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ABSTRACT 

 

This paper reviews a class of anisotropic plastic strain-rate potentials, based on linear 

transformations of the plastic strain-rate tensor. A new formulation is proposed, which 

includes former models as particular cases and allows for an arbitrary number of linear 

transformations, involving an increasing number of anisotropy parameters. The formulation is 

convex and fully three-dimensional, thus being suitable for computer implementation in finite 

element codes. The parameter identification procedure uses a micromechanical model to 

generate evenly distributed reference points in the full space of possible loading modes. 

Material parameters are determined for several anisotropic, fcc and bcc sheet metals, and the 

gain in accuracy of the new models is demonstrated. For the considered materials, increasing 

the number of linear transformations leads to a systematic improvement of the accuracy, up to 

a number of five linear transformations. The proposed model fits very closely the predictions 

of the micromechanical model in the whole space of plastic strain-rate directions. The r-

values, which are not directly used in the identification procedure, served for the validation of 

the models and to demonstrate their improved accuracy. 
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1. Introduction 

 

Numerical simulation has become an invaluable tool in sheet metal forming applications and 

several commercial computer codes are available for this purpose. The accuracy of the 

simulations directly depends on the ability of the simulation codes to describe the plastic 

behavior of the material during forming. The description of the initial anisotropy is one of the 

key factors in improving the reliability of the finite element simulations of forming processes. 

This is particularly true when final part properties like springback or forming limits are to be 

predicted. 

 

The plastic anisotropy of sheet metals can be assessed by means of micromechanical 

calculations, considering the material as a collection of grains of different orientations, subject 

to a given loading path and obeying the Schmid law. Nevertheless, the large computing times 

associated with this method have prevented its wide utilization in an industrial environment. 

Alternatively, continuum mechanics provide a general theoretical framework for the so-called 

phenomenological description of plastic anisotropy. This approach is classically based on the 

use of yield functions ( )φ σ and associated flow rules (1) for the computation of stresses and 

strain rates: 

 
φ

λ
∂

=
′∂

ε
σ

ɺɺ  (1) 

where ′σ designates the deviatoric part of the stress tensor σ , εɺ  is the plastic strain rate tensor 

while λɺ is the plastic multiplier. However, a potential can be defined either as a function of 

stresses (yield criterion) or as a function of strain rates (strain-rate potential). (Ziegler, 1977) 

and (Hill, 1987) have shown that, based on the plastic work equivalence principle, a 

meaningful strain rate potential can be associated with any convex stress potential (or yield 

surface). The yield criteria act as potential functions for the determination of the plastic strain 

rate using the flow rule. Equivalently, plastic potentials ( )ψ εɺ are defined in the space of 

plastic strain-rates and their gradient (2) defines the deviatoric stress (only associated flow 

rules are considered in the current work, although the theory on hand is not restricted to this 

particular case): 

 

 
ψ

τ
∂

′ =
∂

σ
εɺ

 (2) 

 

where τ  is a reference stress (e.g., the yield stress in uniaxial tension along a chosen 

direction). Formally, the two approaches are identical. For some applications (rigid-plastic 

FEM simulations (Yoon et al., 1995; Chung et al., 1996; Lee et al., 1997; Ryou et al., 2005), 

minimum plastic-work path calculations (Chung and Richmond, 1992a; b; 1994; Chung et al., 

2000), analytical calculations of simple forming processes etc.) the strain-rate potential 

approach can be computationally more suitable. Several fourth order and sixth order strain-

rate potentials have been proposed as an adjustment of crystallographic texture functions (Van 

Houtte et al., 1989; Arminjon and Bacroix, 1991; Arminjon et al., 1994; Savoie and 

MacEwen, 1996; Van Bael and Van Houtte, 2003; Van Houtte et al., 2008). Virtually any 
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mathematical function used to define a yield criterion can be transformed in order to describe 

a plastic potential in the plastic strain-rate space (Barlat and Chung, 1993; Zhou and 

Wagoner, 1994).  

 

A useful method to generate both yield criteria and strain-rate potentials is based on the linear 

transformation of the stress tensor or the plastic strain-rate tensor, respectively. Yield 

functions using the linear transformation of the stress tensor were proposed in the early 90s by 

(Barlat et al., 1991) and (Karafillis and Boyce, 1993). In an attempt to increase the number of 

parameters, two independent linear transformations have been used in the formulation of the 

plane stress potential Yld2000-2d (Barlat et al., 2000; Barlat et al., 2003). Full 3D yield 

functions employing two linear transformations have been proposed by (Barlat et al., 2005) 

and (Bron and Besson, 2004) – the later also proposed a generic form of yield function as a 

sum of several functions. 

