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Numerical experiments on the performance of the
RBF meshfree Galerkin Methods for solid

mechanics
Abderrachid Hamrani, Eric Monteiro, Idir Belaidi, Philippe Lorong

Abstract—In this work the advances in meshfree methods, partic-
ularly the Radial Basis Function based meshfree Galerkin Methods,
are presented with the purpose of analyzing the performance of
their meshless approximations and integration techniques. The Radial
Point Interpolation Method (RPIM) is studied based on the global
Galerkin weak form performed using classical Gaussian integration
and the stabilized conforming nodal integration scheme. The numeri-
cal performance of this category of methods is tested on their behavior
on two elastic problems with regular node grids, and two other with
distorted irregular grids. All RPIM methods perform very well in
term of elastic computation, the Smoothed Radial Point Interpolation
Method (SRPIM) shows a higher accuracy, especially in a situation of
distorted node schemes. Keywords—adial Basis Function Radial Point
Interpolation Method Galerkin weak form Nodal Integrationadial
Basis Function Radial Point Interpolation Method Galerkin weak
form Nodal IntegrationR

Keywords—Radial Basis Function, Galerkin weak form, Nodal
Integration.

I. INTRODUCTION

ONE of the most important progress in the field of
the numerical simulation was the development of the

finite element method (FEM). In this method, a continuum
solid defined by an infinity of material points is divided
into finite elements which are connected between them by a
kind of “grid”. The finite element method (FEM) proved to
be effective and robust in several engineering fields because
of its capacity to deal with complex geometries. However,
it remains that this method suffers from some limitations
related to the use of meshes, especially when severe element
distortions take place under large deformation processes where
the accuracy in FEM results are considerably lost [1]. To
surmount these problems, numerical methods known usually
as “meshless” or “meshfree” methods were proposed, in these
methods the problem domain is represented by a set of
scattered nodes, without the need of any, a priori, information
on the relationship between them. The development of some
of the meshless methods goes back to more than seventy
years, with the appearance of collocation methods [3] [4]
[5]. After that, the first well known meshless method: the
Smoothed Particle Hydrodynamics (SPH) [6], was originally
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created for the simulation of astrophysical phenomena by Lucy
[7], and from the early 1990s, numerous methods have been
proposed; for instance the diffuse element method (DEM) [8],
the reproducing kernel particle method (RKPM) [9] [10],the
element free Galerkin (EFG) method [11], the point interpola-
tion methods [12], the meshless local Petrov-Galerkin method
(MLPG) [13]. These methods use “Meshless” shape functions
to represent the field variables, since these shape functions
are mathematically constructed by using only a set of nodes
without requiring a mesh.

The Moving least square (MLS) interpolation was one of
the first shape functions used by Belytschko et al. [14] for
the development of the element free Galerkin (EFG) method,
and because of the limitations which suffered this method, in
particular, the complexity of the calculations of MLS shape
functions and their partial derivatives, besides the difficulty
to imposing boundary conditions [15], Liu and Gu [16], [17]
proposed a new family of meshless shape functions, that they
called ”Point Interpolation Methods”. Among these methods,
the radial point interpolation method (RPIM) is preferred
because the use of radial basis function avoids us falling in
the singularity problem of the conventional PIM [18] [45],
and shape functions resulting from RBF are stable and hence
flexible for arbitrary and irregular nodal configurations. For
the achievement of a numerical simulation for mechanics
problems we need in combination with shape function a
formulation procedure based on strong or weak-forms derived
directly from the physical principles. In general, we use weak-
form formulations to construct discretized system equations,
and the most widely used approache is the Galerkin weak-
forms.

For the requirement of a weaker consistency on the ap-
proximate function, weak forms need an integral operation
performed numerically by the use of two major techniques,
the classical Gauss integration and the stabilized conforming
nodal integration (SCNI) proposed by Beissel and Belytschko
[19] and after by Chen et al. [20] [21].

In the present work, our objectif is to study the RBF
meshfree Galerkin Methods through their performances in
term of : interpolations (RPIM shape function) and their
numerical integration techniques (classical Gauss integration
and the stabilized conforming nodal integration).

