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a b s t r a c t

In this paper the Verchery’s polar method is extended to the conceptual framework of the Reddy’s
Third-order Shear Deformation Theory (TSDT) of laminates. In particular, a mathematical representation
based upon tensor invariants is derived for all the laminate stiffness matrices (basic and higher-order
stiffness terms). The major analytical results of the application of the polar formalism to the TSDT of lam-
inates are the generalisation of the concept of a quasi-homogeneous laminate as well as the definition of
some new classes of laminates. Moreover, it is proved that the elastic symmetries of the laminate shear
stiffness matrices (basic and higher-order terms) depend upon those of their in-plane counterparts. As a
consequence of these results a unified formulation for the problem of designing the laminate elastic sym-
metries in the context of the TSDT is proposed. The optimum solutions are found within the framework of
the polar-genetic approach, since the objective function is written in terms of the laminate polar param-
eters, while a genetic algorithm is used as a numerical tool for the solution search. In order to support the
theoretical results, and also to prove the effectiveness of the proposed approach, some new and meaning-
ful numerical examples are discussed in the paper.

1. Introduction

As well known, the Classic Laminate Theory (CLT) together with
the First-order Shear Deformation Theory (FSDT) are the simplest
theories employed for describing the mechanical behaviour of a
composite laminate considered as an equivalent homogeneous
(generally) anisotropic plate. Such theories properly describe the
laminate kinematic response in the case of small (CLT) or moderate
(FSDT) values of the plate characteristic aspect ratio (i.e. the ratio
of its thickness to its shorter side). However, the major drawback
of these theories is in the estimation of the influence of the lami-
nate transverse shear stiffness on its mechanical response (which
becomes more and more important for thick plates). On one hand,
in the case of the CLT the laminate transverse shear stiffness does
not intervene in the definition of the laminate constitutive equa-
tion (making this theory adequate only for thin laminates). On
the other hand, in the framework of the FSDT the influence of
the transverse shear stiffness is taken into account within the
definition of the laminate constitutive behaviour. Nevertheless,
due to the kinematic model on which the FSDT relies, the

through-the-thickness shear stresses are constant within each con-
stitutive layer, leading in this way to a mechanical contradiction.
Indeed, the shear stresses do not satisfy: (a) the boundary condi-
tions on the external faces of the laminate, (b) the local equilibrium
equations (elasticity solution) and (c) the continuity condition at
the layers interface, see [1]. To overcome these contradictions, it
is common to introduce the so-called ‘‘shear correction factor’’
[1,2] which generally satisfies only two of the previous three con-
ditions. However, in the context of the FSDT, the definition of the
shear correction factor is immediate only for isotropic plates, while
it becomes more arduous defining such a quantity for a laminate
since it depends upon the geometrical parameters of the stack (lay-
ers orientations and positions) [1].

Higher order theories allow for overcoming such a difficulty:
they give a better description of both the laminate kinematics
and stress field without the need of introducing any correction
coefficient. However these theories require the introduction of
higher-order stress resultants and stiffness matrices whose physi-
cal meaning is not immediate. In literature one can find several
higher-order theories of different nature: for each theory the dis-
placement field is expanded in a finite series (in terms of the thick-
ness coordinate) of unknown functions: the terms of the series (i.e.
the functions depending upon the thickness coordinate) can belong
to a given basis (polynomial, trigonometric, radial, B-spline,
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NURBS, etc.). In principle it is possible to expand the displacement
field up to any degree in terms of the thickness coordinate.
Nevertheless, an expansion up to the third order (the so-called
third-order theory) is sufficient to capture the quadratic variation
of the transverse shear strains and stresses within each layer.
There are a lot of papers on third-order theories, see for instance
[3–11]. Despite they seem to differ from each other, the displace-
ment fields of these theories are mechanically equivalent (or
related), see [12]. Recently, the classical Third-order Shear
Deformation Theory (TSDT) of laminates, initially introduced by
Reddy [3], has been extended and reformulated according to the
Eringen’s nonlocal linear elasticity theory to capture small scale
size effects through the thickness [13].