 

In parallel, the strain rate potential Srp93 (Barlat and Chung, 1993; Barlat et al., 1993), which 

is the pseudo-conjugate of the Yld91 stress potential (Barlat et al., 1991), was developed 

using a linear transformation of the plastic strain rate tensor. The strain rate potential 

Srp2003-2d, which is the pseudo-conjugate of the Yld2000-2d stress potential (Barlat et al., 

2003), was proposed by (Kim et al., 2003a) subsequently. Recently, (Barlat and Chung, 2005; 

Kim et al., 2007) proposed the two-transformation strain-rate potentials Srp2004-18p and 

Srp2006-18p, inspired from the expression of the yield criterion Yld2004-18p (Barlat et al., 

2005).  

 

The increased flexibility of these potentials allowed both the uniaxial yield stresses and the 

corresponding r-values to be taken into account simultaneously for parameter identification. 

The later versions describe accurately such uniaxial tensile test results performed every 15°. 

Finite element simulation of springback as well as forming limit predictions have been 

performed by (Kim et al., 2003b; Chung et al., 2005) with Yld2000-2d and by (Li et al., 

2003) and (Hiwatashi et al., 1998) with the sixth order potential developed by (Van Houtte et 

al., 1989) with very good results. Also, the number, position and relative height of the ears in 

cylindrical cup drawing are better predicted with recent yield criteria (see e.g. (Yoon et al., 

2006)). In particular, (Rabahallah et al., 2006; Rabahallah et al., 2008a) have shown that the 

Srp2004-18p potential predicts the initial anisotropy better than most of the existing 

phenomenological potentials for a very wide range of materials. This is a potentially 

interesting property since a unique mathematical function could be used for all the forming 

applications, while some former mathematical functions were known to perform better e.g. 

for either bcc or fcc sheet materials, but nor for both (Bacroix et al., 2003).  

 

The aim of this paper is to explore more systematically the use of linear transformations in the 

formulation of plastic strain-rate potentials. In section 2, a general formulation is proposed 

involving an arbitrary number of linear transformations. This formulation includes former 

plastic strain-rate potentials as particular cases. The number of parameters is increasing with 

the number of linear transformations; their identification is tackled in section 3 for a number 

of sheet metals – both bcc and fcc. Section 4 shows the ability of the different models to 

accurately predict the yield surface, the curves of plastic potential iso-values as well as the r-

values for the selected materials. The mathematical details for the complete calculation of the 

plastic potential and its derivatives are given in appendix. 
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2. Formulation of the proposed model 

 

As mentioned in the introduction, linear transformation of the stress tensor σ  by means of an 

anisotropic operator B provides a straightforward way to generalize isotropic yield functions 

to anisotropy (Barlat et al., 1991; Karafillis and Boyce, 1993; Barlat et al., 2005). The same 

technique can be applied to the plastic strain-rate tensor εɺ  in order to generalize isotropic 

expressions of plastic potentials. The following linear transformation has been used by (Barlat 

and Chung, 2005; Kim et al., 2007), which enforces the deviatoric character of the plastic 

strain-rate tensor in a convenient way:  

 

 = ⋅ ⋅ε B T εɶɺ ɺ  (3) 

 

In Eq. (3), T  designates the unit tensor in the space of fourth order symmetric deviatoric 

tensors while the fourth order array B  contains anisotropy coefficients. For the case of 

orthotropic symmetry, these tensors can be represented as the following 6×6 arrays: 
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 − − 
 − −

=  
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0 0 0 1 0 0
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0 0 0 0 0 1

− − 
 
 − −
 
 − −=  
 
 
 
 
 

T  (4) 

 

In order to use these compact notations, the εɺ -like tensors are written here as 6-component 

vectors; e.g., [ ]T

xx yy zz yz zx xyε ε ε ε ε ε=ε ɺ ɺ ɺ ɺ ɺ ɺɺ , with components in the frame of material 

symmetry.  

 

The following scalar functions are used in defining the strain-rate potentials Srp93, Srp2004-

18p and Srp2006-18p: 

 
( )

( )

1 1 2 3

2 2 3 3 1 1 2

,

,

b b b

b b b

E E E

E E E E E E

= + +

= + + + + +

B ε

B ε

ϕ

ϕ

ɶ ɶ ɶɺ

ɶ ɶ ɶ ɶ ɶ ɶɺ

 (5) 

where  iEɶ  are the principal values of tensor εɶɺ  defined by the linear transformation of Eq. (3). 

The notations in Eq. (5) allow rewriting the existing members of the Srp-family of strain-rate 

potentials in the following compact forms: 
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 (6) 

 

where εɺ  is the effective plastic strain rate, which is the conjugate of the effective stress σ  

under the plastic work rate equivalence principle.  