II. CONSTRUCTION OF RPIM SHAPE FUNCTIONS

The interpolation employed for the construction of the
RPIM shape functions augmented with polynomials can be



written as [45]:

u(x) =
n∑

i=1

ri (x) ai+
m∑
j=1

pj (x) bj = rT (x) a + pT (x) b (1)

Where ri (x) is a radial basis function (FRB), pj (x) is a
basis function of monomials [x, y] (in 2D problems). Coef-
ficients ai and bi are the corresponding constants yet to be
determined, n is the number of RBFs, m is the number of
polynomial basis functions.

To find out coefficients ai et bi, we have to satisfy equation
(1) at the n nodes in the local support domain of the point of
interest at x, this leads to n linear equations, then the matrix
form of these equations can be written as :

u = R0 a + Pm b (2)

where :
u =

{
u1 u2 u3 · · · un

}T
(3)

the FBR matrix :

R0 =


r1 (d1) r2 (d1) · · · rn (d1)
r1 (d2) r2 (d2) · · · rn (d2)
· · · · · · · · · · · ·

r1 (dn) r2 (dn) · · · rn (dn)


(n×n)

(4)

Where di in ri(dk) is defined as :

dk =

√
(xk − xi)2

+ (yk − yi)2 (5)

and the Polynomial basis functions matrix:

Pm =


1 x1 y1 · · · pm (x1)
1 x2 y2 · · · pm (x2)
...

...
...

. . .
...

1 xn yn · · · pm (xn)

 (6)

in this case, there are n+m variables in Eq.2, so an other
m equations should be required. Golberg et al.[22] added
the additional m equations by using the following constraint
conditions :

PT
ma =

n∑
i=1

pj (xi) ai = 0, j = 1, 2, . . . , m (7)

the vector that collect coefficients for RBFs is :

aT =
{
a1 a2 · · · an

}
(8)

the vector that collect coefficients for Polynomial basis func-
tions is :

bT =
{
b1 b2 · · · bm

}
(9)

the equation (2) can be written in the following form:

ũ =

[
u
0

]
=

[
R0 Pm

PT
m 0

]
︸ ︷︷ ︸

G

{
a
b

}
= G a0 (10)

aT0 =
{
a1 a2 · · · an b1 b2 · · · bm

}
(11)

ũ =
{
u1 u2 · · · un 0 0 · · · 0

}
(12)

Since the matrix R0 is symmetric, the matrix G will also be
symmetric, than by solving equation (10), we obtain :

a0 =

{
a
b

}
= G−1 ũ (13)

The RPIM shape function is finally expressed as

u (x) =
{

rT (x) pT (x)
} { a

b

}
(14)

u (x) =
{

rT (x) pT (x)
}

G−1ũ = φ̃
T

(x) ũ (15)

φ̃
T

(x) =
{

rT (x) pT (x)
}

G−1 (16)

φ̃
T

(x) =
{
φ1 (x) φ2 (x) · · · φn (x) φn+m (x)

}
(17)

Where the RPIM shape functions corresponding to the nodal
displacements are given by

φT (x) =
{
φ1 (x) φ2 (x) · · · φn (x)

}
(18)

It can be seen that the resultant RPIM shape function
has the delta Kronecker property and partition of unity, and
due to the addition of polynomial basis, they also fulfill the
reproducing properties. In this work, different radial basis
functions augmented with the linear polynomial basis are used
to construct the present RPIM shape function, the choice of
the shape parameters in the RBFs are studied.

III. GALERKIN WEAK FORM OF 2-D SOLID MECHANICS

A 2-D problem of solid mechanics defined in the domain Ω
bounded by Γ can be described by the following equilibrium
equation :

∇·σ + F = 0 in Ω (19)

where σ is the Cauchy stress tensor and F the body forces
vector. The boundary conditions for the equilibrium equations
are :

(20)σ n = t̄ on the natural boundary Γt

(21)u = ū on the essential boundary Γu

where ū is a prescribed displacement on boundary Γu, t̄ is
a prescribed traction on the boundary Γt and n is the outward
normal on the boundary.