The aim of this paper does not consist in a critical analysis of all
the different types of TSDT that can be found in literature, rather it
aims to shed some light on certain aspects linked to the formula-
tion of the laminate constitutive equation in the conceptual frame-
work of the classical TSDT of Reddy [1]. Particularly, the objective
of the present work is twofold: on one hand it aims of clarifying the
physical meaning of the higher-order stiffness matrices while on
the other hand it intends of estimating their influence on the

elastic response of the laminate. To these purposes the polar
method initially introduced by Verchery [14], later enriched and
deeply investigated by Vannucci and his co-workers [15–19] and
recently extended to the FSDT of laminates [20] is here employed
(for the first time) within the framework of the TSDT. In particular,
the expression of the polar parameters of the laminate
higher-order stiffness matrices is analytically derived. Thanks to
the polar formalism and its application to the TSDT it is possible
to introduce some new classes of laminates and also to generalise
the definition of a quasi-homogeneous laminate, initially introduced
by Vannucci and Verchery [21]. Accordingly, it is possible to carry
out a more general analysis of the elastic response of the laminate
by reformulating and generalising the problem of designing its
elastic symmetries (initially introduced by Vannucci [22] and later
extended to the FSDT [20]) within the context of the TSDT. This
problem is formulated as an unconstrained minimisation problem
in the space of the full set of the laminate polar parameters (even
including the higher-order stiffness matrices). Due to its particular
nature (i.e. a non-convex optimisation problem in the space of the
layers orientation angles), the solution search process is performed
by using the genetic algorithm (GA) BIANCA [23–25]. Finally, in

Notations

CLT classical laminate theory
FSDT First-order Shear Deformation Theory
TSDT Third-order Shear Deformation Theory
GA genetic algorithm
C ¼ O; x1; x2; x3f g local (or material) frame of the elementary ply
CI ¼ O; x; y; z ¼ x3f g global frame of the laminate
h rotation angle
11;22;33;32;31;21f g () 1;2;3;4;5;6f g correspondence be-

tween tensor and Voigt’s (matrix) notation for the in-
dexes of tensors (local frame)

xx; yy; zz; zy; zx; yxf g () x; y; z; q; r; sf g correspondence between
tensor and Voigt’s (matrix) notation for the indexes of
tensors (global frame)

Zij; ði; j ¼ 1;2 or i; j ¼ x; yÞ second-rank plane tensor using tensor
notation (local and global frame)

Lijkl; ði; j; k; l ¼ 1;2 or i; j; k; l ¼ x; yÞ fourth-rank plane tensor
using tensor notation (local and global frame)

u; v;w components of the laminate displacement field within
the global frame CI

u0; v0;w0;/x;/y the five independent kinematic unknowns in
the context of the Reddy’s TSDT

n number of layers
dkf g ðk ¼ 1; . . . ;nÞ vector of the layers orientation angles

zk�1; zk thickness coordinates of bottom and top faces of the kth
constitutive ply, respectively

h overall thickness of the laminate
eð0Þ
� �

; eð1Þ
� �

; eð3Þ
� �

;3� 1 vectors of in-plane strains of the lami-
nate middle plane

cð0Þ
� �

; cð2Þ
� �

;2� 1 vectors of the transverse shear strains of the
laminate middle plane

Nf g; Mf g; Pf g;3� 1 vectors of higher-order generalised in-plane
forces (per unit length)

Qf g; Rf g;2� 1 vectors of higher-order generalised transverse
shear forces (per unit length)

½Q �;3� 3 in-plane reduced stiffness matrix of the constitutive
lamina

½ bQ �;2� 2 out-of-plane reduced stiffness matrix of the constitu-
tive lamina

T0; T1;R0;R1;U0;U1 polar parameters of a fourth-rank plane ten-
sor (also used for the lamina in-plane reduced stiffness
matrix ½Q �)

