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Abstract. This paper investigates a recently developed elasto-plastic constitutive model. For 
this purpose, the model was implemented in a commercial finite element code and was used to 
simulate the cross-die deep drawing test. Deep drawing experiments and numerical simulations 
were conducted for five interstitial-free steels and seven dual-phase steels, each of them having 
a different thickness and strength. The main interest of the adopted model is a very efficient 
parameter identification procedure, due to the physical background of the model and the 
physical significance of some of its parameters and state variables. Indeed, the dislocation 
density, grain size, and martensite volume fraction explicitly enter the model’s formulation, 
although the overall approach is macroscopic. For the dual-phase steels, only the chemical 
composition and the average grain sizes were measured for the martensite and ferrite grains, as 
well as the martensite volume fraction. The mild steels required three additional tensile tests 
along three directions, in order to describe the plastic anisotropy. Information concerning the 
transient mechanical behavior after strain-path changes (reverse and orthogonal) was not 
collected for each material, but for only one material of each family of steels (IF, DP), based 
on previous works available in the literature. This minimalistic experimental base was used to 
feed the numerical simulations for the twelve materials that were confronted to deep drawing 
experiments in terms of thickness distributions. The results suggested that the accuracy of the 
numerical simulations is very satisfactory in spite of the scarce experimental input data. 
Additional investigations indicated that the modeling of the transient behavior due to strain-
path changes may have a significant impact on the simulation results, and that the adopted 
approach provides a simple and efficient alternative in this regard. 
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1. Introduction 

 
Environmental, economic and safety concerns are driving car manufacturers to produce 
lighter and safer vehicles. In recent years, dual phase (DP) and other high strength steels are 
increasingly used for sheet metal parts in the automotive industry to meet these demands. Due 
to the lack of knowhow in forming these new materials and the short development times in 
the automotive industry, the numerical simulation has become a common tool for the sheet 
forming process development and optimization. The constitutive model and its material 
parameters are recognized as a primary factor in achieving the accuracy of the predictions of 
such finite element simulations, especially in terms of formability and springback. As a 
consequence, research efforts are continuously devoted to increasing the physical contents of 
the plasticity models – i.e. to relate more closely the internal variables and parameters of the 
models to metallurgical data. On the one hand, the resulting models can be used in the 
metallurgical industry to design new materials (i.e. microstructure, chemical composition, 
texture, etc.) in order to achieve some targeted final properties. On the other hand, these 
models involve fewer arbitrary material parameters that require specific mechanical tests to be 
determined, thus reducing the cost of the parameter identification for the application e.g. in 
the automotive industry. This was the main motivation for the work reported in this paper. 
 
Several categories of physically-based plasticity models have been developed in the past 
decades. Very rich metallurgical information could be imbedded in one-dimensional models 
describing the dislocation density motion and interaction at intra-granular scale (see, e.g., [1-
3]). The yield stress evolution during monotonic loading can be related to the total dislocation 
density with the so-called Taylor relation 

 0 M Gbσ σ α ρ= + , (1) 

where 0σ  is the stress related to lattice friction and solute contents, G is the shear modulus, b 

is the magnitude of the Burgers vector, α is a factor that weights the dislocation interactions, 
and the transition from the grain scale to the macroscopic scale involves the so-called average 
Taylor factor M for the polycrystal. In the case of strain reversal, the tension-compression 
stress differential (back-stress) X related to the so-called Bauschinger effect has also been 
expressed recently by Sinclair et al. [4] as 

 
Gb

X = M n
D

, (2) 

where D is the grain size and n  is related to the number of dislocations that are stopped at the 
grain boundary on a given slip system; it saturates rapidly at a constant value n0. Although 
restricted to particular loading modes, these scalar models do not involve arbitrary parameters 
and they provide a first approximation of the material’s response without any prior 
experimental test, using solely the chemical composition and microstructural data as input. 
 
In polycrystalline metals, the crystallographic texture is a source of plastic anisotropy, which 
can further evolve during plastic deformation. This feature can be described by models 
combining crystal plasticity and homogenization techniques. Taylor’s simple homogenization 
scheme [1] was the basis for more refined models [5]; alternative approaches were based on 
the self-consistent method [6-8], the crystal plasticity finite element method [9], etc. Such 
constitutive models can be applied at each integration point of a finite element model [10]. 
However, this requires huge calculation resources for metal forming applications. Proposed 
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approaches to reduce this numerical effort include, e.g., the use of an artificial scattering of 
the crystal orientations from integration point to integration point [11] or the modeling of an 
isotropic background of the texture plus a small and fixed number of texture components of 
variable weight [12, 13]. Full micromechanical models may be used to calculate only a small 
part of the yield locus, in the vicinity of the current loading point [14, 15]. Alternatively, the 
entire yield surface can be approximated by plastic potentials whose parameters are fitted with 
respect to a Taylor-model approximation of the initial anisotropy [16-18]. The parameters of 
such potentials can be further updated to account for the evolution of the anisotropy. This 
evolution is predicted by a micromechanical model for a reduced number of loading paths, 
inspired from the current process simulation, by means of a two-scale parameter identification 
technique. Various combinations of micromechanical models, macroscopic potentials and 
identification / interpolation techniques were proposed, e.g., in [19-21]. This is still an active 
field of research; in the current work the evolution of the plastic anisotropy is neglected and 
the initial anisotropy is simply approximated by a macroscopic yield surface. For the 
application to mild and dual phase steels, Hill’s quadratic yield surface was adopted.  
 
Classically, hardening is also described in finite element codes with phenomenological 
functions of the plastic strain, whose parameters are identified to fit a set of mechanical tests 
performed on samples of the given material. In the last decades, advanced hardening models 
have been designed in a fully three-dimensional framework to describe the complex transient 
behavior of sheet metals after strain-path change, by modeling the most salient features of the 
dislocation structure evolutions in an average sense [22-24]. The increasing complexity of 
these models is compensated by an improved accuracy of process simulation [25, 26]; on the 
other hand, the cost of the parameter identification increased dramatically and became the 
primary obstacle for the application of these models in an industrial environment. 
 
The current study contributes to the research efforts aiming to promote constitutive models 
that blend the physical insight of metallurgical models with the generality and efficiency of 
full three-dimensional macroscopic models, in an attempt to reduce the cost of parameter 
identification. Such models use scalar dislocation densities as internal variables, along with 
many of the associated physical parameters. A reduced set of fitting parameters is required to 
account for the scale transition from the grain to the polycrystal. Associated with the other 
metallurgical parameters, these fitting parameters are claimed to be characteristic of a whole 
family of materials, thus reducing even more the required identification effort. The aim of the 
paper is to investigate the ability of the constitutive model proposed by Carvalho-Resende et 
al. [27] to accurately predict sheet metal forming processes for a variety of mild and dual 
phase sheet steels, in the context of a reduced parameter identification procedure. The model’s 
equations are summarized in Section 2. The investigated materials are presented in Section 3, 
as well as the cross-die deep drawing test selected for the analysis. The simulation results are 
presented in Section 4 and compared to the experimental deep drawing results in terms of 
thickness distribution.  
 
