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a b s t r a c t

In the present paper spaces of fifth-order tensors involved in bidimensional strain gradient elasticity are
studied. As a result complete sets of matrices representing these tensors in each one of their anisotropic
system are provided. This paper completes and ends some previous studies on the subject providing a
complete description of the anisotropic bidimensional strain gradient elasticity. It is proved that this
behavior is divided into 14 non equivalent anisotropic classes, 8 of them being isotropic for classical
elasticity. The classification and matrix representations of the acoustical gyrotropic tensor are also
provided, these results may find interesting applications to the study of waves propagation in dispersive
micro-structured-media.

1. Introduction

Understanding and modeling wave propagation in periodic lat-
tices is a problem of prime importance for the design of metama-
terials. The shape of the elementary cell and its point group
determines the elementary vibration modes of the lattice
(Dresselhaus et al., 2008), hence the number and nature of acous-
tical and optical branches of the dispersion curves. The structure of
branches are important since it determines the band gaps (Kittel,
2007), which are responsible for some ‘‘macroscopic’’ non standard
effects. Another specific feature of wave propagation in periodic
lattices is a strong directionality at high frequencies, which cannot
always be described by a classical continuous formulation.

At the present time, the study of wave propagation in periodic
lattices relies on FEM computation on a unit cell. Results of such
simulations can be found in numerous references (Phani et al.,
2006; Spadoni et al., 2009; Liu et al., 2011). The determination of
a continuous substitution medium that would replace the explicit
micro-structure might be valuable, especially regarding optimiza-
tion purposes (Jensen and Sigmund, 2004). Since the loading wave-
lengths are a few times the scale of the unit cell, wave propagation
through the medium is dispersive, i.e. the phase velocity of a wave
depends on its frequency. And, as well-known, classical linear

elasticity is not dispersive (Royer and Dieulesaint, 2000). This
raises the question of how to model dispersivity in a continuous
fashion. Such a formulation is appealing for studying wave trans-
mission and reflection across material discontinuities, which could
find natural applications both in biomechanics (Rosi et al., 2014)
and nondestructive damage evaluation (dell’Isola et al., 2011).

This question began to be investigated in the field of condensed
matter physics during the 1960s (Toupin, 1962; Portigal and
Burstein, 1968). The aim was to circumvent the uses of cumber-
some models of lattice dynamics in the modeling of dispersive
behaviors. Physical motivations were twofold:

Acoustical activity which concerns the rotation of the plane of
polarization of a transverse wave through its propagation, was
observed in some crystals. This effect, which can be encoded
by a fifth-order gyrotropic tensor (Bhagwat et al., 1986), couples
strain and strain-gradient effects.
Ballistic phonon imaging is an high-energy imaging technique
used to investigate the anisotropic features of crystals. Using
heat pulses of very high frequency (0.1–1 THz), for very low
room temperature (Wolfe, 2005), the heat propagation is no
more diffusive but ballistic and described by the elastic
properties of the crystal lattice. To study departure from
classical elasticity that occurs at high-frequency, (DiVincenzo,
1986) proposed a continuum extension that involved not only
a fifth-order elasticity tensor but also a sixth-order one.
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Nowadays problematics in metamaterials studies are very similar.1

Since effective description using classical elasticity is not sufficient,
one can use generalized continuum theories which are known to
be dispersive. There are two ways to extend classical continuum
mechanics (Toupin, 1962; Mindlin, 1964, 1965; Erigen, 1967;
Mindlin and Eshel, 1968):

Higher-order continua: with this option the number of
degrees of freedom is extended. These theories can model opti-
cal branches. The Cosserat elasticity in which local rotations are
added as degrees of freedom belongs to this family (Cosserat
and Cosserat, 1909). This enhancement can be extended further
to obtain the micromorphic elasticity (Green and Rivlin, 1964;
Mindlin, 1964; Germain, 1973).
Higher-grade continua: the other option is to keep the same
degrees of freedom but to add higher-order gradients of the
displacement field into the energy density. Within this
framework no optical branch is added to the acoustical
ones. Mindlin first strain-gradient elasticity (SGE)
(Mindlin, 1964; Mindlin and Eshel, 1968), and second strain
gradient elasticity (Mindlin, 1965) belongs to this family.
Higher-grade continua can be conceived as low frequency,
long wave-length approximations of higher-order continua
(Mindlin, 1964).

This situation is sketched in Table 1.
In order to mimic the general approach followed in physics

which are based on Taylor expansion of a non-local constitutive
operator, the higher-grade path will be followed. In the present
paper, Mindlin strain-gradient elasticity (SGE) will be considered.
This model can be seen as a phenomenological approximation of
the expansion used by Portigal and Burstein (1968) or
DiVincenzo (1986).2

Modeling anisotropic wave propagation in this framework
requires knowing the matrix representations of

� higher-order inertia tensors;
� higher-order elasticity tensors;

in each anisotropic system. The first point has rarely been
addressed in the literature, and at the present time little is known,

except in some specific situations (Wang and Sun, 2002;
Bacigalupo and Gambarotta, 2014). Despite its interest, this subject
will not be considered in the present paper in which attention will
be focused on higher-order elasticity tensors. If higher-order
inertia tensors are specific to dynamics, higher-order elasticity
tensors are also involved in statics. Hence, our results may find
applications both for static and dynamics.

Concerning higher-order elasticity tensors, if matrix representa-
tions are known for the sixth-order elasticity tensor (Auffray et al.,
2009a, 2013), the fifth-order tensor involved in this model has not
been studied; it is the purpose of the present contribution to pro-
vide a complete set of anisotropic matrix representation for this
fifth-order coupling tensor. For the sake of simplicity, our investi-
gation will be restricted to a bidimensional physical space. As a
consequence:

� the description of the static anisotropic 2D strain-gradient
elasticity model is now complete. 2D static strain-gradient
elasticity possesses 14 different types of anisotropy, 8 of them
being isotropic for classical elasticity;
� the complete set of gyrotropic tensors responsible for the

so-called acoustical activity, that is the rotation of the plane of
polarization of a transverse wave through its propagation,3 is
also obtained.