The well-known Galerkin weak form is given by :

(22)
∫
Ω

δ
(
∇uT

)
· σ dΩ−

∫
Ω

δuT · F dΩ−
∫
Γt

δuT · t̄ dΓ = 0

Discretization of Eq.(22) with interpolation function Eq.(15)
yields

K u = f (23)



where

(24)

Kij =

∫
Ω

BT
i CBj dΩ, and fi

=

∫
Ω

ΦT
i F dΩ +

∫
Γt

ΦT
i t̄ dΓ

where C is the matrix of elastic constants and Bi is the
strain matrix.

The integrals involved in Eq.(24) are usually evaluated
numerically through the well known Gauss integration scheme
as is commonly used in finite elements. In this study, a second
scheme is also used : the stabilized conform-ingnodal inte-
gration scheme (SCNI). Both schemes are shortly explained
below.

IV. INTEGRATION TECHNIQUES

A. Gauss integration

In order to evaluate integrals over the global problem
domain Ω and the global traction boundary Γt, the problem
domain is discretized into a set of background cells. Hence, a
global integration can be expressed as :

(25)
∫
Ω

G dΩ =

nc∑
k=1

∫
Ωk

G dΩ =

nc∑
k=1

ng∑
i=1

_
wi G (xQi)

∣∣JDik∣∣
where nc is the number of background cells, ng is the num-

ber of Gauss points used in a background cell, G represents
the integrand, Ωk is the domain of the kth background cell,
_
wi is the Gauss weighting factor for the ith Gauss point at
xQi, and JD

ik is the Jacobian matrix for the area integration of
the background cell k.

Similarly, we can obtain the formulation of the curve Gauss
quadrature as

(26)
∫
Ω

G dΓt =

nct∑
l=1

∫
Γtl

G dΩ =

nct∑
l=1

ngt∑
i=1

_
wi G (xQi)

∣∣JB
il

∣∣
nct is the number of the curve cells that are used to

discretize boundary Γt, and ngt is number of Gauss points
used in a sub-curve, JB

il is the Jacobian matrix for the curve
integration of the sub-boundary l for the Gauss point at xQi.

B. Nodal integration

In Gauss quadrature a global background cell structure has
to be used, this fact made the method not truly meshless.
To avoid the use of background cells Beissel and Belytschko
[19] have proposed a nodal integration procedure based on a
strain smoothing stabilization to eliminate spatial instability
in nodal integration. This technique of integration is based on
the substitution of the displacement gradient at a node xk by
averaging the displacement gradient over a cell accompanying
that node [20] :

∇uh (x) =

∫
Ωk

∇uh (x) W̃ (xk − x) dΩ (27)

W̃ (xk − x) is a smoothing or weight function associated with
xk, in general we use the following simplest form of the
Heaviside-type smoothing function:

W̃ (xk − x) =

{
1/Ak x ∈ Ωk

0 x /∈ Ωk
(28)

where Ak is the area of smoothing domain Ωk. Equation 27
become :

∇uh (x) =
1

Ak

∫
Ωk

∇uh (x) dΩ (29)

The surface (or volume) integral can be rewritten by means of
the Gauss divergence theorem to a curve (surface) integral :

(30)

∇̃uh (x) =

∫
Γk

uh (x) nk (x) W̃ (xk − x) dΓ

=
1

Ak

∫
Γk

uh (x) nk (x) dΓ

This nodal integration is based on strain/gradient smoothing
technique, this technique is principaly used on the smoothed
finite element methods (SFEM) [35] [36][37][38]. Numbers
of SFEM models was developped, because of the types of
smoothing domains used [43]. Different smoothing domains
created based on cells (cell-based S-FEM (CS-FEM)) [40],
nodes (node-based S-FEM (NS-FEM)) [42], edges (edge-
based S-FEM (ES-FEM)) [41], and faces (face-based S-FEM
(FS-FEM)) [40].

V. ERROR ANALYSIS FOR RADIAL POINT INTERPOLATION
METHOD

Two sources of error are noticed in the case of RPIM:
the Radial Basis Function interpolation error and the error in
calculation of Galerkin weak form. The first error due to the
interpolation can be evaluated by the error in fitting different
curves and surfaces. The second error is evaluated through the
study of convergence rate of RPIM in case of boundary-value
problem.