 

2. Constitutive model 

 
In metal forming, the sheet generally undergoes large deformations, and its behavior is 
described by rate constitutive equations. We follow here a classical approach of rate-
independent macroscopic elasto-plasticity, defined by four ingredients: a hypo-elasticity law, 
a yield function, a (normality) flow rule and a set of hardening equations. This framework is 
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well documented in the literature (see, e.g., [28]); only its main equations are recalled here for 
completeness. The material is assumed orthotropic, which is commonly the case for rolled 
sheet metals. A stronger approximation is further adopted by considering that the material 
remains orthotropic during the deformation. The evolution (i.e., rotation) of the material 
symmetry frame is not mentioned here as it is regularly handled by the finite element code 
itself (see, e.g., [29]). The components of the stress and other tensorial state variables that 
enter the equations hereafter are expressed in this particular frame. This commonly adopted 
strategy allows for a simple constitutive formulation respecting the principle of material 
frame-indifference [28, 30, 31]. The material is initially stress-free (a well-annealed state) and 
homogeneous.  
 

The Cauchy stress rate σɺ  is given by the hypo-elastic law 

 ( ): p= −σ C ɺ ɺɺ ε ε , (3) 

where C  is a fourth-order tensor of the elastic constants, while ɺε  and p
ɺε  are the strain rate 

and plastic strain rate tensors, respectively. In the case of isotropic linear elasticity, the 
elasticity tensor can be defined in terms of the bulk modulus K and shear modulus G as 

2 ,s

4
G K′= + ⊗C I I I  where I is the unit second-order tensor, whose components are the 

Kronecker deltas, i.e., Ikl = δkl, and s

4
′I  is the fourth-order symmetric deviatoric unit tensor, 

whose components are 4I (1 2)(δ δ δ δ ) - (1 3)δ δ .s

ijkl ik jl il jk ij kl
′ = +  

 
The flow rule defines the direction of the plastic strain rate as the gradient V of a scalar 
function of the stress tensor components 

    ;    p ε
∂

= =
∂

V V
σ

ɺɺ
F

ε , (4) 

where εɺ  is the equivalent plastic strain rate and the yield function F  is defined as 

 ( ) ( ) 0, 0R Rσ σ′= − − − ≤σ, X σ XF . (5) 

The scalar σ  designates the equivalent stress, defined by Hill’s 1948 quadratic form 
 

 ( ) ( ) ( ) ( )
2 2 2 2 2 2

22 33 33 11 11 22 23 31 122 2 2F T T G T T H T T LT MT NTσ = − + − + − + + +T , (6) 

 
where ′= −T σ X  and ′σ  is the Cauchy stress deviator. Constants F, G, H, L, M, and N are the 
anisotropy parameters. In Eq. (5), R and X designate the internal variables describing the 
isotropic and kinematic hardening, respectively, and 0σ  is associated with the initial yield 

stress. Kinematic hardening is modeled by the non-linear Armstrong-Frederick equation 

 ( )    ;     
p

X sat p
C Xε ε= = − =

X
X H N X N

ɺ
ɺ ɺ ɺ

ɺ

ε

ε
.  (7) 

As stated in the introduction, physically-based expressions will be derived hereafter to define 
CX and Xsat. Similarly, isotropic hardening is defined by the generic equation 

 
RR H ε=ɺ ɺ , (8) 
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where the scalar function HR and its parameters must be defined according to the studied 
material. 
 
The equivalent plastic strain rate can further be determined from the consistency condition as 

 
: :

: : :
R

H
ε =

+
X

V C

V C V + V H

ɺ
ɺ

ε
. (9) 

Finally, the analytical elasto-plastic tangent modulus can be derived, to be used within 
explicit time integration schemes or for various post-processing analyses (e.g., localization), 
as 
 

 
2

2

( : ) ( : ) 4

: : : 2 :
ep

R R

G

H G H
β β

⊗ ⊗
= − = −

+ + + +X X

C V V C V V
C C C

V C V V H V V H
, (10) 

 
where 1β =  for plastic loading and 0 otherwise. 
 
This elasto-plastic modeling framework stands independently of the particular forms of the 
functions HX and HR that define hardening. In the current work, these two functions were 
defined in order to incorporate some of the material’s characteristic microstructural features, 
as summarized in the next subsection. More details on the mathematical derivation and 
physical justifications are provided in the companion paper [27]. 
 
 

2.1 Microstructure-based hardening equations 

 
Numerous studies in the literature have been devoted to model the evolution of dislocation 
densities and their influence on the flow stress, in the framework of crystal plasticity (see, e.g., 
[32-35]; a recent review can be found in [36]). The elasto-plastic model adopted in this work 
builds on the one-dimensional dislocation-based models proposed by Rauch and co-workers 
[3, 37] for IF steels that incorporate details of the microstructure evolution at the grain scale. 
The macroscopic state variable R is related to the dislocation density ρ, which is split into 
three components Fρ , Rρ , and Lρ  associated with the so-called “forward”, “reverse”, and 

“latent” dislocation substructures, respectively. The isotropic hardening for IF steels is thus 
described as 

    ;     F R LR M Gbα ρ ρ ρ ρ ρ= = + + . (11) 

The three components of the dislocation density were proposed as an efficient 
phenomenological approach to model the transient behavior after abrupt strain-path changes. 
Their evolution is governed by the saturating rate equations 

 

3
1 2

3
1

2

,

,

,

F

R

L

F F F

F

R
R F

F pre

L L

k
H M k k

bD

k
H M k

bD

H Mk

ρ

ρ

ρ

ρ ε ρ ρ ε

ρ
ρ ε ρ ε

ρ

ρ ε ρ ε

 
= − + 

 

 
= − + 

 

= −

ɺ ɺɺ

ɺ ɺɺ

ɺ ɺɺ

=

=

=

 (12) 
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where DF designates the ferrite grain size. The value of the total dislocation density ρpre 
cumulated before the occurrence of the strain-path change explicitly enters the evolution 
equation of the “reverse” dislocation density. During monotonic loading, ρ =ρF; the two other 
components are activated only when a strain-path change occurs – and further decrease to 
zero during the subsequent loading step according to Eq. (12). The equations governing the 
decomposition of the dislocation density in its three components, when a strain-path change 
occurs, will be further detailed in Section 2.2. 
 
The initial yield stress term 0σ  is estimated based on the chemical composition of the alloy 

[38], and the initial value of the isotropic hardening variable R is calculated with Eq. (11) 
using the initial dislocation density ρ0:  

 ( ) [ ]0 00 ; CnHP
C

C
F

k
R M Gb          K C

D
α ρ σ= = +∑  (13) 

where [C] designates the weight percent concentration of elements C = Mn, P, Si, Cu, Ti, etc. 
while KC and nC are specific parameters, available in the literature [38, 39], as well as the 
“Hall-Petch” parameter kHP. 
 