The paper is organized as follows. First, the constitutive law of SGE
is recalled and results regarding symmetry classes are recapitu-
lated. The main results obtained for the coupling elasticity (CE)
tensor and the acoustic gyrotropic (AG) tensor are given in
Section 3, where explicit matrix representations for all the symme-
try classes are provided. In Section 4 results concerning tensors of
SGE are summarized, and the complete classification of SGE law is
given. The different kinds of coupling which may occur are
detailed. It will be shown that, in 2D, fifth-order coupling elasticity
plays a limited role in the modeling of chiral sensitivity. Finally, in
Section 5 a few concluding remarks are drawn.

2. Strain-gradient elasticity

In this section, the basic equations of strain gradient elasticity
are presented. The constitutive relations are considered first, fol-
lowed by the equation of motion. These different relations involve
the classical fourth-order elasticity tensor supplemented by a
fifth-order coupling tensor and a sixth-order tensor. It should be
noted that the motion equation only involves a particular combi-
nation of components of the fifth-order tensor. This leads to the
definition of the fifth-order acoustical gyrotropic tensor. As will be

Table 1
Basic extensions of a classical continuum. From the left to the right, rotation then stretch are added to the kinematics. For higher-order continua these extensions are independent
DOF, for higher-grade continua they are controlled by higher-order gradients of the displacement field.

1 It is worth noting an important difference between these two approaches: for
condensed matter physics, the number of degrees of freedom of the microproblem is
finite, whereas this number is infinite for metamaterials.

2 DiVicenzo’s perturbative approach and the Mindlin strain-gradient phenomeno-
logical continuum agree on both the fourth- and fifth-order tensors, but differ for the
sixth-order one. To obtain a strict agreement on this tensor, Mindlin second
strain-gradient elasticity should be used (Mindlin, 1965). Since the nature of the
correct continuum extension remains unclear today, attention will be concentrated in
the present paper on the simplest consistent extension.

3 If the nature of this effect is rather clear in a 3D space, its interpretation in 2D
remains unclear.



shown hereafter, these two fifth-order tensors behave differently
with respect to material symmetries.

2.1. Constitutive equations

In the strain-gradient theory of linear elasticity (Mindlin, 1964;
Mindlin and Eshel, 1968), the constitutive law gives the symmetric
Cauchy stress tensor r and the hyperstress tensor s in terms of:

� the infinitesimal strain tensor: e
� the strain-gradient tensor: g ¼ e�r which, using index nota-

tion, gives gijk ¼ eij;k the comma denoting a derivation.

through the two linear relations:

rij ¼ Cijlmelm þMijlmnglmn

sijk ¼ Mlmijkelm þ Aijklmnglmn

�
ð1Þ

Above,

� C is the classical fourth-order elastic tensor;
� M is the fifth-order coupling elastic (CE) tensor;
� A is the sixth-order second-order elastic (SOE) tensor.

These tensors satisfy the following index permutation symmetry:

CðijÞðlmÞ; MðijÞðklÞm; AðijÞk ðlmÞn

where the notation ð. . .Þ stands for the minor symmetries, whereas
. . . stands for the major one. In the case where the microstructure of
a material exhibits centro-symmetry, the fifth-order elastic stiffness
tensor M vanishes. It is worth noting that in even dimension the
inversion is a proper transformation. As a consequence, and con-
trary to the 3D case, the vanishing of an odd-order tensor is not
related to chirality. In 2D, odd-order tensors are null for
even-order rotational invariant media (Auffray et al., 2009b).
Hence, as it will be shown, the fifth-order coupling tensor exists
both for chiral and achiral media.

2.2. Dynamics

As the foreseen applications concern dispersive elastodynamics,
the associated equation and construction of the acoustic gyrotropic
tensor are presented here. This topic will be considered more in
depth in a forthcoming paper (Rosi and Auffray, submitted for
publication). In the absence of body double-forces, the motion
equation of a strain-gradient media subjected to body forces f i

reads:

sij;j þ f i ¼ q€ui � jjik€uj;k � jjkil€uj;kl ð2Þ

where sij is the effective second-order symmetric stress tensor, jjik is
a third order micro-inertia tensor and jjkil a fourth order
micro-inertia tensor (Mindlin and Eshel, 1968; Mindlin, 1964;
Ben-Amoz, 1976; Askes and Aifantis, 2011; Bacigalupo and
Gambarotta, 2014). It is important to remark that the third order
micro-inertia tensor jjik is vanishing for centrosymmetric materials
(see e.g. Bacigalupo and Gambarotta, 2014).

This tensor is defined as follows:

sij ¼ rij � sijk;k

Using the general constitutive law (1), the effective second-order
tensor takes the form

sij ¼ Cijlmelm þ ðMijklm �MklijmÞelm;k � Aijklmnelm;nk

which can be rewritten in the following way

sij ¼ Cijlmelm þM]
ijklmelm;k � Aijklmnelm;nk ð3Þ

with the dynamic fifth-order tensor M] defined as

M]
ijklm ¼ Mijklm �Mklijm

This tensor possesses the following index symmetries:

M]

ðijÞðklÞm
ð4Þ

where the notation . . .. . . indicates antisymmetry with respect to
block permutation (Boutin, 1996; Triantafyllidis and Bardenhagen,
1996). In physics this tensor is known as the acoustical gyrotropic
tensor and is responsible for the-called acoustical activity
(Portigal and Burstein, 1968; Srinivasan, 1988).

2.3. Synthesis

Until now, C and A, the vector spaces of C and A, have been
investigated, both in a 2D and 3D euclidean spaces (Mehrabadi
and Cowin, 1990; Forte and Vianello, 1996; Auffray et al., 2009a,
2013). Also, the answers to the following three questions have
been provided:

(a) How many symmetry classes and which symmetry classes
do C and A have?
(b) For every given symmetry class, how many independent
material parameters do C and A have?
(c) For each given symmetry class, what is the explicit matrix
form of C and A relative to an orthonormal basis?

In 2D, for C, He and Zheng (1996) demonstrated that the space
of classical fourth-order tensors is divided in 4 classes. This result
was also obtained by a different mean by Vianello (1997). For A the
question was solved in 2D by Auffray et al. (2009a), the space of
sixth-order tensors is more complex since it is divided in 8 classes.
For the 3D case, the number of symmetry classes increases since C

is now divided into 8 classes (Forte and Vianello, 1996), and A into
17 classes (Olive and Auffray, 2013; Auffray et al., 2013). At the
present time, these questions remain open for the fifth-order ten-
sor spaces M and M], both in 2D and 3D. Some theoretical results
are available concerning the 3D case (Olive and Auffray, 2014;
Auffray, 2014), but without explicit construction. In order to have
a complete SGE theory to model dispersive media, answering the
aforementioned three questions for M and M] is important. In
the following this study will be conducted for M and results for
M] will then be deduced.