A. RBF interpolation error

In this section, studies on the accuracy of the RPIM shape
functions used for curve fitting are conducted . The fitting
of functions is based on the nodal function value sets that
are generated at regularly as well as at irregularly distributed
nodes. The procedure carried out for curve fitting is : first we
create a set of field nodes in the domain where the function
is to be fitted, then for a given test node x (usually different
from the set of field nodes) where the function is to be fitted,
we choose n nodes in the influence domain of x, now we
can construct RPIM shape functions, and finaly, using these
shape functions we can calculate the function value at x and
compare it with the real value.

The interpolation error of curve fitting at point i is measured
by :

et =
1

n

n∑
i=1

∣∣∣∣∣ f̃i − fifi

∣∣∣∣∣ (31)



Table I: Radial Basis Functions with global support used in
this study.

RBF Equation

MQ ri(di) =
(
di

2 + (αcdc)
2
)q

Exp ri(di) = exp
[
−αc ( didc )

2
]

TPS ri(di) = dηi

where fi is the true function value at point i and f̃i is the
fitted function value of the function f at point i in the influence
domain.

To construct the RPIM shape function we have to compute
the inverse of the matrix G (Eq.16), the numerical inversion of
this matrix G affects the accuracy of interpolation [23], [24].
Therefore, we add a second indicator to the interpolation error
wich is the condition number of matrix G.

1) Shape parameters analysis: In this section we will
see how the shape parameters affect RPIM shape function.
Because there is no rule governing the rational choice of
the RBF parameters, this theme was and stay a problematic
theme when the interpolation by the radial basis functions
are used. Several works was made in this axis, we can
find the paper of Franke [25] concerning the convergence
study of the RBF interpolation, particularly the Multiquadrique
(MQ), where he recommends to use an αc = 1.25 ds/

√
N .

Hardy [26] recommends the value αc = 0.815 ds where
the average influence domain ds = (1/N)

∑N
i=1 di (di is

the distance between the ith node and his nearest natural
neighbor). Rippa [27] proposes an optimization algorithm for
the choice of the rational parameters, which will afterward
be improved by Scheuerer [28]. We can also present some
recent works including publications of Wang and Liu [29] [30]
where they studied the optimal values of RBF-MQ and EXP
shape parameters in 2D and 3D [31], they confirm that the
condition number of matrix G directly affects the accuracy of
RBF interpolation. R. Li et al [32] found a range of optimal
values of the RBF-MQ shape parameters for the hybrid radial
boundary node method.

For this analysis, RPIM shape functions are constructed in a
domain of (x, y) ∈ [−1, 1] [−1, 1] using three sets of 5×5 =
25 nodes patterns generated within this domain (Fig. 1).

Figure 1: The three sets of nodes patterns.

A total of 100 points are defined as evaluation points. In
this study we use three type of RBF with global support:
Multiquadric (MQ), Gaussian (EXP), Thin Plate Spline (TPS)
(Tab I), in addition of an RBF with compact support (Wu-C2)
(Eq.32), with the use of polynomial terms (Eq. 1).

ri(di) =

(
1− di

δc

)5(
8 + 40

di
δc

+ 48
di

2

δ2
c

+ 25
di

3

δ3
c

+ 5
di

4

δ4
c

)
(32)

The evaluation procedure can be prescribe as fellow : for a
fixed number of nodes and sampling points, and for a range
of RBF shape parameters, we calculate the interpolation error
of curve fitting for function defined as :

f(x, y) = sin
(√

(x2 + y2)
)

(33)

For this exemple we choose a large influence domain that
include all nodes of the problem, in order to study only
the effect of the choice of the FBR parameters, and once
good parameters are selected, we can pass to the choice of
dimension of influence domain. All sets of nodes patterns (Fig.
1) are employed in order to evaluate the capacity of RPIM to
deal with problems where nodes distribution are irregular.

Figure 2: Effect of shape parameters q and αc of RBF-MQ on
(a) Interpolation error and (b) condition number of matrix G.