The kinematic hardening parameters are also microstructure-based and, in particular, they 
depend on the ferrite grain size DF (see Eq. (2) [4]) 

    ;      
sat 0 X

F 0

Gb
X = M n C

D bn

λ
= , (14) 

where λ  designates a material internal length (e.g., the mean spacing of dislocation walls, 
which decreases with strain) and 0

n  is a material parameter related to the “maximum number 

of dislocations” that have been stopped at the grain boundary on a given slip system [4, 27] 
and provides a saturation value for the internal stress X. In summary, Eqs. (12) and (14) 
introduce a set of five new material parameters (k1, k2, k3, λ, and n0). Due to the physical 
nature of the equations involving these parameters, their values are not specific to a single 
material only, but can be more generally considered as characteristic of a whole family of 
materials. Indeed, k1 stands for the dislocation storage rate, which results in hardening, k2 can 
be related to the dislocation annihilation rate resulting in softening, and k3 is a geometric 
factor related to the proportion of dislocations arriving at the grain boundaries [39-41].  

 
This modeling approach, initially developed for single phase materials (IF steel, aluminum), 
has been extended to dual phase steels [27]. This straightforward extension maintains the 
overall simplicity and versatility of the approach while taking into account the martensite 
volume fraction as an additional parameter, and the impact of the hard phase on the softer 
(ferritic) phase as part of the deformation mechanism. More explicitly, in the case of dual-
phase steels the isotropic hardening contribution is obtained through a mixture rule taking into 
account two families of dislocation densities within the ferrite grains: 

- the average dislocation density in the ferrite grains, denoted as Fρ ; 

- an increased dislocation density close to the boundaries with the martensite grains, 
denoted as Mρ . 
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Hence, isotropic hardening for DP steels is described with 

 ( )1    ;   F M I I I I

F M M M F R LR MGb V Vα ρ α ρ ρ ρ ρ ρ = − + = + +
 

, (15) 

where I F M=  ,  and 
M

V  is the martensite volume fraction. The dislocation interaction is set 

to be the same with 0.4
F M

α α= = . The evolution laws are direct extensions of Eqs. (12) for 

the two families of dislocation densities. The material parameters are the same as for IF steels, 
with the exception of k3 which takes two values: 3 3

F
k k=  and 3 8M

Mk MV= . The kinematic 

hardening equation is unchanged.  
 
More details on the physical background and on the mathematical development of the model 
are given in [27]. The aim of the current paper is to evaluate the interest of this approach for 
metal forming applications. In order to complete the model description, the redistribution of 
the three dislocation density components after strain-path change must be clarified in the 
context of arbitrary strain paths typical for the finite element simulations of forming processes. 
 

2.2 Quantification of strain-path change during general loading sequences 

 
During arbitrary loading sequences, changes in strain path can be quantified using the 
classical Schmitt factor θ [42] 
 

 
:preθ = N N , (16) 

 
where the subscript “pre” designates values at the end of the pre-strain stage. This convenient 
scalar quantity has been used in a series of models aiming at describing the transient plastic 
behavior induced by general strain-path changes [22, 24, 43-46]. In the current approach, the 
instantaneous values of the “latent”, “forward” and “reverse” components of the dislocation 
density at the moment of a strain-path change occurrence are calculated by the decomposition 
of the total dislocation density at the end of the pre-strain stage 

pre
ρ  according to the simple 

rule proposed by Rauch et al. [37]: 

 ( )
0

0

0 0 0

1 | |

a

R pre

a

L pre

F pre R L

pρ θ ρ

ρ θ ρ

ρ ρ ρ ρ

= −

= −

= − −

, (17) 

where the parameter a is a constant and p is a material parameter. After this instantaneous 
redistribution of the three components of the dislocation density, their respective evolutions 
are governed by Eqs. (12). The influence of parameter a on the heuristic functions utilized in 
Eq. (17) is shown in Figure 1. Rauch et al. [37] proposed the value a = 2, inferred from 
extensive experimental investigations [47, 48].  
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Figure 1. Strain-path change heuristic functions and influence of parameter a. 
 
 
This simple approach is intended to model loading conditions involving one single, abrupt 
strain-path change. However, general strain paths issued from the numerical simulation of 
forming processes often do not fall into this particular case: 

• The strain path may evolve in a continuous manner between two different modes, 

rather than abruptly, so that the θ-value measured between two successive time 
increments will be close to unity and would not detect the overall strain-path change. 

• Spurious oscillations of the strain path in the vicinity of a uniform value may give the 
illusion of instantaneous strain paths significantly different from the average one.  

• More than one significant strain-path change may occur in material points of sheet 
metal during forming.  

In order to overcome these limitations, we adopted the strain-path change indicator (SPCI) 
proposed by van Riel and co-workers [49, 50] instead of Schmitt’s factor in Eqs. (17). This 
indicator compares the current plastic strain increment to a second-order tensor representative 
of the plastic strain history, rather than comparing two sequential, instantaneous, plastic strain 
directions. With this indicator, continuous strain-path changes are still detected, 
independently of the strain-increment size. The SPCI ξ is defined as 

 
: p

p
ξ =

G

G

ɺ

ɺ

ε

ε
 (18) 

and the evolution of the second-order tensor G is defined as 

 ( )1p

c
c= −G N Gɺ ɺε , (19) 

where (0) =G 0  and c  is a parameter defining the saturation rate of tensor G. Indeed, when c 
increases, the history of strain path arrives earlier at saturation, as illustrated in Figure 2. A 
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value equal to 5 is taken in the forthcoming simulations [39, 49]. 
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Figure 2. Evolution of the van Riel strain-path-change indicator ξ  during (a) reverse and (b) 
orthogonal loading sequences. 
 
A strain-path change is detected when the SPCI significantly deviates from unity (e.g. is 
smaller than a threshold value) and Eqs. (17) are used to re-initialize the three components of 
the dislocation density. Afterwards, the detection of subsequent strain-path changes may be 
inhibited until the end of the simulation. Alternatively, the strain-path change detection may 
be reactivated once the loading mode becomes quasi-monotonic (the SPCI approaches unity). 
For all of the simulations performed in the current investigation, the rule (17) is adopted to 
decompose the dislocation density after a strain-path change, where the Schmitt factor θ is 
replaced by the SPCI ξ .  
 

2.3 Material parameters and required identification procedure 

 
One of the strengths of the adopted modeling is the physical meaning of several of its material 
parameters, which allowed a simplified identification procedure. The parameters of the 
constitutive model fall within several categories in terms of physical significance, as depicted 
in Table 1. A first category of parameters 0( , , , , , )HPM G b kα ρ  are directly related to the 

crystallographic structure of the material, their values (e.g., for steels) being available in the 
literature (see Table 2). The physically-based parameters k1, k2, k3, λ, and n0 describe the 
hardening behavior and are specific to a family of materials. They were identified using 
strain-path change mechanical tests. The full range of tests utilized for the identification 
comprises a tensile test, a shear test, three reverse shear tests, and an orthogonal test 
consisting in a tensile pre-strain followed by a shear test in the same direction [51, 52]. All of 
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these tests were performed in the rolling direction. For the needs of the current study, these 
parameters were identified once for all for the IF steels, and once for all for the DP steels, 
using the experimental results from a previous study [24]. Finally, material parameters related 
to microstructure were identified for each material using chemical composition and analysis 
of scanning electron microscopy (SEM) observations. It is noteworthy that these metallurgical 
analyses are not required for classical macroscopic models, and some of them may also be 
tedious and time-consuming. From the perspective of industrial application, the advantage of 
replacing monotonic (tensile, shear) and sequential (reverse, orthogonal) mechanical tests 
with metallurgical measurements is an overall cost and time reduction, along with the benefit 
of the standardization of parameter determination, avoiding the use of inverse methods. 
 