2.4. Symmetry classes

Let Q be an element of the 2D orthogonal group4 Oð2Þ. M is said
to be invariant under the action of Q if

QioQ jpQ kqQ lrQ msMopqrs ¼ Mijklm ð5Þ

The symmetry group of M is defined as the subgroup GM of Oð2Þ
constituted of all the orthogonal tensors leaving M invariant:

GM ¼ fQ 2 Oð2Þ QioQjpQ kqQ lrQ msMopqrs ¼ Mijklm

�� g ð6Þ

As proposed by Forte and Vianello (1996) it is meaningful to con-
sider two tensors M and N as exhibiting symmetry of the same kind
if their symmetry groups are conjugate in the sense that

there exists a Q 2 Oð2Þ such that GN ¼ QGMQ T ð7Þ

Thus, the symmetry classes associated to M can be naturally defined
as the set ½GM� of all the subgroups of Oð2Þ conjugate to GM:

4 The orthogonal group in 2D is defined as Oð2Þ ¼ fQ 2 GLð2ÞjQ T ¼ Q�1g, in which
GLð2Þ denotes the set of invertible transformations acting on R2.



½GM� ¼ fG # Oð2Þ G ¼ Q GMQ T ;Q 2 Oð2Þ
��� g ð8Þ

In other words, the symmetry class to which M belongs corresponds
to its symmetry group modulo its orientation, i.e. Oð2Þ.
Furthermore, it is known (Zheng and Boehler, 1994) that in a
bidimensional space, the symmetry class of a tensor is conjugate
to a closed subgroup of Oð2Þ. The collection of these subgroups
are known and are elements of the following set (Armstrong, 1983):

fId;Zp
2 ; Zk;Dk; SOð2Þ;Oð2Þgk2N>1

in which the following groups are involved:

� Id, the identity group;
� Zk, the cyclic group5 with k elements generated by Rð2p=kÞ, a

rotation angle 2p=k;
� SOð2Þ, the infinitesimal rotation group, the cyclic limit group for

k!1;
� Zp

2 , where p denotes a mirror transformation through the y axis;
� Dk, the dihedral group with 2k elements generated by Rð2p=kÞ

and p;
� Oð2Þ, the infinitesimal orthogonal, the dihedral limit group for

k!1.

In the following a group will be said mirror-invariant, M, if it
contains the reflection-operation, p, and centro-invariant, I , if it
contains the inversion-operation i ¼ RðpÞ. In 2D, and in contrary
to 3D, the inversion implies the presence of an even-order rotation;
hence the inversion is, in this case, a proper transformation. As a
consequence, in 2D, chirality is not equivalent to non-centro sym-
metry, but to the lack of mirror symmetry only. Hence the set of
closed subgroups of Oð2Þ can be divided in four subsets according
to whether groups are mirror-invariant (M) or not (M),
centro-invariant (I) or not (I). The Table 2 contains the different
cases.

As will be seen, these four sets describe the different couplings
that may, or may not, exist in the complete SGE model.

In a side paper (Auffray et al., submitted for publication), it is
proved that, in 2D, the vector space M is divided into 6 symmetry
classes: one isotropic and five anisotropic. These results are sum-
marized in Table 3. Some comments concerning this classification
have to be made:

� In order to be complete, and even if it reduces to the null tensor,
the isotropic symmetry class ½Oð2Þ� has been included in the
classification;
� A tensor which is Z5-invariant has its symmetry group conju-

gate to a D5-invariant one. As a consequence the pentachiral
class ½Z5� is empty.

The symmetry classes of the vector space M] are very different,
since the classes ½Z3� and ½D5� are now empty. Results for the space
of gyrotropic tensors6 are summarized in Table 4.

3. Matrix representations of the coupling elasticity tensor

The goal of the present section is to determine, for each symme-
try class, the explicit matrix form of M and M] relative to an
orthonormal basis fe1; e2g. To that aim we follow a strategy intro-
duced for classical elasticity by Mehrabadi and Cowin (1990) and
extended to strain-gradient elasticity in Auffray et al. (2009a,
2013). This approach is summarized hereafter.

3.1. Orthonormal basis and matrix component ordering

Let be defined the following spaces:

TðijÞ ¼ T 2 TijjT ¼
X2

i;j¼1

Tijei � ej; Tij ¼ Tji

( )

TðijÞk ¼ T 2 TijkjT ¼
X2

i;j;k¼1

Tijkei � ej � ek; Tijk ¼ Tjik

( )

which are, in 2D, respectively, 3- and 6-dimensional vector spaces.
Therefore

� the first-order elasticity tensor C is a self-adjoint endomor-
phism of TðijÞ;
� the coupling elasticity tensor M is a linear application from TðijÞk

to TðijÞ;
� the second-order elasticity tensor A is a self-adjoint endomor-

phism of TðijÞk.

In order to express the Cauchy-stress tensor r, the strain tensor e,
the strain-gradient tensor g and the hyperstress tensor s as 3- and
6-dimensional vectors and write C;M and A as, respectively: a
3� 3;3� 6 and 6� 6 matrices, we introduce the following
orthonormal basis vectors:

eeI ¼
1� dijffiffiffi

2
p þ dij

2

� �
ei � ej þ ej � ei
� �

; 1 6 I 6 3

bea ¼
1� dijffiffiffi

2
p þ dij

2

� �
ei � ej þ ej � ei
� �

� ek; 1 6 a 6 6

where the summation convention for a repeated subscript does not
apply. Then, the aforementioned tensors can be expressed as:

ee ¼X3

I¼1

eeIeeI; er ¼X3

I¼1

erIeeI; bg ¼X6

a¼1

bgabea; bs ¼X6

a¼1

bsabea ð9Þ

eC ¼ X3;3
I;J¼1;1

eCIJeeI � eeJ M ¼
X3;6

I;a¼1;1

MIaeeI � bea; bA
¼
X6;6

a;b¼1;1

bAabbea � beb ð10Þ

so that the relations in (1) can be written in the matrix form

erI ¼ eCIJeeJ þMIabgabsa ¼ MaJeeJ þ eAabbgb

(
ð11Þ

The relationship between the matrix components eeI and eij, and
between bga and gijk are

eeI ¼
eij if i ¼ j;ffiffiffi

2
p

eij if i – j;

( bga ¼
gijk if i ¼ jffiffiffi

2
p

gijk if i – j

(
ð12Þ

and, obviously, the same relations between erI and rij and bsa and sijk

hold. For the constitutive tensors we have the following
correspondences:

Table 2
Classification of Oð2Þ subsets according to their mirror- and centro-invariance.

