on the shaft, Case 3 

Describe next the shaft motion as an external excitation for 

the blades. Assume that the shaft can move only 

longitudinally (direction x0), being excited in its 

eigenfrequency sh  . The blades will move up and down 

with the shaft with an acceleration shx . Looking at (36), the 

shaft longitudinal displacement will be: 

 sh sh0 sh sh0x x cos t x cos2    (41) 

The force on blade due to the shaft motion is according to 

D'Alembert principle:  

0f f cos2   (42) 

and the motion of the shaft during one rotor revolution is 

represented as seen in Figure 24. 

D’Alembert

=0 /4 / 3/4 

0 

D’Alembert

D’Alembert
0 







 
Figure 24. Longitudinal shaft motion as external excitation for the 

blade and the corresponding force on the blade, Case 3 

The extra lead-lag moment due to the longitudinal shaft 

motion can be calculated as: 

    

  

linearized

0

2

0 0

0 0 0

M fR sin f R cos 2 sin cos

f R cos 2 sin cos

1 1 1 1 1
f R sin 3 sin f R cos 2 cos 4

2 2 4 2 4

     

   

    

      

  

   
       

   

 (43) 



 16 

One can see that (43) is out of phase with lag velocity (37), 

thus there is no energy passing from the shaft to the blades. 

Also, from (41) and (40), one can see that Fx0 is in phase 

with shx , thus energy input goes from the blades to the 

shaft.  

Assuming next that the shaft can move only laterally 

(direction y0) and following the procedure explained above, 

the shaft lateral displacement can be described as:  

 sh sh0 sh sh0x x sin t x sin 2    (44) 

The force on blade due to the shaft motion is according to 

D'Alembert principle:  

0f f sin 2   (45) 

and the lateral motion of the shaft during one rotor 

revolution is represented as seen in Figure 25. 

xbl

0

=0 /4 / 3/4 

D’Alembert

D’Alembert

0 

0 



0





 
Figure 25. Lateral shaft motion as external excitation for the blade and 

the corresponding force on the blade, Case 3 

The extra lead-lag moment due to the lateral shaft motion 

can be calculated as: 

   

  

linearized

0

0 0

0 0 0

M fR cos f R sin 2 cos sin

f R sin 2 cos sin cos 2

1 1 1 1
f R sin 3 sin f R cos 2

2 2 4 4

     

    

   

    

 

   
     

   

 (46) 

One can see that (46) contains one component out of phase 

with lag velocity (37), thus there is no energy passing from 

the shaft to the blades. Therefore, the advancing lead-lag 

mode branch of Figure 18, although contains driving energy, 

the vicious circle of energy flow from the blade lead-lag 

motion to the shaft motion and back is not closed. Therefore 

the advancing lead-lag mode is not involved in air and 

ground resonance instability. Reference [13] demonstrated 

the a case at a 2-bladed wind turbine where the vicious circle 

was closed by the advancing lead-lag mode, the problem 

was the gravity force which was enabling the “pumping” of 

energy from blade to shaft and back. 
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