The studied materials and the corresponding parameters are summarized in the next section, 
along with deep drawing experiments performed on the same steel sheets in order to explore 
the predictive capability of the model. 
 
 
 

Table 1. The different types of parameters of the constitutive model and their corresponding 
identification procedure.  
 
Parameters Identification 

range 
Identification procedure, required experiments 

0, , , , , HPM G b kα ρ  For each family of 
steels (IF/DP) 

From literature. 

1 2 3 0, , , , ,k k k n pλ  For one material in 
the family (IF/DP) 

1 tensile test, 1 shear test, 3 reverse shear tests, 
1 orthogonal test (tensile + shear). 

[Mn],… 

For each material 

Chemical composition analysis. 
, ,

F M M
D D V  Micrographs. 

F, G, H, L, M, N 
For IF steels: 3 tensile tests at 0°, 45°, 90°.  
For DP steels: von Mises yield function. 

 
 
 
 

Table 2. Material parameters determined once for all, based on literature (see, e.g., [53] or 
[54] for the values of parameter 

HP
k ). 

 
Material parameters IF steels DP steels 
M  3.14 3.14 

α  0.4 0.4 

[ ]MPaG  80000 80000 

[ ]mb  
102.46 10−×  

102.46 10−×  
2

0 m ρ −    1012 12 13
0 010 ;  10F Mρ ρ= =  

MPa mm
HP

k  
   

16.5 20  
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3. Application to the cross-die deep drawing test 

 
The purpose of this study is to investigate the potential benefits of the modeling approach 
described in Section 2 for the accurate numerical simulation of sheet forming processes, while 
reducing significantly the effort on parameter identification. The cross-die deep drawing test 
has been selected for the analysis and a number of fourteen sheet steels were investigated. 
These were both IF and DP steels with relatively large ranges of grain size, martensite volume 
fraction, chemical composition and initial crystallographic texture. This section presents the 
material data and the deep drawing experiments. The constitutive model was implemented in 
the finite element code Abaqus/explicit as a user material routine, in order to allow for the 
numerical simulation of the deep drawing processes and to assess the accuracy of both the 
model and its selective parameter identification procedure.  
 

3.1 Materials and parameters 

 
Single-phase IF steels and dual-phase steels were selected for the investigation. As shown in 
Table 3, the sheet thickness varied between 0.7 mm and 1.78 mm for the IF steels, and 
between 0.7 and 2.2 mm for the DP steels. The use of phenomenological elasto-plastic models 
classically available in finite element simulation codes would require the model parameters to 
be identified for each of these materials. In the current investigation, only the grain size and 
martensite volume fraction (when applicable) were determined for each material using 
micrographs. Additionally, tensile tests were performed in three directions of the sheet’s plane 
(at 0°, 45° and 90° with respect to the rolling direction) for the IF steels in order to account 
for their anisotropy. The material parameters identified with this simplified analysis are 
summarized in Table 4. Concerning the anisotropy coefficients, a linear interpolation was 
further performed as they have been shown to vary almost linearly with the ferrite grain size 
[27, 39]. The calculation of the linear law parameters based solely on chemical composition 
and microstructure is still under research and in the current analysis these parameters were 
determined experimentally. However, the accuracy of using such linearly-interpolated 
anisotropy parameters was also addressed in the current study. 
 
The six remaining parameters, namely k1, k2, k3, λ, n0 and p, which enter the hardening laws 
(12)–(14), were determined for a single IF steel (IF I) and for a single DP steel (DP II), the 
other materials being available for validation purposes. This is a time-consuming step 
requiring non-classical sequential experimental tests. The experiments used for the 
identification were a tensile test, a shear test, three reverse shear tests with shear pre-strains 
between 0.1 and 0.3, and a shear test following a tensile pre-strain of 0.1 (orthogonal test), all 
of these tests being performed in the rolling direction. However, no such a test was performed 
for the current analysis since the required experimental data was taken from previous studies 
[24]. The six parameters were identified simultaneously, using a standard minimization 
routine of Matlab. In the objective function, which measures the gap between the predicted 
and experimental stress–strain curves in a least-squares sense, all of the experiments had the 
same weight except for the orthogonal test, whose weight was five times larger. The identified 
parameters are summarized in Table 5. 
 
Figure 3 illustrates the accuracy of the model’s predictions during one-element simulations of 
abrupt strain-path changes for the two materials that served for the identification. The 
simulations are performed with the finite element code, in order to validate the numerical 
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implementation of the constitutive model for arbitrary loading sequences (i.e. including 
repeated elastic unloading and plastic reloading sequences).  
 
 

Table 3. IF and DP steels process information. CR and HR stand for cold rolled and hot 
rolled, respectively. 
 

Material Rolling 
condition 

Thickness 
[mm] 

Material Rolling 
condition 

Thickness 
[mm] 

IF I CR 0.7 DP I (DP 450) CR 2 
IF II CR 0.8 DP II (DP 600) CR 0.7 
IF III CR 0.7 DP III (DP 600) HR 2.2 
IF IV CR 0.8 DP IV (DP 600) CR 1.82 
IF V HR 1.78 DP V (DP 800) CR 1.96 
IF VI CR 1.62 DP VI (DP 800) CR 1.5 
   DP VII (DP 1000) CR 2 
   DP VIII (DP 1000) CR 1.4 

 
 
 

Table 4. Microstructure-based material parameters for the studied materials. Parameters F, G, 
H, L, M, and N enter Hill’s quadratic yield surface; DF and DM are the ferrite and martensite 
grain sizes, respectively; VM is the martensite volume fraction; 0σ  and ( )0R  are the two 

terms of the initial yield stress. 
 

a) IF steels 

Material 
DF 

[µm] 

Experimental values Linear interpolation 
0σ  

[MPa] 
( )0R  

[MPa] F G H N F G H N 

IF I 25 0.25 0.32 0.68 1.42 0.27 0.28 0.72 1.19 96.3a 24.7 
IF II 25 - - - - 0.27 0.28 0.72 1.19 88.3 a 24.7 
IF III 22 0.27 0.28 0.72 1.23 0.28 0.3 0.70 1.23 153.6 24.7 
IF IV 15 0.34 0.35 0.65 1.13 0.34 0.38 0.62 1.34 223.0 24.7 
IF V 10.5 0.45 0.54 0.46 1.50 0.40 0.49 0.51 1.50 235.8 24.7 
IF VI 8 0.41 0.61 0.39 1.79 0.45 0.64 0.36 1.65 275.3 24.7 

Parameters L and M are set equal to N for all of the materials. 
a The chemical composition was not available for IF I and II, thus the initial yield stress was 
determined based on tensile tests. 
 

b) DP steels 

Material DF [µm] DM [µm] VM 0σ  [MPa] ( )0R  [MPa] 

DP I (DP 450) 9 9.5 0.25 250.1 39.0 
DP II (DP 600) 10 3.5 0.2 278.7 36.3 
DP III (DP 600) 4 3 0.1 357.7 30.8 
DP IV (DP 600) 6.5 2 0.2 338.8 36.3 
DP V (DP 800) 3 2.5 0.2 407.9 36.3 
DP VI (DP 800) 3 1.5 0.15 417.3 33.6 

DP VII (DP 1000) 1.5 1.5 0.1 345.7 30.8 
DP VIII (DP 1000) 7 3.5 0.1 591.5 30.8 
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Table 5. Material parameters for IF I steel and DP II steel, identified using mechanical tests: a 
tensile test, a shear test, three reverse shear tests, and an orthogonal test consisting in a tensile 
pre-strain followed by a shear test in the same direction. All of these tests were performed in 
the rolling direction [24]. The parameters identified for IF I were subsequently used for all of 
the simulations concerning IF steels, and the parameters identified for DP II were used for all 
of the simulations concerning DP steels. 
 