I I

M D2k;Oð2Þ Zp
2 ;D2kþ1

M Z2k; SOð2Þ Z2kþ1

5 It has to be noted that Zp
2 and Z2 are isomorphic as group but not conjugate.

6 It can be noted that the following results are the same as for the space of
piezoelectric tensors (Auffray et al., submitted for publication; Vannucci, 2007).



eCIJ ¼
Cijkl if i ¼ j and k ¼ lffiffiffi

2
p

Cijkl if i – j and k ¼ l or i ¼ j and k – l

2Cijkl if i – j and k – l

8><>: ð13Þ

MIa ¼
Mijklm if i ¼ j and k ¼ lffiffiffi

2
p

Mijklm if i – j and k ¼ l or i ¼ j and k – l

2Mijklm if i – j and k – l

8><>: ð14Þ

bAab ¼
Aijklmn if i ¼ j and l ¼ mffiffiffi

2
p

Aijklmn if i – j and l ¼ m or i ¼ j and l – m

2Aijklmn if i – j and l – m

8><>: ð15Þ

It remains to choose appropriate two-to-one and three-to-one
subscript correspondences between ij and I, on one hand, and ijk
and a, on the other hand. For the classical variables the standard
two-to-one subscript correspondence is used (see Table 5)

The three-to-one subscript correspondence for strain-gradient/
hyperstress tensor, specified in Table 6, is chosen in order to make
the 6th-order tensor A block-diagonal for dihedral classes (c.f.
Appendix B).7

The matrix representations of first- and second-order elasticity
tensors have already been investigated. Their different forms are
recalled in A and Appendices A and B. Hence, in the remaining
subsection, attention will be devoted to CE tensors.

3.2. Transformation matrix

Using the introduced orthogonal bases and the subscript corre-
spondences, the action of a rotation tensor Q 2 Oð2Þ on M can be

represented using two different matrices: a 3� 3 matrix eQ , and

a 6� 6 matrix bQ in a way such that

QioQ jpQ kqQ lrQ msMopqrs ¼ eQ IJMJa
bQ ab ð16Þ

where

eQ IJ ¼
1
2
ðQioQ jp þ QipQ joÞ; bQ ab ¼

1
2
ðQioQjp þ QipQjoÞQkq ð17Þ

with I and J being associated to ij and op, and a and b being associ-
ated to ijk and opq respectively. Thus, formula (5) expressing the
invariance of M under the action of Q is equivalent toeQ M bQ T ¼ M ð18Þ

where eQ stands for the 3� 3 matrix of components eQ IJ; bQ stands

for the 6� 6 matrix of components bQ ab and M the 3� 6 matrix of
components MJa.

3.3. Matrix representations of M and M] for all symmetry classes

We are now ready to give the explicit expressions of M and M]

for each of the 5 anisotropic classes. Matrices will first be given in a
brut form, and in a second time split into sub-matrices so as to
make appear elementary building blocks. The order adopted to
specify the expressions of M for the symmetry classes ½Zk� and
½Dk� is k ¼ 1;3;5.

3.3.1. Symmetry class characterized by ½Id�
Constitutive tensor In this most general case, illustrated by Fig. 1,

the material in question is fully anisotropic and the CE matrix M
comprises 18 independent components. The explicit expression
of M as a full 3� 6 matrix is:

MId ¼
m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

0B@
1CA

Table 3
The names, the sets of subgroups ½GM� and the numbers of independent components #indepðMÞ for the 6 symmetry classes of M. The in-parenthesis number indicates the minimal
number of components of the matrix in an appropriate basis.

Name Oblique Rectangular Trichiral Trigonal Pentachiral Pentagonal Isotropic

GM Id Zp
2 Z3 D3 Z5 D5 Oð2Þ

#indepðMÞ 18 ð17Þ 9 6 ð5Þ 3 2 ð1Þ 1 0
½GM� ½Id� ½Zp

2 � ½Z3� ½D3� ½D5� [D5� [Oð2Þ�

Table 4
The names, the sets of subgroups ½GM] � and the numbers of independent components
#indepðM]Þ for the 4 symmetry classes of M] . The in-parenthesis number indicates the
minimal number of components of the matrix in an appropriate basis.

Name Oblique Rectangular Trichiral Trigonal Isotropic

GM Id Zp
2 Z3 D3 Oð2Þ

#indepðM]Þ 6 ð5Þ 3 2 ð1Þ 1 0

½GM] � ½Id� ½Zp
2 � ½D3� ½D3� [Oð2Þ�

Table 5
The two-to-one subscript correspondence for 2D strain/stress tensors.

I 1 2 3

ij 11 22 12

Table 6
The three-to-one subscript correspondence for 2D strain-gradient/hyperstress
tensors.

a 1 2 3
ijk 111 221 122 Privileged direction: 1

a 4 5 6
ijk 222 112 121 Privileged direction: 2

Fig. 1. Oblique system (Id-invariance): the material is completely asymmetric.

7 Further comments on the reason of such a choice can be found in Auffray et al.
(2013).



This matrix can be decomposed into sub-matrices that constitute
elementary building blocks. To that aim we first define the nm-di-
mensional space Mðn;mÞ composed of n�m matrices. Then, we
can write M in the following way

MId ¼
Að6Þ Bð6Þ

Cð3Þ Dð3Þ

!

where the form and number of independent components of each
involved sub-matrix are specified by

� Að6Þ; Bð6Þ 2 Mð2;3Þ;
� Cð3Þ; Dð3Þ 2 Mð1;3Þ;

For example, Að6Þ is an element ofMð2;3Þ and contains 6 indepen-
dent components while Cð3Þ belongs to Mð1;3Þ and comprises 3
independent components. It should be noted that it is possible to
find rotations that increases by one the number of zeros in MId.
For those particular angles, the matrix representation of the

rotated tensor involves 17 components. If the associated physical
is clear in classical elasticity (Norris, 1989), its counterpart, if
any, for strain-gradient elasticity is unclear.