 

Eqs. (6)b and (6)c represent two different extensions of Eq. (6)a, each of them using two 

linear transformations. The Srp2006-18p expression uses function 1ϕ  twice, which may rise 

uniqueness problems during parameter identification. In (Kim et al., 2007), Srp2004-18p and 

Srp2006-18p have shown almost identical predictions and convergence behavior. Therefore, 

any of them could be used to further increase the number of linear transformations in the 

plastic potential expressions. In this perspective, Srp2006-18p has the advantage of a unique 

definition for odd number of transformations and to yield the most compact formula for a 

multiple transformation potential.  

 

In this work, the following generalization is proposed, using multiple linear transformations 

of the plastic strain-rate tensor: 

 ( ) ( )
1

11
1

1 1
,

2 1

N b
k

b
kN

ψ ϕ ε
−

=

 
= = 

+ 
∑ε B ε ɺɺ ɺ  (7) 

The expressions of Srp93
1
 and Srp2006-18p are particular cases of the function proposed 

above, for N=1 and N=2. Larger N-values lead to new expressions, involving an increased 

mathematical flexibility – associated with an increased number of parameters. All these 

expressions can be designated as Srp2007-N×9p potentials.  

 

The strain rate potentials ψ  are proven to be convex (Rockafellar, 1970) in the space of the 

principal transformed strain rates iEɶ  (note the sum of two or more convex functions is also a 

convex function) and it is easy to show that they are also convex with respect to the plastic 

strain rate tensor (Kim et al., 2007). Thus, the series of potentiels generated with Eq. (7) are 

convex functions.  

 

 

3. Parameter identification  

 

                                                 
1
 The original expression of Srp93 (Barlat and Chung, 1993) is slightly different since a 

simpler anisotropy matrix has been used at that time (involving seven parameters, instead of 

nine). However, the current equation can be considered as the final version of Srp93. 
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Successful parameter identification is a key problem for the advanced potentials involving an 

increasing number of parameters. Moreover, the need for specific experimental measures that 

often differ from one model to another makes it almost impossible to consistently compare the 

predictions of different models.  

 

It has been recently shown by (Plunkett et al., 2008) that the identification of yield functions 

based on multiple linear transformations can be performed using experimental data obtained 

by mechanical tests. However, a more consistent approach for model comparison is provided 

by the texture-based identification introduced in the early 90s by (Van Houtte et al., 1989; 

Arminjon and Bacroix, 1991). In this case, a very large number of reference points is 

generated by means of a micromechanical model. These points are evenly distributed in the 

space of plastic strain-rate directions. For this purpose, the plastic strain-rate directions 

=N ε εɺ ɺ  are represented by five-component unit vectors (Lequeu et al., 1987), as described 

in appendix. Such unit vectors can be described in the 5D space by four angles 

1 2 3 4, ,  and θ θ θ θ  (Gilormini et al., 1988): 

 

1 1 2 3 4

2 1 2 3 4

3 2 3 4

4 3 4

5 4

cos sin sin sin

sin sin sin sin

cos sin sin

cos sin

cos

N

N

N

N

N

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ

θ

=

=

=

=

=

 (8) 

 

where 0≤ 1θ ≤2π and 0≤
i

θ ≤π, for i between 2 and 4. Consequently, the element of area on the 

unit hypersphere defined in this way equals 

( ) ( )2

1 2 3 3 4 4cos 2 sin 2 4 2 sin cos 3d d d d  θ θ θ − θ + θ θ  . The orthotropic symmetry of the 

texture of rolled materials allows for a reduction of the range of each of the four angles as 

follows (Arminjon and Bacroix, 1991): 0≤ 1θ ≤2π; -1≤ 2cosθ ≤1; 0≤ 3 32 sin 2 4θ − θ ≤π/4; 

0≤ ( )2

4 42 sin cos 3+ θ θ ≤2/3. These variation ranges are swept with regular intervals, yielding 

a discretisation of 40 20 10 10× × ×  points, which correspond to unit vectors in the space of 

plastic strain-rates. Consequently, the number of reference points for the identification 

(80,000) is much larger than the number of parameters of the models. Moreover, this 

approach allows one to investigate the models’ ability to describe the through-thickness 

anisotropy of the materials. Indeed, this type of anisotropic response is difficult (and most 

often impossible) to address by means of experimental testing. While most sheet metals are 

strained in the plane of the sheet during forming, several applications (e.g. multi-pass 

forming, thick sheet forming, hemming etc.) may involve non-negligible through-thickness 

shear strains.  