Material 1k  [nm-1] 2k  3k  λ  [nm] 0n  
p  

IF I 0.031 2.7 0.1 415 10.3 0.83 
DP II 0.033 3.1 0.1 61 6.2 0.81 
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Figure 3. Accuracy validation of the model and its numerical implementation for IF I (top) 
and DP II (bottom) steels during two-step strain paths. Left: simple shear in rolling direction 
following simple shear pre-strain in the opposite direction up to shear strain values of 0.2 and 
0.4. Right: simple shear in rolling direction following tensile tests in the same direction up to 
a tensile true strain of 0.18.  
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The experiments shown in Figure 3 have served for the parameter identification. Figure 4a 
shows the model predictions for two shear experiments that did not serve for the identification, 
for the IF I steel sheet. As expected, the accuracy is relatively lower as compared to the 
previous figure. One source of inaccuracy comes from the use of Hill’s quadratic yield 
criterion to estimate the initial yield stresses; its validity can be evaluated from the fit 
obtained at low plastic strains. Another source of inaccuracy is due to the use of the same 
hardening equations in all directions, and to the absence of the texture evolution effect. 
Accordingly, the gap between predictions and experiments is increasing with the plastic strain. 
The maximum error, at 0.45 shear strain, is of 2.2% with respect to the experiment at 45°, and 
4.7% with respect to the experiment at 135°. It is noteworthy that the difference between 
these two experiments illustrates the material’s deviation from orthotropy, and cannot be 
accounted for with the selected model. Figure 4b shows more experimental curves from shear 
tests at different orientations in the plane of the sheet. This figure illustrates the relatively 
weak anisotropy of the materials used in the current study. Consequently, the conclusions of 
this analysis mainly apply to weakly anisotropic steel sheets; the extension to other classes of 
sheet metals, and to more anisotropic ones, may require further investigation. Of course, these 
limitations are common to all of the macroscopic models commonly used in industrial finite 
element simulations. 
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Figure 4. Illustration of the model accuracy for the IF I steel: (a) experimental and simulated 
simple shear response for a shear direction oriented at 45° and at 135° with respect to the 
rolling direction; (b) experimental simple shear response for various orientations of the shear 
direction, along with a tensile test response in the rolling direction. The tensile test curve is 
scaled with a factor of 1 3 , corresponding to a von-Mises-type equivalence.  
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Carvalho-Resende et al. [27, 39] present and discuss in detail the experiments and the 
accuracy of such rheological predictions for all of the materials in Table 3. Figures 5a and 5b 
compare the predictions of reverse shear tests to experiments for two IF and two DP steels, 
respectively, which exhibit the lowest and the highest yield strength in each category. The 
errors are the largest for IF VI and for DP VIII, respectively. It is noteworthy that the sheet 
steels used for the identification had relatively low yield strengths, which partly explains this 
result. On the other hand, larger ranges of tensile plastic strains can be attained for lower-
strength materials, which is beneficial for the parameter identification accuracy. Consequently, 
the choice of the particular material that is used for the identification has a non-trivial 
influence on the final results. Eventually, the proposed approach allowed for a first 
approximation of the material response for several materials, in a wide range of yield 
strengths, with very few experimental inputs – which was its principal expected benefit.  
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Figure 5. Experimental and predicted reverse shear tests for the IF and DP sheet steels 
exhibiting the smallest and the largest yield strength in their category, respectively. Left: IF II 
and IF VI. Right: DP I and DP VIII. The shear pre-strain is close to 0.2 in all cases.  
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3.2 Cross-die test experiments and numerical simulation 

 
 
The “cross-die” deep drawing test, originally designed by the automotive industry as a press-
shop formability test for aluminum sheets, is known to reproduce most of the industrially-
relevant strain paths encountered in deep drawing, i.e. tensile, plane strain, shear and biaxial 
loading modes (see, e.g., [55]). This test is regularly used by carmakers as a validation tool 
for hardening laws before simulating industrial parts. In the current investigation, cross-die 
deep drawing tests were performed on an 800 kN hydraulic press at Renault. The punch, the 
blank holder and the die are made of uncoated hardened tool steel. The blanks were lubricated 
with grease and Teflon on both sides. Figure 6 shows the main geometrical parameters of the 
tools; the same set of tools was used for all of the tests. The die and punch radii are 20 and 14 
mm, respectively. The drawing stroke and blank size were different for each material; their 
values are summarized in Table 6. Different blank sizes and press strokes are selected in order 
to reach the largest strain values acceptable for each material, without inducing any strain 
localization. In all cases, the initial blank was square; its orientation with respect to the tools 
is shown in Figure 6. The blank holding force was 450 kN for all of the trials.  
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Figure 6. Sketch of the deep drawing tooling used for the cross-die deep drawing test 
experiments. The die geometry respects a clearance of 2.3 mm along the transverse contour 
with respect to the punch. 
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Table 6. Drawing depth and blank size for the different materials of the study. 
 

Material Drawing stroke [mm] Blank size [mm] 
IF II 30 280 
IF III 80.7 330 
IF IV 66 330 
IF V 68 300 
IF VI 61 280 

DP I (DP 450) 64 300 
DP III (DP 600) 52 300 
DP IV (DP 600) 61 300 
DP V (DP 800) 37 300 
DP VI (DP 800) 28 300 

DP VII (DP 1000) 29 300 
DP VIII (DP 1000) 31 300 

 
 
 
 
After the tests, the material thinning was measured along three directions (i.e. rolling direction 
RD, diagonal direction DD, transverse direction TD) as depicted in Figure 7, by ultrasonic 
method. However, the thickness distributions along RD and TD were very close, and only the 
values recorded along the RD directions are reported hereafter. Thickness measurement 
accuracy was of ±0.01mm. Measurements are done every 10 mm on the outer surface of the 
deformed configuration, starting from the center of the part. For some of the materials, the 
blanks have been marked with a 2-mm dotted pattern and strain distribution analyses have 
been performed with the ARGUS strain measurement system.  
 
 
 
 

RD

DD

TD

 
 

Figure 7. Specimen after cross tool forming operation. The thickness measurements were 
performed along the three directions RD (rolling direction), DD (diagonal direction) and TD 
(transverse direction). 
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The FE simulation is performed using the dynamic explicit code Abaqus/Explicit with a user-
defined material routine VUMAT incorporating the model described in Section 2. According 
to mesh sensitivity investigations of the thickness and strain distributions [56, 57], the blank is 
meshed with 17298 (93×93×2) reduced-integration linear hexahedra (C3D8R). The tools are 
considered rigid. Due to the symmetry, only one quarter of the geometry is meshed as shown 
in Figure 8.  
 