T;R;U polar parameters of a second-rank plane tensor (also
used for the lamina transverse shear reduced stiffness
matrix ½ bQ �)

½A�; ½B�; ½D�; ½E�; ½F�; ½H�;3� 3 in-plane stiffness matrices of the lam-
inate (membrane, membrane/bending coupling, bend-
ing and higher-order stiffness, respectively)

½A��; ½B��; ½D��; ½E��; ½F��; ½H��;3� 3 homogenised in-plane stiffness
matrices of the laminate (membrane, membrane/bending
coupling, bending and higher-order stiffness, respectively)

½bA�; ½bD�; ½bF�;2� 2 transverse shear stiffness matrices of the lami-
nate (basic and higher-order stiffness, respectively)

½bA��; ½bD��; ½bF��;2� 2 homogenised transverse shear stiffness
matrices of the laminate (basic and higher-order stiff-
ness, respectively)

bk;dk; ek; f k;hk coefficients of the laminate stiffness matrices
T0M� ; T1M� ;R0M� ;R1M� ;U0M� ;U1M� polar parameters of the generic

homogenised in-plane stiffness matrix of the laminate
ðM� ¼ A�;B�;D�; E�; F�;H�Þ

T bM�
;RbM�

;UbM�
polar parameters of the generic homogenised

transverse shear stiffness matrix of the laminate
ð bM� ¼ bA�; bD�; bF �Þ

½C�1�; ½C
�
2�; ½C

�
3�;3� 3 laminate homogeneity matrices

Ei; ði ¼ 1;2;3Þ Young’s moduli of the constitutive lamina (mate-
rial frame)

Gij; ði; j ¼ 1;2;3Þ shear moduli of the constitutive lamina (mate-
rial frame)

mij; ði; j ¼ 1;2;3Þ Poisson’s ratios of the constitutive lamina
(material frame)

tply thickness of the constitutive lamina
W overall objective function for the problem of designing

the elastic symmetries of the laminate
ff g;37� 1 vector of partial objective functions
W½ �;37� 37 positive semi-definite diagonal weight matrixcR0 M� ;cR1 M� ; cU0 M� ; cU1 M� imposed values for the polar parameters

of matrix ½M��; ðM� ¼ A�;D�; F�;H�Þ
Npop number of populations
Nind number of individuals
Ngen number of generations
pcross crossover probability
pmut mutation probability



order to numerically prove and support the major analytical results
found in this work, some meaningful and non-conventional exam-
ples are presented.

The paper is organised as follows: Section 2 briefly recalls the
fundamentals of the polar formalism. In Section 3 the polar method
is applied in the framework of the TSDT, by highlighting the major
analytical results. Section 4 presents the mathematical formulation
of the problem of designing the elastic symmetries of a laminate as
an optimisation problem and the generalisation of this formulation
when considering the laminate behaviour in the context of the
TSDT. Section 5 shows some numerical results in order to prove
the effectiveness of the polar formalism when it is applied to the
TSDT. Finally Section 6 ends the paper with some concluding
remarks.

2. Fundamentals of the polar method

For the sake of synthesis in this section the main results of the
polar method introduced by Verchery in 1979 [14] are briefly
recalled. The polar method is essentially a mathematical technique
that allows for expressing any n-rank plane tensor through a set of
tensor invariants. As a consequence, such a representation can be
applied not only to elasticity-like tensors but also to a very general
(even asymmetric) plane tensor, see for instance [26]. For more
details on the polar formalism the reader is addressed to [15].