 

A rigid-plastic, “full-constraints” Taylor model (Bishop and Hill, 1951) is used to generate 

the reference values used for the identification procedure. The families of slip systems 

considered are { }111 110  for fcc metals and { }110 111 , { }112 111  for bcc metals. The 

same critical resolved shear stress was considered on all slip systems; its value is not relevant 

for the current analysis since the calculated stresses are normalized by the resolved shear 

stress throughout. Hardening modeling is also not required, nor texture evolution, since only 

the initial yielding point is calculated. It is noteworthy that any other micromechanical model 
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can be used to generate these reference yielding points for the parameter identification. Given 

a unit plastic strain rate tensor N , the corresponding average plastic work rate ( )P

TaylorW Nɺ  and 

the normalized expression ( ) :P

Taylor

cτ

′
Π =

σ
N N  can be computed, where cτ is the critical shear 

stress associated with the Schmid law on the crystallographic slip systems. The same 

quantities can be calculated by using the plastic potential. Since the different potentials used 

in this work are described by homogeneous function of degree one, Eq. (7) can be rewritten in 

terms of N, as  

 ( )
( )PW

ψ
τ

=
N

N
ɺ

 (9) 

where τ  is the reference stress for the plastic potentials. In other words, for any strain rate 

direction iN , the previously defined two functions ( )P

Taylor iΠ N  and ( )iψ N  correspond to the 

plastic work rate associated with a unit-norm strain rate tensor and normalized by the 

reference stress. The coefficients of the plastic potential ψ can then be identified by 

minimizing the following objective function: 

 

( ) ( )

( )

80000 2

1

80000 2

1

(material parameters)

P

Taylor i i

i

P

Taylor i

i

F

ψ
=

=

 Π − 
=

 Π 

∑

∑

N N

N

 (10) 

with respect to the parameters of the chosen potential. The sum is performed over the 80,000 

predefined strain rate directions discussed earlier. The values ( )P

Taylor iΠ N  are computed for 

all these directions. This is a lengthy task, but it has to be performed only once for each 

material. In the recent papers (Rabahallah et al., 2008a; Van Houtte et al., 2008), such 

procedures have been used for the parameter identification of various plastic strain-rate 

potentials and are described in detail.  

 

4. Application to steel and aluminum alloy sheet metals 

 

4.1 Materials and material parameters 

 

The experimental textures of a set of six polycrystalline materials have been used for the 

current investigation: three aluminum alloy sheets and three steel sheets. The three aluminum 

alloy sheets are an aluminum-magnesium-silicium alloy AA6016, an aluminum-magnesium 

aluminum alloy AA5182 and an AA6022 alloy. The steel sheets are an interstitial free mild 

steel DC06, a high stength Dual phase steel DP600 and a high strength low-alloyed steel 

HSLA340. All these materials are widely used in the automotive industry and have been 

thoroughly investigated in (3DS, 2001; Haddadi et al., 2006). The microstructure of the steel 

sheets has been investigated in (Nesterova et al., 2001; Gardey et al., 2005a; Gardey et al., 

2005b).  
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Figure 1 shows the yield surfaces and the in-plane variation of Hill’s anisotropy coefficient 

2 1r = ε εɺ ɺ  for the six materials under investigation, as predicted by the crystal plasticity 

model. The two high strength steels DP600 and HSLA are almost isotropic and their yield 

surfaces are very close to each other. The three aluminum alloy sheets exhibit r-values smaller 

than one, with a strong variation for AA6022. In contrast, the mild steel exhibits an average r-

value of two, with an in-plane variation close to unity. The experimental r-values for all these 

materials as well as the predictions of several existing plastic potentials are available in 

(Rabahallah et al., 2008a). 

 

The values of the material parameters identified for these materials and for the Srp2007 model 

for up to six transformations are given in Tables 1 to 4. In the next section, these results are 

analyzed in terms of yield surface plots, strain-rate potential iso-values plots, r-value plots and 

parameter identification objective function values. 
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Figure 1. Yield surfaces (top) and r-values (bottom) for the six materials of the study; Taylor 

model predictions. 
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Table 1. Best fit parameters of the Srp2007-1×9p after identification, for the six materials. 

 

Parameters DC06 DP600 HSLA AA5182 AA6022 AA6016 

12b  2.9323 3.0078 2.7607 3.0435 3.0101 3.0252 

13b  3.0857 2.9925 2.7476 2.9631 2.9905 2.9775 

21b  2.9494 3.0437 2.8029 3.048 2.972 3.024 

23b  3.1199 3.0643 2.832 2.9721 2.9143 2.9751 

31b  3.2562 3.0131 2.7767 2.8872 2.9328 2.9286 

32b  3.2733 3.049 2.8189 2.8917 2.8947 2.9274 

44b  0.9221 1.0064 0.9170 1.0344 1.1031 1.0369 

55b  0.9391 1.0330 0.9449 1.0261 1.0731 1.0345 

66b  1.0307 1.0260 0.9352 0.9967 1.0756 1.0038 

b  1.6063 1.5517 1.5554 1.3810 1.3296 1.3183 

 

 

 

 

Table 2. Best fit parameters of the Srp2007-2×9p after identification, for the six materials. 