 
 

Die

Blank

Blank holder

Punch

 
 

Figure 8. Cross-die test FE model. 
 
 
 
 
 

4. Results and discussion 

 

4.1 Typical strain paths and corresponding dislocation density evolution 

 
 
Sheet metal forming processes often involve complex loading sequences. For instance, most 
deep drawing processes involve bending-unbending sequences when the sheet passes over the 
die radius. The modeling of the reverse loading behavior of the material directly influences 
the springback predictions [23, 58]. Multi-step drawing processes often involve quasi-
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orthogonal strain paths [59]. The SPCI adopted in this model can be used to determine the 
strain-path changes that occur during the cross-die deep drawing test, as well as their 
amplitudes. Figure 9a shows that the cross-die test induces both orthogonal and reverse strain 
paths in three different regions of the part. As the SPCI evolution in the upper and the lower 
layers of the sheet was roughly the same, its evolution was only investigated for the upper one. 
The SPCI evolution was further monitored for seven material points located in different areas 
of the blank (see Figure 9b) in the vicinity of the previously detected zones A, B and C. The 
evolution plots shown in Figure 10 confirm that quasi-orthogonal strain-path changes occur at 
points 1 and 6 (i.e. ξ  reaches a minimum value close to 0 and gradually returns to 1 in zones 

A and C), quasi-reverse strain-path change at points 3 and 4 (i.e. ξ  reaches a minimum value 
close to -1 and gradually returns to 1 in zone B) and quasi-monotonic strain path at points 2, 5 
and 7 (i.e. ξ  remains close to 1). In all of these material points, the strain-path changes occur 
after a punch travel that is greater than 35 mm. Indeed, strain-path changes at points 1 and 6 
occur when the punch displacement is around 35 mm while for points 3 and 4 they take place 
approximately at 40 and 50 mm, respectively. It is noteworthy that at each of the material 
points that were investigated, at most one single strain-path change was recorded, which 
occurred relatively suddenly. This observation supports the application of the scalar 
decomposition of the dislocation density as a simple and effective means to describe the 
transient hardening behavior even during continuous, one-step drawing processes. 
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Figure 9. a) Distribution of the SPCI at the end of the drawing process for IF I and b) material 
points used for the investigation of SPCI evolution. 
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Figure 10. Evolution of the SPCI at different material points, emphasizing quasi-orthogonal 
strain-path change at points 1 and 6 (zones A and C), quasi-reverse strain-path change at 
points 3 and 4 (zone B) and quasi-monotonic strain path at points 2, 5 and 7. 
 
 
 
 
 
The impact of the strain-path change events on hardening is taken into account in the 
proposed model solely through the evolution of the dislocation density and its components. 
The evolution of the total dislocation density ρ  for material points 1, 3, 4, and 6 is 
represented in Figure 11. The largest amounts of work hardening are recorded at the middle 
points of the outer edges of the blank, where the draw-in is the largest according to the die 
geometry, and on the drawn wall of the part – close to the zones B and C identified previously. 
Although the authors found no experimental dislocation density measurements for mild steels 

drawn parts in the literature, the order of magnitude ( 12 1310 ...10 m-2) corresponds to those 
experimentally observed in monotonic tensile tests for similar steel grades [60]. 
 
Figure 12 shows the evolution of the three components of the dislocation density. At the 
values of punch stroke where strain-path changes were identified in Figure 10, a drop of the 
forward dislocation density 

Fρ  occurs that reveals the apparition of the reverse or of the 

latent dislocation densities 
Rρ  and 

Lρ , respectively, for the different material points, 

according to the rule (17). At points 1 and 6, a quasi-orthogonal strain path is observed at 
positive values of the SPCI, thus without activation of the “reverse” dislocation density. In 
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turn, the SPCI takes negative values at material points 3 and 4 (zone B) thus activating both 
“latent” and “reverse” components. 
 
Of course, these local events occur independently of each other at different values of punch 
travel; consequently, their effect is not visible on the load-displacement plot, in contrast e.g. 
with the case of homogeneous mechanical tests involving abrupt strain-path changes. In turn, 
the local behavior may affect significantly the final predictions of springback or formability, 
provided that the strain-path change occurs after a sufficient amount of pre-strain [25, 26, 61]. 
Figure 13 reveals that the strain-path change occurs at cumulated plastic strain amounts of 
0.04, 0.05, 0.35, and 0.3 at material points 1, 3, 4, and 6, respectively. Hence, due to the fact 
that little strain is accumulated, typical strain-path change effects for mild steels such as work 
softening in element 1 and work hardening stagnation in element 3 may be minor. On the 
other hand, the effect of strain-path change in elements 4 and 6 can be sufficiently important 
to affect the results of the finite element simulation. The effects of strain-path changes at the 
end of the process were assessed and are presented in the next section. In order to investigate 
the additional effect due to the description of the transient behavior after orthogonal strain-
path change (observed in regions B and C near the die radius contour), the proposed model is 
first compared to a simpler phenomenological model in the context of the cross-die deep 
drawing simulation. 
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Figure 11. Distribution of the total dislocation density at 60-mm punch displacement (left) 
and its evolution (right) in the cross-die deep drawing test for IF I. 
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Figure 12. Distribution of the forward (top), reverse (middle) and latent (bottom) dislocation 
densities at 60-mm punch displacement (left) and their evolutions (right) in the cross-die deep 
drawing test for IF I. 
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Figure 13. Equivalent plastic strain distribution at 60-mm punch displacement (left) and its 
evolution (right) in the cross-die deep drawing test for IF I. 
 
 
 

4.2 Comparison with a classical isotropic-kinematic hardening model 

 
In order to evaluate the effect of strain-path change on the results of cross-die test, simulations 
were performed with a classical isotropic-kinematic hardening model and with the proposed 
model. The so-called Chaboche model adopted as reference is described by Eq. (7) for the 
kinematic hardening, and the isotropic hardening is governed by the rate equation 

 ( )R sat
R C R R ε= −ɺ ɺ , (20) 

where CX, Xsat, CR, and Rsat are constant. These parameters were identified in order to fit 
closely the prediction of monotonic and reverse shear tests up to large strains; a very good fit 
could be obtained since the classical model can be viewed as a particular case of the proposed 
model. The resulting parameters are summarized in Table 7. 
 
 

Table 7. Material parameters of the classical hardening model, fitted for the mild steel IF I 
[24]. 
 