Figure 3: Effect of shape parameter αc of RBF-EXP on (a)
Interpolation error and (b) condition number of matrix G.

Figure 4: Effect of shape parameter η of RBF-TPS on (a)
Interpolation error and (b) condition number of matrix G.

Through figures 2 to 9, conclusions can be summarized in
the following points:



Figure 5: Effect of shape parameter δ of RBF-Wu-C2 on (a)
Interpolation error and (b) condition number of matrix G.

Figure 6: Effect of shape parameter q of RBF-MQ on Inter-
polation error with different sets of nodes patterns.

Figure 7: Effect of shape parameter αc of RBF-EXP on
Interpolation error with different sets of nodes patterns.

Figure 8: Effect of shape parameter η of RBF-TPS on Inter-
polation error with different sets of nodes patterns.

Figure 9: Effect of shape parameter δ of RBF-Wu-C2 on
Interpolation error with different sets of nodes patterns.

1) In order to find the good parameters of the FBR, it would
be necessary to find the just balance between the error
of interpolation and the condition number of matrix G.

2) Singular values found on the two basis MQ and TPS are
resulting from the bad conditioning of the matrix G for
these values.

3) Both Gaussian (EXP) and Wu-C2 basic functions
present no singular behavior for all shape parameters
values.

4) We can notice through figures 6 to 9, that the way nodes
are distributed has no significant effect on the quality of
RBF interpolation.

2) Dimensions of the influence domain: We suggest now
to study the effect of the influence domain size (with circular
shape) on the accuracy of RBF interpolation. For this, the
domain of the problem is discrétised by 529 nodes distributed
in an irrigular manner. By increasing gradually the size of the
influence domain, the number of nodes inside thise domain
wil increase, then we will proceed to the calculation of the
interpolation error and the condition number of matrix G.

The obtained results are illustrated in figures (10, 11) when
we can draw the following conclusions :

1) The condition number of matrix G grows systematically
with the increase of the dimensions of the influence
domain, thus more the number of nodes inside this
domain increases more the matrix G will be badly
conditioned.

2) The interpolation error does not improve systematically
by increasing the number of nodes inside the influence
domain, in our opinion, this is due to two factors, the
first one is that more the number of nodes implied
in the interpolation is important more the number of
computational arithmetic operations is important, this
engenders numerical calculation errors, the second is
that more the number of nodes is important more the
condition number of the matrix G is larger this means
that the matrix is ill-conditioned and its inversion will
cause bigger error.

3) Larger influence domain means higher number of nodes
included in the interpolation, and it implies the increase
on the CPU operations (figure 12). we note that the
meshless code is programmed in Matlab and the sim-



ulations are performed on a i5-2.5 GHz computer.
4) From this analysis we recommende that 6 to 25 nodes

in the influence domain generate good result and a
bigger or smaller number of nodes would lead to larger
numerical error.

5) We can mention a technique used in [2] [33] [34], which
is based on the concept of the natural neighbor for
the construction of the influence domain, the interval
recommended by the author for the number of nodes
inside (first and second order natural neighbors) Joined
what is previously mentioned.

Figure 10: Effect of influence domain dimenssions on Inter-
polation error with different types of RBF.

Figure 11: Effect of influence domain dimenssions on condi-
tion number of matrix G by different types of RBF.

B. Numerical experiments of 2-D solid mechanics problems
1) Error index: The error due to the calculation of Galerkin

weak form should be different from that used to evaluate only
RBF interpolation over scattered data.

A relative error of displacements is defined as follows :

(34)

edep =

∥∥∥u− _
u
∥∥∥
L2

‖u‖L2

=

(∫
Ω

(
u− _

u
)T (

u− _
u
)
dΩ

)1�2

(∫
Ω

(u)
T

(u) dΩ

)1�2

Figure 12: Effect of influence domain dimenssions on the
number of computational arithmetic operations.

where _
u and u are displacements computed by the RPIM

and the exact analytical solution, respectively.
The error of energy is defined as follows :

(35)eEdef =

(∫
Ω

1
2

(
ε− _

ε
)T

c
(
ε− _

ε
)
dΩ

)1�2

(∫
Ω

1
2 (ε)

T
c (ε) dΩ

)1�2

Where _
ε and ε are strain tensors obtained from the RPIM

and the exact analytical closed-form solution, respectively.
In order to evaluate the convergence rates of RPIM methods,

it is necessary to define a characteristic length ”h”. For a grid
of triangular T3 background cells:

h =

√
2AΩ

Nc
(36)

For a grid of quadrilateral Q4 background cells :

h =

√
AΩ

Nc
(37)

where AΩ is the area of the problem domain and Nc the
number of integration cells.