 

Parameters DC06 DP600 HSLA AA5182 AA6022 AA6016 
1

12b  0.9552 0.1341 0.6176 1.5420 0.3174 1.6189 
1

13b  0.9893 0.5141 0.3453 1.5109 0.0152 1.5707 
1

21b  1.2842 1.1634 0.0739 1.6337 0.7568 1.5482 
1

23b  1.2377 1.0563 0.2236 1.6230 0.2410 1.5707 
1

31b  1.2117 0.6356 -0.1288 1.5248 0.4022 1.5328 
1

32b  1.2144 0.5963 0.2200 1.5096 0.2673 1.6076 
1

44b  1.3448 0.7458 0.4057 1.6772 0.7076 1.5492 
1

55b  1.1439 -0.0087 0.4666 1.5940 0.4440 1.7014 
1

66b  1.3870 0.5735 0.5414 1.6138 0.1820 1.5902 
2

12b  0.5695 1.1936 1.2852 0.2844 1.3642 0.3379 
2

13b  -0.4002 1.3097 1.3884 0.2877 1.4038 0.2762 
2

21b  0.6464 1.2247 1.2628 0.3904 1.4569 0.0606 
2

23b  -0.2051 1.1146 1.3572 0.2079 1.4284 0.1440 
2

31b  -0.1529 1.3339 1.3789 0.3413 1.5882 0.2327 
2

32b  -0.7111 1.0895 1.4639 0.2916 1.5605 0.1851 
2

44b  -0.4046 1.1794 1.3121 -0.0985 1.4803 0.4216 
2

55b  -0.8189 1.5432 1.3321 0.2969 1.6225 0.1171 
2

66b  0.5119 1.3890 1.2562 0.2574 1.7888 0.2447 

b  1.4990 1.5171 1.5000 1.2878 1.2640 1.3333 
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Table 3. Best fit parameters of the Srp2007-4×9p after identification, for the six materials. 

 

Parameters DC06 DP600 HSLA AA5182 AA6022 AA6016 
1

12b  1.8108 -0.0246 0.0575 2.8822 0.1250 -0.5474 
1

13b  1.7218 0.5083 0.8940 2.9716 -0.0614 0.0567 
1

21b  2.5304 0.1561 0.2042 2.2853 0.3366 -0.3624 
1

23b  2.3858 0.1758 0.2253 2.3246 0.0481 0.2482 
1

31b  0.4730 0.1978 0.5288 2.5734 0.1489 -0.1041 
1

32b  0.3670 0.1047 0.2672 2.4389 0.2392 0.2847 
1

44b  1.4702 0.3467 -0.5953 2.5841 0.2781 0.6827 
1

55b  0.8375 -0.1652 0.2678 2.5184 0.2679 -0.2930 
1

66b  2.1585 0.2917 0.4415 2.5755 -0.1696 0.5253 
2

12b  0.9707 1.2210 0.3781 0.7458 0.1358 0.2257 
2

13b  0.2707 1.1828 -0.1884 0.3105 0.1455 0.0890 
2

21b  1.1899 1.2261 -0.1240 0.3701 0.2599 0.4527 
2

23b  0.2401 1.1803 0.1874 0.1619 0.2668 0.5054 
2

31b  0.2527 1.1463 -0.1556 -0.2877 0.2359 0.2260 
2

32b  -0.6716 1.1844 -0.1345 -0.5692 0.2642 0.3974 
2

44b  -0.2921 1.2377 -0.2256 0.4969 0.1958 -0.0590 
2

55b  -1.2173 1.2074 0.5855 -0.4707 0.3076 -0.6018 
2

66b  1.2356 1.2116 0.2920 -0.5076 0.3113 0.4211 
3

12b  1.4319 0.1510 0.8628 1.7521 1.2691 3.8280 
3

13b  1.6365 0.4542 0.0248 1.6218 1.2875 3.8766 
3

21b  1.2132 -0.0358 0.8599 1.7467 1.1933 3.4864 
3

23b  1.6117 0.0496 0.4381 1.6898 1.1885 3.4723 
3

31b  3.5822 0.0316 -0.0566 1.5237 1.2939 3.5170 
3

32b  3.6020 0.3836 -0.0407 1.7249 1.2581 3.4722 
3

44b  2.2095 0.1140 -0.5073 1.6036 1.3427 -3.6723 
3

55b  2.4475 0.3927 -0.2469 1.9552 1.3301 -3.6449 
3

66b  1.5099 0.1827 -0.8895 1.7598 1.3201 3.7146 
4

12b  -0.0747 0.2911 1.7859 -0.4852 -0.4186 0.1734 
4

13b  -0.2326 0.0889 1.9237 -0.0706 -0.2685 0.2691 
4

21b  0.4826 0.3707 1.8286 -0.2912 0.0620 0.2582 
4

23b  0.4394 0.1501 1.7781 -0.6406 0.1299 0.2695 
4

31b  0.8436 0.1100 1.9411 -0.0894 0.2348 0.0075 
4

32b  1.0457 -0.1701 1.7944 0.0108 0.3564 0.1440 
4

44b  -0.7906 0.1020 -1.8095 -0.5967 -0.5271 0.1247 
4

55b  -0.4953 0.3247 -2.0492 0.2945 0.3420 0.1194 
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4

66b  0.7161 0.4254 1.8071 0.4361 0.4300 0.0854 

b  1.4537 1.4444 1.4580 1.2733 1.1970 1.2884 

 

 

 

Table 4. Best fit parameters of the Srp2007-6×9p after identification, for the six materials. 