0
σ [MPa] 

R
C  

sat
R  [MPa] 

X
C  

sat
X  [MPa] 

122.24 7.8 213.6 153.4 45.1 
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The cross-die drawing test was simulated using the two models, leaving unchanged all of the 
other numerical parameters. The computing time required for the proposed model was about 
20% larger as compared to the classical model. Figure 14 compares the thickness distributions 
predicted along the rolling and the diagonal directions by the two models. The results 
obtained for 30 mm of punch travel were similar between the two models in both directions. 
This is consistent with the fact that no strain-path change was observed at punch strokes 
smaller than 35 mm. However, the results of the two models significantly differed at a punch 
stroke of 60 mm, with the classical model underestimating the maximum thinning in the part. 
This preliminary result shows that such transient and local differences in the constitutive 
modeling may have an influence on industrial process simulations, e.g. in terms of thickness 
distribution. Consequently, the proposed model was further confronted to experimentally 
determined thickness distributions for the same deep drawing test, and for several IF and DP 
steel grades. 
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Figure 14. Thickness distribution for the cross-die tests along DD and RD at 30-mm punch 
displacement, before the strain-path changes take place (top), and at the end of the process 
corresponding to 60-mm punch displacement (bottom). 
 
 
 
 
 



Numerical investigation and validation of a plasticity model 

 28 

4.3 Experimental validation of predicted thickness distributions 

 
Finally, the cross-die deep drawing test was used to evaluate the predictive capacity of the 
proposed approach. The experimental test was performed for five IF steels and seven DP 
steels as summarized in Table 6 and the experimental thickness distributions were measured. 
The material parameters were identified for the IF I and DP II sheets. These two materials 
have been investigated during a previous study [24] and they were not part of the set of 
materials used for the drawing experiments. Only the grain size, volume fraction and 
chemical composition served to adjust the model to each of these materials.  
 
Figure 15 shows the experimental and predicted thickness distributions along the rolling 
direction for the five IF steel sheets on which deep drawing tests were performed. The 
predictions lay very close to the experimental values for all of the materials. The results along 
the diagonal direction followed the same trend. In particular, the minimum value of the 
thickness along the selected material line is well predicted, which is critical for the correct 
assessment of the overall formability. Additionally, the in-plane strain distribution was 
measured for one of the sheets (IF VI) at the end of the drawing test. Figure 16 compares the 
“strain signature” predicted for this part to the experimental one and a satisfactory agreement 
was observed. This figure also shows that the drawing process was conducted very close to 
the occurrence of necking, for a discriminating confrontation.  
 
The same comparison procedure was repeated for the seven DP steels designated in Table 6. 
The blank size was the same for all of the drawing tests on DP steels. However, due to the 
large differences in the ultimate yield strength for these materials (according to the different 
grain sizes and martensite volume fractions), different drawing depths were attained. In spite 
of these large variations, the predictions of the thickness distributions summarized in Figure 
17 indicate a good overall accuracy.  
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Figure 15. Experimental and predicted thickness distributions for cross-die tests along RD 
(rolling direction) at the end of the process, for the five IF steels subjected to the deep 
drawing experiments. Symbols t and t0 designate the final and the initial thickness of each 
sheet, respectively.  
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Figure 16. Strain distribution after the cross-die deep drawing tests predicted with the 
proposed model (top) and experimentally obtained (bottom) for IF VI. 
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Figure 17. Experimental and predicted thickness distributions for cross-die tests along RD 
(rolling direction) at the end of the process, for the seven DP steels subjected to the deep 
drawing experiments. Symbols t and t0 designate the final and the initial thickness of each 
sheet, respectively.  
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5. Summary and discussion 

 
A recently developed elasto-plastic model [27, 39] was implemented in a commercial finite 
element code for sheet metal forming applications. Scalar, dislocation-density-like variables 
were used to account for the transient phenomena after strain-path changes, which proved 
very efficient compared to other macroscopic models and carrying more physical signification 
– although this conveys only a limited part of the predictive richness of crystal plasticity 
models due to the use of a macroscopic, non-evolving yield surface. The main strength of this 
model is to significantly simplify the parameter identification requirements. A full series of 
mechanical tests for the identification is only required for one member of a given family of 
materials (e.g., IF steels and DP steels). Then, the model adjusts to each individual material 
using only the chemical composition, the grain size and the volume fraction of the second 
phase, if any. In order to investigate the predictive potential of this approach, experimental 
cross-die deep drawing tests were performed on five IF steels and seven DP steels. The 
hardening model for each of these materials was set without performing mechanical tests; the 
microstructure data and chemical composition were combined with experimental data 
available for an arbitrary IF steel and DP steel.  
 
The strain-path changes induced by the cross-die deep drawing test in various areas of the part 
were investigated. Only one single strain-path change was detected at each material point, if 
any; these occurred in three zones of the part, located close to the punch or die radius. The 
comparison with a classical isotropic-kinematic hardening model showed that the 
consideration of the strain-path changes in the material model modifies the overall forming 
prediction for this test in terms of thickness distributions.  
 
The comparison of the predicted thickness distributions with the experimental ones showed 
very good accuracy for the IF and the DP steels, although the sheet materials were very 
different in terms of strength and thickness. Consequently, the proposed approach could be an 
efficient and accurate alternative for the numerical simulation of industrial sheet metal 
forming processes, reducing significantly the cost of the parameter identification. The 
implemented strain-path change indicator can be used with any constitutive model in order to 
quantify the presence and importance of strain-path changes in a simulation and evaluate if 
the use of simpler constitutive models is sufficient for a given process.  
 
At this stage, tensile tests were performed for the identification of the anisotropy parameters 
for the IF steels, which were further approximated by a linear interpolation in terms of the 
ferrite grain size. This interpolation proved accurate and future work should be dedicated to 
the determination of the anisotropy parameters based solely on microstructure and chemical 
composition, and to their combination with non-quadratic yield surfaces. Future investigations 
are required to assess the accuracy of the proposed approach for other part geometries and 
sheet steels. In particular, the two materials that served for the sequential mechanical tests 
were not available for the deep drawing experiments; a more complete validation would 
consist in applying the entire testing / simulation sequence to selected materials, from the 
characterization step to the forming experiments. The choice of a particular material for the 
identification, out of a given class of materials, may also have an impact on the results. 
Materials with relatively low strength within their category would allow, in general, for a 
larger range of tensile plastic strains, with a potentially beneficial influence on the 
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identification accuracy. The current results suggest that the proposed approach can be used to 
estimate the material parameters for sheet steels from the same class (IF or DP) significantly 
different from the reference material used for the complete parameter identification (strength 
ratio up to two, grain-size ratio up to three). The possible extension of this approach to other 
sheet metals, with different strengthening mechanisms, is under investigation.   
 
 
 
Acknowledgements 
 
This research has been performed within a project funded by Renault. The authors gratefully 
acknowledge Renault for its financial support. 
 