In the framework of the polar formalism a second-rank (sym-
metric) tensor Zij; ði; j ¼ 1;2Þ, within the local frame C, can be sta-
ted as:

Z11 ¼ T þ R cos 2U;

Z12 ¼ R sin 2U;

Z22 ¼ T � R cos 2U;

ð1Þ

where T is the isotropic modulus, R the deviatoric one and U the
polar angle. Furthermore, for a second-rank plane symmetric tensor
there are only two tensor invariants, i.e. the polar moduli T and R,
while the polar angle U can be arbitrarily chosen to fix the reference
frame. The converse relations are:

T ¼ Z11 þ Z22

2
;

Rei2U ¼ Z11 � Z22

2
þ iZ12;

ð2Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. For a second-rank plane ten-
sor the only possible symmetry is the isotropy which can be
obtained when the deviatoric modulus of the tensor is null, i.e.
R ¼ 0. Moreover, when using the polar formalism, the components
of the second-rank tensor can be expressed in a very straightfor-
ward manner in the frame CI (turned counter-clock wise by an
angle h around the x3 axis) as follows:

Zxx ¼ T þ R cos 2ðU� hÞ;
Zxy ¼ R sin 2ðU� hÞ;
Zyy ¼ T � R cos 2ðU� hÞ:

ð3Þ

Concerning a fourth-rank elasticity-like plane tensor
Lijkl; ði; j; k; l ¼ 1;2Þ (expressed within the local frame C), its polar
representation writes:

L1111 ¼ T0 þ 2T1 þ R0 cos 4U0 þ 4R1 cos 2U1;

L1122 ¼ �T0 þ 2T1 � R0 cos 4U0;

L1112 ¼ R0 sin 4U0 þ 2R1 sin 2U1;

L2222 ¼ T0 þ 2T1 þ R0 cos 4U0 � 4R1 cos 2U1;

L2212 ¼ �R0 sin 4U0 þ 2R1 sin 2U1;

L1212 ¼ T0 � R0 cos 4U0:

ð4Þ

As it clearly appears from Eq. (4) the six independent Cartesian
components of Lijkl are expressed in terms of six polar parameters:
T0 and T1 are the isotropic moduli, R0 and R1 are the anisotropic
ones, while U0 and U1 are the polar angles. Only five quantities
are tensor invariants, namely the polar moduli T0; T1;R0;R1 together
with the angular difference U0 �U1. One of the two polar angles, U0

or U1, can be arbitrarily chosen to fix the reference frame. The con-
verse relations can be stated as:

8T0 ¼ L1111 � 2L1122 þ 4L1212 þ L2222;

8T1 ¼ L1111 þ 2L1122 þ L2222;

8R0ei4U0 ¼ L1111 � 2L1122 � 4L1212 þ L2222 þ 4iðL1112 � L2212Þ;
8R1ei2U1 ¼ L1111 � L2222 þ 2iðL1112 þ L2212Þ:

ð5Þ

The Cartesian components of the fourth-rank tensor expressed in
the frame CI are:

Lxxxx ¼ T0 þ 2T1 þ R0 cos 4ðU0 � hÞ þ 4R1 cos 2ðU1 � hÞ;
Lxxyy ¼ �T0 þ 2T1 � R0 cos 4ðU0 � hÞ;
Lxxxy ¼ R0 sin 4ðU0 � hÞ þ 2R1 sin 2ðU1 � hÞ;
Lyyyy ¼ T0 þ 2T1 þ R0 cos 4ðU0 � hÞ � 4R1 cos 2ðU1 � hÞ;
Lyyxy ¼ �R0 sin 4ðU0 � hÞ þ 2R1 sin 2ðU1 � hÞ;
Lxyxy ¼ T0 � R0 cos 4ðU0 � hÞ:

ð6Þ

Finally, it can be proved that in the case of a fourth-rank
elasticity-like plane tensor four different types of elastic symmetry
exist: (a) Ordinary orthotropy U0 �U1 ¼ K p

4 ; K ¼ 0;1
� �

; (b)
R0-Orthotropy R0 ¼ 0ð Þ; (c) Square symmetry R1 ¼ 0ð Þ and (d)
Isotropy R0 ¼ R1 ¼ 0ð Þ. For a deeper insight in the matter the reader
is addressed to [15,20].