2) Cantilever beam problem: In this test the accuracy and
convergence of combination of shape functions and integration
schemes is examined on the problem of a cantilever beam.
This problem is widely used to select the optimal parameters
of RPIM [29], [30], [31], [32]. Almost all reported conclusions
are obtained from this benchmarking numerical experiment.

Consider a cantilever beam shown in Fig.13. The beam is
fixed at the left end and subjected to a parabolic traction force
at the free end.

The analytical solution is defined as follows [44]:

(38)u (x, y) =− Py

6EI

[
(6L−3x)x+ (2 + v)

(
y2− D

2

4

)]

v (x, y) =
P

6EI

[
3 υ y2 (L

− x) + (4 + 5 υ)
D2x

4
+ (3L− x) x2

]
(39)



Figure 13: Cantilever beam problem.

where the moment of inertia I of the beam is given by
I = D3

12 .
The corresponding stresses are :

(40)σxx (x, y) = −P (L− x) y

I

(41)σyy = 0

(42)τxy (x, y) =
P

2I

[
D2

4
− y2

]
The beam parameters are taken as P = −1000N , E =

3× 107MPa, υ = 0.3, D = 12mm, L = 48mm.
3) Shape parameters analysis: For this test, two config-

urations of nodes will be used: 325 nodes distributed in a
regular and irregular way respectively 14. Only two radial
basis functions will be handled: the multiquadric (MQ) and
the Gaussienne (EXP). Here circular influence domain cir-
cumvents 8 to16 nodes is used for each Gaussian point.
Polynomial term is included for the rbf interpolation. For the
gauss integration we use 4 × 4 = 16 gauss points for each
cell of the set of 288 (24× 12) background cells (figure 15).
First, we study the effect of the Multiquadric shape parameters
(MQ), results will be illustrated in figures 16, 17.

Figure 14: Nodes configurations of the cantilever beam prob-
lem.

1) For a uniform distribution of nodes, the optimal error
values are registered for q between 1.5 − 2 and all
mentioned αc (αc = 0.5, 1, 1.5, 2, we avoided the value
of q = 2 because it is the particular value which makes
the matrix G singular or strongly ill-conditioned.

2) For an irregular nodes distribution, the optimal value of
q varies according to the value of αc.

Figure 15: (24× 12) background cells for numerical integra-
tion.

Figure 16: Effect of RBF-MQ shape parameters on energy
error for regular nodes distribution.

Figure 17: Effect of RBF-MQ shape parameters on energy
error for irregular nodes distribution.

3) The recommended values for the Multiquadric (MQ) are:
αc = 0.5 ∼ 2 and q = 0.4 ∼ 2.2 with the exception of
the singular values (integers).

Secondly, we study the effect of the Gaussian shape param-
eters (EXP), results will be illustrated in figures 18.

1) For a uniform node disctribution, the values of the
energy error remain relatively invariant for αc > 0.03.

2) For an irregular nodes distribution, the behavior of the
error according to αc is almost the same that for the
uniform configuration.

3) The recommended values for Gaussian (EXP) are : αc =
0.2 ∼ 1.

4) Dimensions of the influence domain: In this analysis,
we adopt a configuration of 975 (39x25) nodes uniformly
distributed, the same configuration is used for quadrilateral
background cells (figure 19), four configurations of shape
parameters for the FBR will be used : RBF-MQ with: q = 1.3



Figure 18: Effect of RBF-EXP shape parameters on energy
error for regular/irregular nodes distribution.

and αc = 0.5 and q = 1.9 and αc = 1.5, RBF-EXP with:
αc = 0.2 and αc = 0.6. The number of Gauss points is
maintained to 16 points by cell.