 
 
 
References 
 
 
 
 
[1] Taylor G I 1934 Proceedings of Royal Society of London A 145 362-387 
[2] Kocks U F and Mecking H 2003 Progress in Materials Science 48 171-273 
[3] Rauch E F, Gracio J J and Barlat F 2007 Acta Materialia 55 2939-2948 
[4] Sinclair C W, Poole W J and Bréchet Y 2006 Scripta Materialia 55 739-742 
[5] Van Houtte P, Li S, Seefeldt M and Delannay L 2005 International Journal of 

Plasticity 21 589-624 
[6] Berveiller M and Zaoui A 1978 Journal of the Mechanics and Physics of Solids 26 

325-344 
[7] Molinari A, Canova G R and Ahzi S 1987 Acta Metallurgica 35 2983-2994 
[8] Lebensohn R A and Tomé C 1993 Acta Metallurgica et Materalia 41 2611-2624 
[9] Bate P 1999 Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences 375 1589-1601 
[10] Beaudoin A J, Mathur K K, Dawson P R and Johnson G 1993 International Journal of 

Plasticity 19 833-860 
[11] Raabe D and Roters F 2004 International Journal of Plasticity 21 339-361 
[12] Böhlke T, Haus U-U and Schulze V 2006 Acta Materialia 54 1359-1368 
[13] Böhlke T, Risy G and Bertram A 2006 Modelling and Simulation in Materials Science 

and Engineering 14 365-387 
[14] Habraken A M and Duchêne L 2004 International Journal of Plasticity 21 1525-1560 
[15] Dawson P R, Boyce D E, Hale R and Dukrot J P 2005 International Journal of 

Plasticity 21 251-283 
[16] Van Houtte P and Van Bael A 2004 International Journal of Plasticity 20 1505-1524 
[17] Van Houtte P, Yerra S K and Van Bael A 2009 International Journal of Plasticity 25 

332-360 
[18] Bertram A, Böhlke T and Risy G 2008 International Journal of Material Forming 1 

209-212 
[19] Plunkett B, Cazacu O, Lebensohn R A and Barlat F 2007 International Journal of 

Plasticity 23 1001-1021 



Numerical investigation and validation of a plasticity model 

 34 

[20] Kraska M, Doig M, Tikhorimov D, Raabe D and Roters F 2009 Computational 

Material Science 46 383-392 
[21] Gawad J, Van Bael A, Eyckens P, Samaey G, Van Houtte P and Roose D 2012 

Computational Materials Science DOI:dx.doi.org/10.1016/j.commatsci.2012.05.056 
[22] Teodosiu C and Hu Z 1995 Numiform’95 Proceedings p 173-182 
[23] Geng L, Shen Y and Wagoner R H 2002 International Journal of Plasticity 18 743-

767 
[24] Haddadi H, Bouvier S, Banu M, Maier C and Teodosiu C 2006 International Journal 

of Plasticity 22 2226-2271 
[25] Bouvier S, Alves J L, Oliveira M C and Menezes L F 2005 Computational Material 

Science 32 301-315 
[26] Haddag B, Balan T and Abed-Meraim F 2007 International Journal of Plasticity 23 

951-979 
[27] Carvalho-Resende T, Bouvier S, Abed-Meraim F, Balan T and Sablin S-S 2012 

Dislocation-based model for the prediction of the behavior of b.c.c. materials - Grain 

size and strain path effects Internal report  
[28] Simo J C and Hughes T J R 1998 Computational Inelasticity, Series "Interdisciplinary 

Applied Mathematics" (Berlin: Springer) 
[29] Hughes T J R 1984 Numerical implementation of constitutive models: rate-

independent deviatoric plasticity, in Theoretical foundation for large-scale 

computations for nonlinear material behavior, Nemat-Nasser S, Asaro R J and 
Hegemier G A Editors (Dordrecht, The Netherlands: Martinus Nij Publishers) 

[30] Xiao H, Bruhns O T and Meyers A 1998 International Journal of Solids and 

Structures 35 4001-4014 
[31] Ponthot J-P 2002 International Journal of Plasticity 18 91-126 
[32] Arsenlis A and Parks D M 2002 Journal of the Mechanics and Physics of Solids 50 

1979-2009 
[33] Cheong K-S and Busso E P 2004 Acta Materialia 52 665-5675 
[34] Ma A, Roters F and Raabe D 2006 Acta Materialia 54 2169-2179 
[35] Gao H and Huang Y 2003 Scripta Materialia 48 113-118 
[36] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D, Bieler T and Raabe D 2010 Acta 

Materialia 58 1152-1211 
[37] Rauch E F, Gracio J J, Barlat F and Vincze G 2011 Modelling and Simulation in 

Materials Science and Engineering 19 1-18 
[38] Pickering F B 1992 Materials Science and Technology 7  

[39] Carvalho-Resende T 2012 Contribution to modeling the anisotropic behavior of 

metals for industrial applications - Microstructural consideration for metal forming 

processes PhD Thesis (UT Compiègne, France) 
[40] Mughrabi H 2006 Acta Materialia 54 3417-3427 
[41] Delincé M, Bréchet Y, Embury J D, Geers M G D, Jacques P J and Pardoen T 2007 

Acta Materialia 55 2337-2350 
[42] Schmitt J H, Shen E L and Raphanel J L 1994 International Journal of Plasticity 10 

535-551 
[43] Teodosiu C 1997 Dislocation modeling of crystalline plasticity, in Large Plastic 

Deformation of crystalline aggregates. CISM courses and lectures - No. 376, 
Teodosiu C Editor 

[44] Teodosiu C and Hu Z 1998 19th Riso International Symposium on Materials Science 

Proceedings (Roskilde: Denmark) p 149-168 
[45] Peeters B, Bacroix B, Teodosiu C, Van Houtte P and Aernoudt E 2001 Acta 

Materialia 49 1621-1632 



Numerical investigation and validation of a plasticity model 

 35 

[46] Franz G, Abed-Meraim F, Ben Zineb T, Lemoine X and Berveiller M 2009 Materials 

Science and Engineering A 517 300-311 
[47] Rauch E F and Schmitt J H 1989 Materials Science and Engineering A 113 441-448 
[48] Vincze G, Rauch E F, Gracio J J, Barlat F and Lopes A B 2005 Acta Materialia 53 

1005-1013 
[49] van Riel M 2009 Strain path dependency in sheet metal: Experiments and models PhD 

Thesis (Universiteit Twente, The Netherlands) 
[50] van Riel M and van den Boogaard A 2008 International Deep Drawing Research 

Group International Conference - IDDRG 2008   
[51] Bouvier S, Gardey B, Haddadi H and Teodosiu C 2006 Journal of Materials 

Processing & Technology 174 115-126 
[52] Bouvier S, Haddadi H, Levée P and Teodosiu C 2006 Journal of Materials Processing 

& Technology 172 96-103 
[53] Gladman T 1997 The physical metallurgy of micro-alloyed steels The Institute of 

Materials, London  
[54] Morrisson W B 1966 Transactions of the ASM 59 824-846 
[55] Atzema E H, ten Horn C H L J and Vegter H 2004 European Congress on 

Computational Methods in Applied Sciences and Engineering p 1-14 
[56] Carvalho-Resende T, Saadaoui A, Balan T, Abed-Meraim F, Bouvier S and Sablin S-S 

2010 ECCM 2010 (Paris: France)  
[57] Saadaoui A 2010 Simulation numérique de procédés d’emboutissage automobile & 

Automatisation des traitements de données, Technical report Arts et Métiers 
ParisTech, Metz, France  

[58] Lee M G, Kim D, Kim C, Wenner M L and Chung K 2005 International Journal of 

Plasticity 21 915-953 
[59] Thuillier S, Manach P Y and Menezes L F 2010 Journal of Materials Processing 

Technology 210 226-232 
[60] Uenishi A, Teodosiu C and Nesterova E V 2005 Materials Science and Engineering A 

400-401 499-503 
[61] Haddag B, Abed-Meraim F and Balan T 2009 International Journal of Plasticity 25 

1970-1996 
 
 