Gyrotropic tensor. In this situation, the AG matrix M] includes 6
independent components

M]
Id ¼

0 m]
12 m]

13 m]
14 0 m]

16

�m]
12 0 m]

23 0 �m]
14 m]

26

�m]
16 �m]

26 0 �m]
23 �m]

13 0

0B@
1CA

These components are related to those of MId through the relations:

m]
12 ¼ m12 �m21; m]

13 ¼ m13 �m35; m]
23 ¼ m23 �m34

m]
16 ¼ m16 �m31; m]

14 ¼ m14 �m25; m]
26 ¼ m26 �m32

It should be noted that it is possible to find rotations that make one
more zero appears in the previous matrix M]

Id. Therefore, in these

specific bases the matrix M]
Id is defined by 5 components.

3.3.2. Symmetry class characterized by ½Zp
2 �

Constitutive tensor. The materials having the symmetry classes
½Zp

2 �, shown in Fig. 2 is referred to as being rectangular. The CE
matrix M contains 9 independent components. Using the
three-to-one subscript correspondence given in Table 6, the associ-
ated matrix has the following brut form:

MZp
2
¼

m11 m12 m13 0 0 0
m21 m22 m23 0 0 0

0 0 0 m34 m35 m36

0B@
1CA

Gyrotropic tensor. In this situation the AG matrix M] includes 3
independent components

M]

Zp
2
¼

0 m]
12 m]

13 0 0 0

�m]
12 0 m]

23 0 0 0

0 0 0 �m]
23 �m]

13 0

0B@
1CA

These components are related to those of MZp
2

through the relations:

m]
12 ¼ m12 �m21; m]

13 ¼ m13 �m35; m]
23 ¼ m23 �m34

3.3.3. Symmetry classes ½Z3� and ½D3�
The materials having the symmetry classes ½Z3� and ½D3�, as

shown in Figs. 3 and 4, are referred to as trichiral and trigonal,
respectively.

Constitutive tensors. The CE matrix M contains, respectively, 6 or
3 independent components. Using the three-to-one subscript cor-
respondence given in Table 6, the CE matrices exhibiting the
Z3-symmetry and D3-symmetry have the following brut forms:

Fig. 2. Rectangular system (Zp
2 -invariance): the material exhibits a symmetry plane.

Fig. 3. Trichiral system (Z3-invariance): the material is 2p
3 -invariant.

MZ3 ¼
m11 �m11 �

ffiffi
2
p

2 ðm34 þm35Þ �
ffiffiffi
2
p

m11 � 1
2 ð3m34 �m35Þ m24 þ

ffiffiffi
2
p

m31 �m24 �
ffiffi
2
p

2 ðm31 �m32Þ �
ffiffiffi
2
p

m24 � 1
2 ðm31 þm32Þ

m11 þ
ffiffiffi
2
p

m34 �m11 �
ffiffi
2
p

2 ðm34 �m35Þ �
ffiffiffi
2
p

m11 � 1
2 ðm34 þm35Þ m24 �m24 �

ffiffi
2
p

2 ðm31 þm32Þ �
ffiffiffi
2
p

m24 � 1
2 ð3m31 �m32Þ

m31 m32

ffiffi
2
p

2 ðm31 �m32Þ m34 m35

ffiffi
2
p

2 ðm34 �m35Þ

0BB@
1CCA

MD3 ¼
m11 �m11 �

ffiffi
2
p

2 ðm34 þm35Þ �
ffiffiffi
2
p

m11 � 1
2 ð3m34 �m35Þ 0 0 0

m11 þ
ffiffiffi
2
p

m34 �m11 �
ffiffi
2
p

2 ðm34 �m35Þ �
ffiffiffi
2
p

m11 � 1
2 ðm34 þm35Þ 0 0 0

0 0 0 m34 m35

ffiffi
2
p

2 ðm34 �m35Þ

0BB@
1CCA



and, using block matrix notations,:

MZ3 ¼
Að1Þ Bð1Þ

Cð2Þ Dð2Þ

!
þ f ðDð2ÞÞ f ðCð2ÞÞ

0 0

!
;

MD3 ¼
Að1Þ 0
0 Dð2Þ

!
þ f ðDð2ÞÞ 0

0 0

!

First, the expressions of Að1Þ and Bð1Þ with 1 independent component
are specified by

Að1Þ ¼ a11 �a11 �
ffiffiffi
2
p

a11

a11 �a11 �
ffiffiffi
2
p

a11

!
; Bð1Þ ¼ b11 �b11 �

ffiffiffi
2
p

b11

b11 �b11 �
ffiffiffi
2
p

b11

!

for the remaining independent components:

Cð2Þ ¼ c11 c12

ffiffi
2
p

2 ðc11 � c12Þ
	 


; Dð2Þ ¼ d11 d12

ffiffi
2
p

2 ðd11 � d12Þ
	 


and for the dependent ones:

f ðCð2ÞÞ ¼
ffiffiffi
2
p

c11 �
ffiffi
2
p

2 ðc11 � c12Þ � 1
2 ðc11 þ c12Þ

0 �
ffiffi
2
p

2 ðc11 þ c12Þ � 1
2 ð3c11 � c12Þ

!

f ðDð2ÞÞ ¼
0 �

ffiffi
2
p

2 ðd11 þ d12Þ � 1
2 ð3d11 � d12Þffiffiffi

2
p

d11 �
ffiffi
2
p

2 ðd11 � d12Þ � 1
2 ðd11 þ d12Þ

!

It should be noted that it is possible to find rotations that reduce the
number of coefficients in MZ3 . For example, under a rotation of
angle h solution of:

tan 3h ¼ c11 � c12

d11 � d12
ð19Þ

the former matrix is transformed into a new one:

MH

Z3
¼ Að1Þ BHð1Þ

CHð1Þ Dð2Þ

!
þ f ðDð2ÞÞ f ðCHð2ÞÞ

0 0

 !
with

CHð1Þ ¼ cH

11 cH

11 0
� �

f ðCHð1ÞÞ ¼
ffiffiffi
2
p

cH

11 0 �cH

11

0 �
ffiffiffi
2
p

cH

11 �cH

11

!
In this specific basis the number of components needed to define
MZ3 is decreased by one. But it should be observed that after being
rotated the resulting matrix is still different from MD3 . Therefore the
two symmetry classes are distinct.