3. Application of the polar formalism to the Third-order Shear
Deformation Theory of laminates

3.1. Constitutive equations of the laminate

For the sake of simplicity in this section all of the equations gov-
erning the laminate mechanical response will be formulated in the
context of the Voigt’s (matrix) notation. The passage from tensor
notation to the Voigt’s one can be easily expressed through the
well-known two-way relationships among indexes (for both local
and global frames) as follows:

11;22;33;32;31;21f g () 1;2;3;4;5;6f g;
xx; yy; zz; zy; zx; yxf g () x; y; z; q; r; sf g:

ð7Þ

Let us consider a multilayer plate composed of n plies. Let be
dk; zk�1 and zk the orientation angle and the thickness coordinates
of the bottom and top surfaces of the kth elementary lamina,
respectively, as illustrated in Fig. 1. Within the conceptual frame-
work of the classical TSDT introduced by Reddy [1] the displace-
ment field of the laminated plate can be expressed (within the
laminate global frame CI) as:

Fig. 1. Definition of the geometrical parameters of the laminate.



u x; y; zð Þ ¼ u0 x; yð Þ þ /x x; yð Þ z� 4z3

3h2

� �
� 4z3

3h2
@w0
@x ;

v x; y; zð Þ ¼ v0 x; yð Þ þ /y x; yð Þ z� 4z3

3h2

� �
� 4z3

3h2
@w0
@y ;

w x; y; zð Þ ¼ w0 x; yð Þ;

ð8Þ

where h is the total thickness of the laminate. In Eq. (8) u0;v0;w0;/x

and /y are the five independent kinematics unknowns. It is note-
worthy that this displacement field engenders a transverse shear
stress field having a quadratic variation through the thickness of
each constitutive lamina which precisely meets the traction-free
boundary conditions on the top and bottom faces of the laminate,
see [1]. Taking into account such considerations, the laminate con-
stitutive equation, under the hypothesis of small strains and moder-
ate rotations [1], can be stated as:

Nf g
Mf g
Pf g

8><>:
9>=>; ¼

A½ � B½ � E½ �
B½ � D½ � F½ �
E½ � F½ � H½ �

264
375 eð0Þ

� �
eð1Þ
� �
eð3Þ
� �

8><>:
9>=>;; ð9Þ

Qf g
Rf g

	 

¼ ½bA� ½bD�
½bD� ½bF�
" #

cð0Þ
� �
cð2Þ
� �( )

: ð10Þ

In Eqs. (9) and (10) eð0Þ
� �

; eð1Þ
� �

and eð3Þ
� �

represent the in-plane
strains of the laminate middle plane while cð0Þ

� �
and cð2Þ

� �
are the

transverse shear strains: all of these quantities can be derived by
means of the non-linear strain–displacement relationship in the case
of moderate rotations and small strains. Nf g; Mf g and Pf g are the
higher-order generalised in-plane stress resultants while Qf g and
Rf g are the higher-order generalised transverse shear stress resultants.

For a deeper insight in the matter (mainly about the definition of these
quantities) the reader is addressed to [1]. Here the major concern is the
analysis of the elastic response of the laminate through an investiga-
tion of the elastic symmetries of its higher-order stiffness characteris-
tics. In particular, in Eqs. (9) and (10) A½ �; B½ �; D½ �; E½ �; F½ � and H½ � are the
in-plane stiffness matrices (membrane, membrane/bending coupling,

bending and higher-order stiffness terms) while ½bA�; ½bD� and ½bF� are
the transverse shear stiffness matrices (basic and higher-order terms)
of the laminate. Such matrices are defined as follows:

A½ � ¼
Xn

k¼1

Q dkð Þ½ � zk � zk�1ð Þ; B½ � ¼ 1
2

Xn

k¼1

Q dkð Þ½ � z2
k � z2

k�1

� �
;

D½ � ¼ 1
3

Xn

k¼1

Q dkð Þ½ � z3
k � z3

k�1

� �
; E½ � ¼ 1

4

Xn

k¼1

Q dkð Þ½ � z4
k � z4

k�1

� �
;