 

Parameters DC06 DP600 HSLA AA5182 AA6022 AA6016 
1

12b  -0.0204 -0.0100 0.0612 -0.5761 -0.6812 -0.3742 
1

13b  0.3084 0.7613 1.0441 0.1637 0.2686 0.0627 
1

21b  1.3190 0.3470 0.6003 -0.1132 -0.6575 -0.5552 
1

23b  1.2147 0.2681 0.5120 0.0555 0.1918 0.1290 
1

31b  -0.2862 0.2549 0.4910 0.4228 0.2115 0.1808 
1

32b  0.1953 0.1526 0.3995 0.2572 0.2915 0.2631 
1

44b  0.6615 0.5271 -0.8141 0.1322 0.4903 0.4056 
1

55b  0.2919 -0.2260 0.0911 0.4825 0.5243 0.2273 
1

66b  0.7660 0.4525 0.6220 0.3208 0.9135 0.4413 
2

12b  -0.1114 1.5669 -0.0889 -0.0486 -0.1880 0.0167 
2

13b  -1.2731 1.5727 0.0770 0.1083 -0.1866 0.0852 
2

21b  0.1115 1.5991 -0.0155 -0.2365 -0.0182 0.1599 
2

23b  1.4648 1.5862 0.3965 -0.2189 0.3353 0.1370 
2

31b  -0.2622 1.5302 0.0532 0.1853 0.5295 0.1723 
2

32b  -0.4147 1.5473 0.1364 0.1210 0.2721 0.0971 
2

44b  0.6427 1.6030 0.0433 0.2917 -0.3748 0.0387 
2

55b  0.8681 1.7066 0.4550 0.2968 0.3868 0.2784 
2

66b  0.4034 1.5573 0.0837 -0.3332 -0.2853 -0.1511 
3

12b  1.6009 0.2751 1.0168 3.0236 0.3185 0.0231 
3

13b  1.2314 0.8266 -0.1548 3.0533 0.3787 0.0212 
3

21b  1.4942 -0.2177 0.4790 3.6419 -0.3303 -0.1307 
3

23b  0.9018 -0.1871 0.3792 3.6506 0.6350 0.4080 
3

31b  -0.4587 -0.0070 0.4072 2.9730 0.1504 0.2206 
3

32b  -0.2489 0.8061 0.4576 2.8882 0.2497 0.1515 
3

44b  0.7198 0.1401 -0.5452 3.4498 0.3423 0.2243 
3

55b  1.0187 0.7855 0.5612 3.0239 0.6736 0.2610 
3

66b  1.6736 0.4546 -0.5489 3.3195 -0.7504 -0.2695 
4

12b  -0.0211 0.5555 2.3387 -0.3374 3.1971 3.6742 
4

13b  -0.5574 0.1219 2.3464 -0.2178 2.8152 3.5435 
4

21b  -0.0304 0.7721 2.3356 -0.4805 3.2127 3.6711 
4

23b  0.3771 0.2846 2.1673 -0.2169 2.7313 3.4480 
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4