Gyrotropic tensor. The AG matrices M] have the following
shapes:

M]
Z3
¼

0 m]
12

ffiffi
2
p

2 m]
12 m]

14 0 �
ffiffi
2
p

2 m]
14

�m]
12 0

ffiffi
2
p

2 m]
12 0 �m]

14 �
ffiffi
2
p

2 m]
14ffiffi

2
p

2 m]
14

ffiffi
2
p

2 m]
14 0 �

ffiffi
2
p

2 m]
12 �

ffiffi
2
p

2 m]
12 0

0BB@
1CCA

M]
D3
¼

0 m]
12

ffiffi
2
p

2 m]
12 0 0 0

�m]
12 0

ffiffi
2
p

2 m]
12 0 0 0

0 0 0 �
ffiffi
2
p

2 m]
12 �

ffiffi
2
p

2 m]
12 0

0BB@
1CCA

These components are related to those of MZp
3

through the relations:

m]
12 ¼ �2m11 �

ffiffiffi
2
p

2
ð3m34 þm35Þ; m]

14

¼ 2m24 þ
ffiffiffi
2
p

2
ð3m31 þm32Þ

It should be noted that it is possible to find rotations that transform
the M]

Z3
into M]

D3
. Therefore if for M the classes ½Z3� and ½D3� are dis-

tinct, this is no longer the case for M]. It means that if the constitu-
tive tensor M is chiro-sensitive, the gyrotropic tensor M] is not.

3.3.4. Symmetry classes ½Z5� and ½D5�.
Constitutive tensors, Whether a material is Z5-invariant or

D5-invariant, the number of independent parameters in the matrix
representation is 2 or 1. But as it will be shown, there exists only
one symmetry class, the pentagonal one ½D5�. The CE matrices
MZ5 and MD5 for pentachiral and pentagonal material systems
(see Figs. 5 and 6) are given respectively by

MZ5 ¼
m11 �m11 �

ffiffiffi
2
p

m11 �m24 m24

ffiffiffi
2
p

m24

�m11 m11

ffiffiffi
2
p

m11 m24 �m24 �
ffiffiffi
2
p

m24ffiffiffi
2
p

m24 �
ffiffiffi
2
p

m24 �2m24

ffiffiffi
2
p

m11 �
ffiffiffi
2
p

m11 �2m11

0B@
1CA

Fig. 4. Trigonal system (D3-invariance): the material is 2p
3 -invariant and exhibits 3

symmetry planes.

Fig. 5. Pentachiral system (Z5-invariance): the material is 2p
5 -invariant.

Fig. 6. Pentagonal system (D5-invariance): the material is 2p
5 -invariant and

possesses 5 mirror lines.



MD5 ¼
m11 �m11 �

ffiffiffi
2
p

m11 0 0 0
�m11 m11

ffiffiffi
2
p

m11 0 0 0
0 0 0

ffiffiffi
2
p

m11 �
ffiffiffi
2
p

m11 �2m11

0B@
1CA

and, using the block matrix notation:

MZ5 ¼
Að1Þ Bð1Þ

0 0

!
þ

0 0
f ðBð1ÞÞ f ðAð1ÞÞ

� �
;

MD5 ¼
Að1Þ 0
0 0

!
þ

0 0
0 f ðAð1ÞÞ

� �

Að1Þ ¼ a11 �a11 �
ffiffiffi
2
p

a11

�a11 a11

ffiffiffi
2
p

a11

!
;

Bð1Þ ¼ �b11 b11

ffiffiffi
2
p

b11

b11 �b11 �
ffiffiffi
2
p

b11

!

f ðAð1ÞÞ ¼
ffiffiffi
2
p

a11 �
ffiffiffi
2
p

a11 �2a11

� �
;

f ðBð1ÞÞ ¼
ffiffiffi
2
p

b11 �
ffiffiffi
2
p

b11 �2b11

� �
It is important to note that it is possible to find a rotation that
reduces the number of coefficients of MZ5 . Under a rotation of angle
h solution of:

tan 5h ¼ �a11

b11
ð20Þ

the former matrix is transformed into a new one:

MH

Z5
¼ AHð1Þ 0

0 0

!
þ

0 0
0 f ðAHð1ÞÞ

� �
with AHð1Þ having the same form as Að1Þ. Therefore, after this rota-
tion, MH

Z5
¼MD5 . Hence, as announced in Section 2.4, the symmetry

class ½Z5� is empty.
Gyrotropic tensor. For these material symmetries, the gyrotropic

tensor vanishes.

4. Complete 2D strain-gradient anisotropic systems

By combining the results of the previous section with previ-
ously published results (summarized in the appendices), the
shapes of complete strain-gradient elasticity can be given for all
the symmetry classes in 2D. To that aim, let us define the following
space:

Sgr ¼ fL ¼ ðCijkl;Mijklm;AijklmnÞ 2 C�M�Ag

which is the complete space of SGE. The symmetry group of L is
defined as:

GL ¼ GA \ GM \ GC

and, as for a single tensor, we can define the symmetry class of a lin-
ear law as:

½GL� ¼ fG # Oð2ÞjG ¼ QGLQ T ;Q 2 Oð2Þg ð21Þ

As the union of the symmetry classes for each tensor space of the
constitutive law covers all the Oð2Þ-subgroups allowed by the
Hermann theorem (Auffray, 2008), there is no need to conduct a
specific study to determinate the set of symmetry classes of Sgr.
The number and type of symmetry classes are known for each ten-
sor space of Mindlin strain-gradient elasticity.

Before stating the classification, let us recap some results:

� Classical elasticity: the classification has been done by He and
Zheng (1996). Their results are synthesized in the following
table (see Table 7):

� Second-order elasticity: the classification has been done by
Auffray et al. (2009a), and are synthesized in the following table
(see Table 8):

As a result we obtain 14 non equivalent symmetry classes, which
are reported together with their number of independent compo-
nents in the following table (see Table 9): As a result, in each sym-
metry class, the constitutive law has the following synthetic form:

LId ¼
CZ2 MId

MT
Id AZ2

!
; LZp

2
¼

CZ2 MZp
2

MT
Zp

2
AZ2

 !
ð22Þ

LZ2 ¼
CZ2 0
0 AZ2

� �
; LD2 ¼

CD2 0
0 AD2

� �
ð23Þ

LZ3 ¼
COð2Þ MZ3

MT
Z3

AZ6

!
; LD3 ¼

COð2Þ MD3

MT
D3

AD6

 !
ð24Þ

LZ4 ¼
CD4 0
0 AZ4

� �
; LD4 ¼

CD4 0
0 AD4

� �
ð25Þ

LZ5 ¼
COð2Þ MD5

MT
D5

ASOð2Þ

!
; LD5 ¼

COð2Þ MD5

MT
D5

AOð2Þ

 !
ð26Þ

Table 7
The names, the sets of subgroups ½GC� and the numbers of independent components
#indepðCÞ for the 4 symmetry classes of C. The in-parenthesis number indicates the
minimal number of components of the matrix in an appropriate basis.