Figure 19: The two combined configurations of 975 (39x25)
nodes and 1040 (40x26) background cells.

Figure 20: Effect of influence domain dimenssions on energy
error.

1) Large size of influence domain does not imply system-
atically a good precision, quite the opposite, number
of arithmetic operations required for the calculation
increase, what would have consequence on increasing
the CPU time (figure 21).

2) The number of nodes recommended to reach a good
quality is of 9 ∼ 30 nodes inside the influence domain.

5) Number of Gauss points: To analyze how the number of
Gauss points by cell used on the Gauss integration technique
affect the accuracy of RPIM, we have to fix these parameters
: for nodal discretization and background cells we use the
previous uniform configurations Fig.14 and 15, two radial
basis functions are considered : the RBF-MQ with q = 1.9

Figure 21: Effect of influence domain dimenssions on the
number of computational arithmetic operations.

and αc = 1.5, the RBF-EXP with αc = 0.2, the influence
domain being determined by 6-12 nodes inside.

Figure 22: Energy error in function of the number of Gauss
points.

Figure 22 shows the variation of the energy error according
to the number of Gauss points of by cell, we notice that more
the number of gauss points will be important, more the quality
of RPIM results will be better until a relative stabilization for
a number bigger than 64 = 8 × 8 quadrature points. On the
other hand, it would be necessary to pay attention to the CPU
time for numerical calculations which will tend to increase
proportionally with the increase of Gauss points used. We can
recommend to take a 4 × 4 up to 6 × 6 Gauss points for
rectangular cells.

6) Effect of the integration technique: The objective of this
section is the study of two numerical integration techniques :
the classical Gauss integration and the Stabilized conforming
nodal integration (SCNI).

In all what follows, the Radial basic function chosen is the
Gaussian (EXP) with αc = 0.2, with addition of 1st order
polynomial terms, influence domain being determined with 8-
16 nodes inside. A total of 6 × 6 Gauss points are used for
the classic Gauss quadrature.

five set of regularely distributed nodes pattern and in the
same time integration cells are used for this exemple : 1150,
798, 520, 360, 284.



We notice, first, that the convergence rates of meshfree
methods (RPIM, SRPIM) are better than those obtained by
the FEM, this is due to the higher order of RBF interpolation
comparing with the linear interpolation used in FEM triangular
element, secondly, among RPIM meshfree methods the one
who presents a better rate of convergence is SRPIM, who
possesses the advantage of using a nodal stabilized integration
with regard to the classic RPIM which use Gauss integration.

Figure 23: Relative error in displacement calculated for FEM,
RPIM, SRPIM.

Figure 24: Relative energy error calculated for FEM, RPIM
and SRPIM.

C. Infinite plate with a circular hole
We consider here a plate with a central circular hole with

raduis a = 1m subjected to a unidirectional tensile load of
F = 1N/m in the x-direction, due to symmetry, only the
upper right quadrant of the plate is modelled as shown in
Figure 25. Symmetry conditions are imposed on the left and
bottom edges. The inner boundary is traction free. Plane strain
conditions are assumed, and the problem constants are : L =
5m, a = 1m,E = 103N/m2, ν = 0, 3, P = 1N/m. analytical
solution of these problem [44]:

(43)
u1 =

a

8µ

[
r

a
(κ+ 1) cos θ

+ 2
a

r
((1 + κ) cos θ + cos 3θ)− 2

a3

r3
cos 3θ

]

Figure 25: Geometry of the infinite plate with a hole problem.

(44)
u2 =

a

8µ

[
r

a
(κ− 3) sin θ

+ 2
a

r
((1− κ) sin θ + sin 3θ)− 2

a3

r3
sin 3θ

]
where (r, θ) are the polar coordinates with θ measured counter-
clockwise from the positive x axis, µ = E/(2 (1 + ν)) et
κ = 3− 4ν.