31b  0.5515 0.1519 2.3421 0.5421 2.7563 3.4962 
4

32b  0.4170 -0.3576 2.1801 0.0985 2.6202 3.4384 
4

44b  0.5728 0.2566 -2.2694 -0.4211 2.8726 3.5866 
4

55b  0.0963 0.6901 -2.4028 0.2874 2.9857 3.5437 
4

66b  0.5917 0.8071 2.3531 0.4052 3.1534 3.6237 
5

12b  1.7587 0.0345 0.4517 0.6316 0.3407 0.5819 
5

13b  1.7506 0.7790 0.9307 0.5767 -0.4496 -0.1231 
5

21b  1.5999 0.2817 0.2540 0.5757 0.3839 0.2740 
5

23b  1.6588 0.1927 0.1037 0.5036 0.4709 0.1226 
5

31b  1.8413 0.2452 -0.0447 0.8257 0.3340 0.3014 
5

32b  1.7790 0.1044 0.3951 0.9680 0.2198 0.1211 
5

44b  1.9096 0.5467 0.5048 0.6466 0.6754 0.5542 
5

55b  1.8587 -0.2277 0.7055 -0.9417 0.5226 0.2993 
5

66b  1.7113 0.4612 0.6013 -0.6798 0.7848 0.4293 
6

12b  0.2847 1.6012 -0.5906 0.4099 -0.5784 -0.0464 
6

13b  -0.4844 1.5164 -0.2412 0.6187 -0.7969 -0.2476 
6

21b  0.2817 1.6132 -0.6961 0.5359 0.6842 0.2714 
6

23b  -0.0092 1.5295 -0.3278 0.0597 0.7985 0.3726 
6

31b  -0.0525 1.5291 -0.2991 -0.1592 -0.2348 0.0113 
6

32b  -0.3292 1.5643 0.3036 0.0322 0.3294 0.1837 
6

44b  -0.3845 1.5876 -0.1323 0.2219 1.1082 0.1047 
6

55b  0.8323 1.5116 0.7546 0.4050 0.5963 0.4537 
6

66b  0.2364 1.5918 0.7783 0.3244 -0.3460 -0.2862 

b  1.3547 1.4685 1.4382 1.2555 1.1530 1.2624 

 

 

4.2 Analysis of results and discussion 

 

Figure 2 displays the yield surface for the AA6022 aluminum alloy as well as the DC06 mild 

steel, as predicted by Srp2007-2×9p and Srp2007-4×9p. Figure 3 displays the deviatoric plane 

of the corresponding dual equipotential surfaces for the mild steel. One can see that Srp2007-

4x9p almost perfectly fits the reference points corresponding to the micromechanical model. 

However, the prediction provided by Srp2007-2×9p is already very close to this reference. A 

more quantitative comparison can be made by considering the values of the objective-function 

(10) as a measure of the closeness of each model to the reference data. Figure 4 summarizes 

the values of the objective functions for the Srp2007 models for up to six linear 

transformations, for the six materials investigated.  
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Figure 2. Normal plane stress yield surface for a DC06 mild steel (top) and an AA6022 

aluminum alloy (bottom). 
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Figure 3. π -plane plot of plastic strain-rate potentials for the mild steel DC06. 

 

 

 

 

Figure 4 gives a global picture of the respective ability of the various models to describe the 

plastic anisotropy of sheet metals. It appears clearly that considering up to four or five linear 

transformation in the Srp2007 expression allows for an improvement in accuracy and 

flexibility. However, the addition of the sixth transformation brings almost no improvement 

for all the materials and it appears useless to increase complexity beyond this value. 
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Figure 4. Values of the minimum objective function after parameter identification of different 

versions of the Srp2007 model, for each of the six materials. 

 

 

While these conclusions are clearly reproduced for all the materials in this study, it is not 

obvious from Figure 2 and Figure 3 that a significant improvement has been obtained in the 

shape of the yield locus, e.g. when four linear transformations are used instead of only two for 

the DC06 mild steel sheet. Figure 5 provides a different graphical representation of the five-

dimensional equipotential surface predicted for the DC06 mild steel: a two-dimensional cut is 

made in this surface through a plane containing the two through-thickness shear components
2
. 

It appears clearly from this graph that the use of more than two linear transformations 

improves the predictions in the whole five-dimensional space of possible plastic strain-rate 

directions, which explains the diminution of the corresponding error function by more than 

one order of magnitude.  

 

 

                                                 
2
 The variables on the two axes are scaled in such a way that a von Mises model would be 

represented by circles in all these graphs. More details about this scaling are given in 

appendix. 
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Figure 5. Scaled 

xz yz
ε ε−ɺ ɺ  plot of plastic strain-rate potentials for the mild steel DC06. 

 

In contrast to the regular parameter identification method that uses mechanical test data, it is 

noteworthy here that the r-values have not been used for the identification. Consequently, 

they can be used as a means of validation. Figure 6 depicts the predictions of the r-values for 

all the materials analyzed in this work, as predicted by the Taylor model and by the Srp2007 

models with up to six transformations. First, let us note that the Taylor model is known to 

predict the anisotropy coefficients rather poorly; this prevents the use of this data for the 

parameter identification. Moreover, the crystal plasticity predictions in Figure 6 are slightly 

noisy. From this figure and from Figure 1b, it is obvious that for the aluminum alloys, for 

which only one slip system is used, the r-value variation smoothly oscillates with a period of 

10°. This corresponds to the step of discretization of the Euler angles when the orientation 

distribution function is constructed for each material (2016 crystallographic orientations are 

used to describe the orientation distribution function). 