Name Diagonal Orthotropic Tetragonal Isotropic

½GC� ½Z2� ½D2� ½D4� [Oð2Þ�
#indepðCÞ 6 ð5Þ 4 3 2

Table 8
The names, the sets of subgroups ½GA� and the numbers of independent components
#indepðAÞ for the 8 symmetry classes of A. The in-parenthesis number indicates the
minimal number of components of the matrix in an appropriate basis.

Name Diagonal Orthotropic Tetrachiral Tetragonal

½GA� ½Z2� ½D2� ½Z4� ½D4�
#indepðAÞ 21 ð20Þ 12 9 ð8Þ 6

Hexachiral Hexagonal Hemitropic Isotropic

½GA� ½Z6� ½D6� [SOð2Þ� [Oð2Þ�
#indepðAÞ 7 ð6Þ 5 5 4

Table 9
The names, the sets of subgroups ½GL� and the numbers of independent components #indepðLÞ for the 14 symmetry classes of L. The in-parenthesis number indicates the minimal
number of components of the law in an appropriate basis.

Name Oblique Rectangular Diagonal Orthotropic Trichiral Trigonal Tetrachiral Tetragonal

½GL� ½Id� ½Zp
2 � ½Z2� ½D2� ½Z3� ½D3� ½Z4� ½D4�

#indepðLÞ 45 ð44Þ 27 36 ð35Þ 16 15 ð14Þ 10 13 ð12Þ 9

Pentachiral Pentagonal Hexachiral Hexagonal Hemitropic Isotropic

½GL� ½Z5� ½D5� ½Z6� ½D6� ½SOð2Þ� ½Oð2Þ�
#indepðLÞ 9 ð8Þ 7 9 ð8Þ 7 7 6



LZ6 ¼
COð2Þ 0

0 AZ6

� �
; LD6 ¼

COð2Þ 0
0 AD6

� �
ð27Þ

LSOð2Þ ¼
COð2Þ 0

0 ASOð2Þ

� �
; LOð2Þ ¼

COð2Þ 0
0 AOð2Þ

� �
ð28Þ

It can be observed that among those 14 different classes, 8 of
them are isotropic for classical elasticity. These classes will be
referred to as Cauchy-isotropic:

I so ¼ f½Z3�; ½D3�; ½Z5�; ½D5�; ½Z6�; ½D6�; ½SOð2Þ�; ½Oð2Þ�g

and among them the following 4 ones are chiro-sensitive

Cir ¼ f½Z3�; ½Z5�; ½Z6�; ½SOð2Þ�g

in which only ½Z3�; ½Z6� are compatible with the crystallographic
restriction. These different Cauchy-isotropic classes differ by the nat-
ure and the kind of second-order anisotropic coupling. Let us detail
now the different kind of couplings that can be produced.

4.1. S- and O-type coupling

Auffray et al. (2009a) has pointed out that the sixth-order ten-
sor A encodes some kind of chiral behavior. In Section 3, another
type of coupling encoded by the fifth-order tensor M has been
identified. These 2 couplings are distinct:

� The fifth-order tensor couples first order and second order
terms. This coupling of order (O-type) is due to the lack of the
central symmetry (I) that occurs for symmetry classes ½Z2kþ1�
and ½D2kþ1�. For these classes the stress and hyperstress equa-
tions are coupled. In other terms:

@r
@g

– 0 and
@s
@e

– 0

This coupling may exist both for chiral and achiral symmetry
classes.
� Chiral coupling phenomena described by the sixth-order tensor

are of spatial type (S-type). This mechanism occurs for the sym-
metry classes ½Zk�. In such cases a chiral coupling is created
between the spatial directions and solely concerns
second-order effects. Let consider LSOð2Þ which is the simplest
example of this situation. For this class M is null, therefore

@r
@g
¼ 0 and

@s
@e
¼ 0

This means that first- and second-order elasticity are not cou-
pled. Let us now consider the linear relation between s and g
in this particular case:

s111

s221ffiffiffi
2
p

s122

s222

s112ffiffiffi
2
p

s121

0BBBBBBBB@

1CCCCCCCCA
¼

a11 a12
a11�a22ffiffi

2
p � a23 0 a15 � a15ffiffi

2
p

a22 a23 �a15 0 � a15ffiffi
2
p

a11þa22
2 � a12

a15ffiffi
2
p a15ffiffi

2
p 0

a11 a12
a11�a22ffiffi

2
p � a23

a22 a23
a11þa22

2 � a12

0BBBBBBBBB@

1CCCCCCCCCA

�

g111

g221ffiffiffi
2
p

g122

g222

g112ffiffiffi
2
p

g121

0BBBBBBBBB@

1CCCCCCCCCA

The spatial coupling is encoded by the following antisymmetric
matrix:

0 a15 � a15ffiffi
2
p

�a15 0 � a15ffiffi
2
p

a15ffiffi
2
p a15ffiffi

2
p 0

0BB@
1CCA

which disappears in the symmetry class ½Oð2Þ�. This effect, which
is present for all ½Z2k� symmetry classes, is a consequence of the
absence mirror symmetries (Auffray et al., 2013).

Therefore the symmetry classes of SGE, can be split in 4 sets:

1. SO: Constitutive laws belonging to this set present both spatial-
and order-coupling. This set contains ½Z2kþ1�, and hence corre-
sponds to IM subgroup of Oð2Þ;

2. S: Constitutive laws belonging to this set present spatial-
coupling. This set contains ½Z2k� and ½SOð2Þ�, and hence corre-
sponds to IM subgroup of Oð2Þ;

3. O: Constitutive laws belonging to this set present order-
coupling. This set contains ½D2kþ1�, and hence corresponds to
IM subgroup of Oð2Þ;

4. A: Constitutive laws belonging to this set are uncoupled. This
set contains ½D2k� and ½Oð2Þ�, and hence corresponds to IM
subgroup of Oð2Þ.