The analytical solution for the stresses of an infinite plate
is :

(45)σx (x, y) = 1− a2

r2

{
3

2
cos 2θ + cos 4θ

}
+

3a4

2r4
cos 4θ

(46)σy (x, y) = −a
2

r2

{
1

2
cos 2θ − cos 4θ

}
− 3a4

2r4
cos 4θ

(47)σxy (x, y) = −a
2

r2

{
1

2
sin 2θ − sin 4θ

}
+

3a4

2r4
sin 4θ

The displacement boundaryconditions are given by :
on the edge of x = 0 : ux = 0, on the edge of y = 0 :

uy = 0.
As in the previous example, five nodes configurations will

be used for this problem also, the total number of nodes used
is: 169, 289, 625, on 1089 and 1681. Figures 26, 27, illustrate
convergence rates of results obtained from RPIM, SRPIM and
FEM. We notice as well in this problem that the convergence
rates obtained from meshless methods, are better than those
obtained by the FEM, and among the RPIM methods, SRPIM
presents a better precision in term of displacement error
and in energy error, what confirms the quality of the SCNI
integration.



Figure 26: Relative error in displacement calculated for FEM,
RPIM, SRPIM.

Figure 27: Relative energy error calculated for FEM, RPIM
and SRPIM.

D. Distortion analysis

The example treated in this test is similar to the precedent
test of cantilever beam (Figure 13), but with a different ge-
ometry and load (Figure 28), this geometry will be discretised
by various nodes configurations (Figure 29).

The Radial basic function chosen is the Gaussian (EXP)
with αc = 0.2, influence domain being determined with 8-16
nodes inside. A total of 6 × 6 Gauss points are used for the
classic Gauss quadrature.

The exact solution calculated on the field of stress :

σxx (x) =
3

2
y, σyy (x) = 0, σxy (x) = 0 (48)

The exact solution calculated on the field of strain :

(49)

εxx (x) =
3E (1− υ)

2 (1− υ) (1− 2υ)
y, εyy (x)

=
3Eυ

2 (1− υ) (1− 2υ)
y, εxy (x)

= 0

We notice in Figures 30 and 31 that for the first nodes
configuration distributed in a regular way (configuration (1)),
all RPIM methods gives satisfactory results and better than

Figure 28: Model to examine distortional effects.

Figure 29: Grids used to examine the influence of distortion.

those obtained by finite element method (with linear triangular
element mesh).

For the last nodes configuration, the most severe twisted
configuration, and in spite of the fact that we use an influence
domain guaranteeing a minimum number of nodes inside
the latter, we notice that all RPIM methods diverges but by
different degrees, the method which seems the least affected
by this distortion is the S-RPIM (with SCNI technique). In
summary, the more the distortion of the meshing of nodes is
big, the more the error in displacement and in energy increases,
however the methods using the SCNI integration technique are
less affected by this degradation than those using the classical
Gauss integration.

VI. CONCLUSION

In this paper a numerical analysis was performed on the
RPIM meshless method with two integration schemes. The
performance in the RBF shape function and in linear elasticity.
It was shown that the Radial basis interpolation was important
to the global accuracy of the RPIM. It was found that the
condition number of the matrix G heavily affects the accuracy
of interpolation. Shape parameters also had important effects
on the condition number. A range of good shape parameters
should balance the accuracy and the condition number. The
folowing notes can be retained : Error was large when shape
parameters takes singular values (q = integer values for
RBF-MQ). Through numerical experiments, a range of shape
parameters was found. Parameters from this range can give



Figure 30: Relative error of displacement on results obtained
by FEM, RPIM and SRPIM with several nodes configurations.

Figure 31: Energy error on results obtained by FEM, RPIM
and SRPIM with several nodes configurations.

relatively good results. For regular nodal distribution, when
the number of nodes inside the influence domain ranges from
6 to 25, the accuracy was high. With adding polynomial term
and an appropriate influence domain size, shape parameters
can be chosen from a larger range of values avoiding singular
ones. Nodal distribution had little effect on the accuracy of
RPIM interpolation. Further more it was observed that the
SCNI integration scheme was less sensitive to distortion than
the Gaussian integration scheme, and gives excellent results
when compared to a Gaussian integration rule.
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