 

Nevertheless, it is obvious from these graphs that additional linear transformations in the 

Srp2007 model improve the prediction of the r-values for most materials. The predictions of 

the two-transformation model consistently improve the predictions with respect to the one-

transformation one; yet they are still inaccurate for some materials.  However, for all the 

materials investigated, the four-transformation and six-transformation versions laid very close 

to the micromechanical model predictions – remaining in the error range of the Taylor model 

itself. On the other side, the increased flexibility of the multiple-transformation potential 
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sometimes led to numerous oscillations of the anisotropy coefficient in the neighborhood the 

reference curve. Mathematically speaking, these oscillations lay close to the reference data 

and most of the time they are smaller than the error range of the Taylor model; thus no better 

result could be expected from the automatic identification procedure. However, the 

smoothness of the r-value in-plane variation is a pre-requisite for a correct prediction e.g. of 

the cup drawing ears – more generally the flow anisotropy prediction in finite element 

simulations (Rabahallah et al., 2008b). As a consequence, the robust parameter identification 

of the Srp2007 models might require a smoothing procedure in order to enforce the realistic 

variation of the anisotropy coefficient. 

 

These results also show that, especially for the more usual potentials (i.e. with one or two 

transformations), excluding the r-values from the reference data used for identification may 

lead to inaccurate results. This observation is well known in the case when a reduced number 

of experimental data are used for the identification. Here, the same conclusion is obtained 

even if the number of stress points is very large and evenly distributed in the whole space of 

possible loading directions.  

 

Due to the restricted range of application of the Taylor model, the use of the current 

identification technique cannot eliminate completely the experimental results without loss of 

accuracy. Instead, it provides a consistent method to compare plasticity models and it also 

allows, in combination with experimental results, for a better identification of the potential 

parameters affecting the through-thickness shear terms, which cannot be identified by means 

of experimental data only. 
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Figure 6. Predictions of the in-plane variation of r-values for the six materials studied in the 

paper. The reference data (r-values predicted with the Taylor model – represented by open 

circles) have not been used for the parameter identification. The numbers on the plots (1, 2, 4 

and 6) designate the number of transformations (the thick lines designate the six-

transformation potential). 
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5. Conclusions 

 

A new formulation of plastic strain-rate potentials has been proposed that includes as 

particular cases the previous members of the Srp-family of plastic potentials. This expression 

allows for arbitrarily increasing the number of parameters. It has been shown that each 

additional linear transformation corresponds to a clear improvement in the flexibility of the 

obtained model, for a wide range of steel and aluminum alloy sheets, up to five 

transformations.  

 

The use of the texture-based identification approach has shown that the through-thickness 

predictions of the Srp-models are also improving when additional linear transformations are 

used. The four-transformation version almost perfectly reproduces the micromechanical 

model for the particular materials studied in this work. This, as well as the use of a large set of 

evenly-distributed reference points, is a major advantage of the texture-based identification 

approach. 

 

In practice, this parameter identification technique is restricted to sheet metals where the 

considered micromechanical model is known to correctly describe the real plastic anisotropy 

of the material. In this case, this approach not only generates accurate parameters, but it does 

so at a much lower cost as compared to the experimental method. For most practical 

applications, however, experimental data (r-values, uniaxial and biaxial yield stresses etc.) 

shall be used for the identification; if necessary, micromechanical calculations can be added 

(with a reduced weight in the objective function) to the experimental data set in order to 

identify all the parameters of the potential (Kim et al., 2007).  

 

Future work concerns the generalization of this approach to the Yld-family of yield criteria – 

as it has already been applied e.g. by (Plunkett et al., 2008) for the CB2006 criterion. 
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Appendix 1: Strain rate potential first derivatives 
 

The associated normality flow rule Eq. (2) is used to obtain the stress deviator, in which 
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For the general expression of Srp2007-N×9p shown in Eq. (7), the expressions for 

1 ,  1,3k
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The terms k∂ ∂E εɶ ɺ  are independent of the number of transformations in the potential and their 

calculation is provided in (Kim et al., 2007). 

 

 

 

 

Appendix 2: Five-component notation for symmetric deviatoric 
tensors   
 

Any symmetric, deviatoric, second order tensor A contains only five independent 

components. Thus, the same tensor can be fully described by a five-component vector 

1 2 3 4 5[ ]T
A A A A A . The choice of the five components is not unique. The following 

choice is made in this paper: 
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 (13) 

 

This particular notation has several advantages. First, the norm of the five-component vector 

is equal to the norm of the tensor that it represents: 

 

 
2

 ;    1,5 ;    , 1,3
k k ij ij

A A A A k i j= = = =A  (14) 

 

More generally, the result of the scalar products of second and/or fourth order tensors 

(symmetric and deviatoric) corresponds to the scalar products of their five-component vector 

and/or tensor counterparts. Additionally, this particular notation gives equivalent weights to 

each component of the plastic strain-rate tensor in the expression of plastic strain-rate 
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potentials. Consequently, a von Mises-type plastic potential would be represented by identical 

circles in any two-dimensional representation like the one in Figure 3.  
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