This structure is summed-up in the following diagram:

in which r denotes reflection and i the inversion.
Hence in 2D the chiral coupling is encoded by the second-order

elasticity tensor, while non-centro-symmetric coupling is encoded
by the fifth-order tensor.

4.2. Discussion

It is interesting to note that, in the literature devoted to chiral
lattices (Spadoni et al., 2009; Liu et al., 2012; Spadoni and
Ruzzene, 2012) and auxetic materials (Prall and Lakes, 1997;
Dirrenberger et al., 2011), attention has only been focused on
geometries that induce S-type chiral coupling.8 The main difficulty
to explore O-type chirality in 2D is that the associated rotational
groups are not compatible with translational symmetry:

� if a material is both ½Z3� and invariant by translation, it is auto-
matically ½Z6�-invariant9;
� a ½Z5�-invariance is not compatible with any translational invari-

ance. It worth noting that this kind of rotational invariance can
be found in quasi-crystallographic tilings such as the Penrose
tilings.

Periodic tiling only present S-type coupling. A well-known exam-
ple is the hexachiral structure (Fig. 7(a)). This tiling was proposed
by Lakes (1991) and studied in Prall and Lakes (1997). Since then

8 Whereas in 3D, as the microstructure is generally neglected, attention is devoted
to hemitropic SGE, i.e. to O-type chiral coupling induced by the fifth-order tensor
(Papanicolopulos, 2011).

9 It is worth being noted that this symmetry may be broken down by using
different materials in the tiling.



this material has bee studied by numerous authors (Spadoni et al.,
2009; Liu et al., 2012; Dirrenberger et al., 2011, 2012, 2013;
Bacigalupo and Gambarotta, 2014). The symmetry class of this pat-
tern is ½Z6�, and hence, in the framework of SGE, there is no cou-
pling between first- and second-order elasticity. This observation
is in agreement with the one made by Spadoni and Ruzzene
(2012) in the context of micropolar elasticity: first- and
second-order elasticity are not coupled for hexachiral structures.

However, if we consider a bi-material hexachiral pattern, i.e
with ligaments made of a different material as in Fig. 7(b), this cou-
pling between first- and second-order elasticity is necessary.
Indeed, this new material will now belong to the class ½Z3�, for
which the tensor M is not vanishing.

The framework presented in this paper is then particularly use-
ful when considering chiral or periodic bi-material composites,
whose higher order properties cannot be taken into account when
using other formulations, e.g. Cauchy or Micropolar continua.

5. Conclusions

This paper completes some previous publications (Auffray et al.,
2009a, 2010) on the description of anisotropic bidimensional
strain-gradient elastic behavior. Two spaces of fifth-order tensors
have been studied:

1. the space of coupling elasticity tensors involved in the constitu-
tive law;

2. the space of gyrotropic tensors, responsible of the so-called
acoustic activity.

In both cases, a complete set of anisotropic matrices has been pro-
vided. As a consequence, the anisotropic description of bidimen-
sional strain-gradient elasticity is now complete. This behavior is
divided into 14 non-equivalent anisotropic classes, 8 of them being
isotropic for classical elasticity. We believe that those results will
be useful for the continuous description of architectured materials,
and especially for the modeling of non-classical waves
propagation.
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Appendix A. Matrix representations for C

CZð2Þ ¼
c11 c12 c13

c22 c23

c33

0B@
1CA; CDð2Þ ¼

c11 c12 0
c22 0

c33

0B@
1CA ð29Þ

CZð4Þ ¼
c11 c12 c13

c11 �c13

c33

0B@
1CA; CDð4Þ ¼

c11 c12 0
c11 0

c33

0B@
1CA ð30Þ

COð2Þ ¼
c11 c12 0

c11 0
c11 � c12

0B@
1CA ð31Þ

Appendix B. Matrix representations for A

.

AZð2Þ ¼

a11 a12 a13 a14 a15 a16

a22 a23 a24 a25 a26

a33 a34 a35 a36

a44 a45 a46

a55 a56

a66

0BBBBBBBB@

1CCCCCCCCA
;

ADð2Þ ¼

a11 a12 a13 0 0 0
a22 a23 0 0 0

a33 0 0 0
a44 a45 a46

a55 a56

a66

0BBBBBBBB@

1CCCCCCCCA
ð32Þ

Fig. 7. Mono- and bi- material patterns, which belong to the ½Z6� and ½Z3�
respectively.



AZð4Þ ¼

a11 a12 a13 0 a15 a16

a22 a23 �a15 0 a26

a33 �a16 �a26 0
a11 a12 a13

a22 a23

b55

0BBBBBBBB@

1CCCCCCCCA
;

ADð4Þ ¼

a11 a12 a13 0 0 0
a22 a23 0 0 0

a33 0 0 0
a11 a12 a13

a22 a23

b55

0BBBBBBBB@

1CCCCCCCCA
ð33Þ

AZ6 ¼

a11 a12
a11�a22ffiffi

2
p � a23 0 a15 � a15ffiffi

2
p

a22 a23 �a15 0 � a15ffiffi
2
p

a11þa22
2 � a12

a15ffiffi
2
p a15ffiffi

2
p 0

a44 a11 � a44 þ a12
3a11�a22ffiffi

2
p � a23 �

ffiffiffi
2
p

a44

a22 þ a44 � a11

ffiffiffi
2
p
ða44 � a11Þ þ a23

�3a11þa22
2 � a12 þ 2a44

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð34Þ

AD6 ¼

a11 a12
a11�a22ffiffi

2
p � a23 0 0 0

a22 a23 0 0 0
a11þa22

2 � a12 0 0 0

a44 a11 � a44 þ a12
3a11�a22ffiffi

2
p � a23 �

ffiffiffi
2
p

a44

a22 þ a44 � a11

ffiffiffi
2
p
ða44 � a11Þ þ a23

�3a11þa22
2 � a12 þ 2a44

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð35Þ

ASOð2Þ ¼

a11 a12
a11�a22ffiffi

2
p � a23 0 a15 � a15ffiffi

2
p

a22 a23 �a15 0 � a15ffiffi
2
p

a11þa22
2 � a12

a15ffiffi
2
p a15ffiffi

2
p 0

a11 a12
a11�a22ffiffi

2
p � a23

a22 a23

a11þa22
2 � a12

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð36Þ

AOð2Þ ¼

a11 a12
a11�a22ffiffi

2
p � a23 0 0 0
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