F½ � ¼ 1
5

Xn

k¼1

Q dkð Þ½ � z5
k � z5

k�1

� �
; H½ � ¼ 1

7

Xn

k¼1

Q dkð Þ½ � z7
k � z7

k�1

� �
;

ð11Þ

½bA� ¼Xn

k¼1

½ bQ ðdkÞ� zk � zk�1ð Þ; ½bD� ¼ 1
3

Xn

k¼1

½ bQ ðdkÞ� z3
k � z3

k�1

� �
;

½bF� ¼ 1
5

Xn

k¼1

½ bQ ðdkÞ� z5
k � z5

k�1

� �
:

ð12Þ

In the previous equations Q dkð Þ½ � and ½ bQ ðdkÞ� are the in-plane and
the transverse shear reduced stiffness matrices of the kth ply,
respectively. Eqs. (11) and (12) can be simplified for a laminate
composed of identical layers, i.e. layers having same material prop-
erties and thickness, as follows:

A½ � ¼ h
n

Xn

k¼1

Q dkð Þ½ �; B½ � ¼ 1
2

h
n

� �2Xn

k¼1

bk Q dkð Þ½ �;

D½ � ¼ 1
12

h
n

� �3Xn

k¼1

dk Q dkð Þ½ �; E½ � ¼ 1
8

h
n

� �4Xn

k¼1

ek Q dkð Þ½ �;

F½ � ¼ 1
80

h
n

� �5Xn

k¼1

f k Q dkð Þ½ �; H½ � ¼ 1
448

h
n

� �7Xn

k¼1

hk Q dkð Þ½ �;

ð13Þ

½bA� ¼ h
n

Xn

k¼1

½ bQ ðdkÞ�; ½bD� ¼ 1
12

h
n

� �3Xn

k¼1

dk½ bQ ðdkÞ�;

½bF� ¼ 1
80

h
n

� �5Xn

k¼1

f k½ bQ ðdkÞ�;
ð14Þ

where the expression of the coefficients bk;dk; ek; f k and hk and the
related geometrical properties are discussed in Appendix A.

Let us consider the reduced stiffness matrices of the elementary
ply. It can be easily noticed that after a change of frame (i.e. when
passing from the lamina local frame C to the global one CI) the
components of matrix QðdkÞ½ � behave like those of a fourth-rank

elasticity-like plane tensor, while those of ½ bQ ðdkÞ� vary according
to the transformation law of a second-rank symmetric plane ten-
sor, see [20]. Therefore these matrices can be represented by
means of the polar formalism:

Q xx ¼ T0 þ 2T1 þ R0 cos 4ðU0 þ dkÞ þ 4R1 cos 2ðU1 þ dkÞ;
Q xy ¼ �T0 þ 2T1 � R0 cos 4ðU0 þ dkÞ;
Q xs ¼ R0 sin 4ðU0 þ dkÞ þ 2R1 sin 2ðU1 þ dkÞ;
Q yy ¼ T0 þ 2T1 þ R0 cos 4ðU0 þ dkÞ � 4R1 cos 2ðU1 þ dkÞ;
Q ys ¼ �R0 sin 4ðU0 þ dkÞ þ 2R1 sin 2ðU1 þ dkÞ;
Q ss ¼ T0 � R0 cos 4ðU0 þ dkÞ;

ð15Þ

bQ qq ¼ T þ R cos 2ðU� dkÞ;bQ qr ¼ R sin 2ðU� dkÞ;bQ rr ¼ T � R cos 2ðU� dkÞ:

ð16Þ

To be remarked that in the previous equations it is the material
frame of the kth lamina (and not the global one) which is turned
counter-clock wise by an angle dk around the x3 axis. On the other
hand, it must be pointed out that in the previous equations, the
components of the out-of-plane stiffness matrix of the ply behave
like those of a second-rank symmetric plane tensor with the local
frame turned clockwise by an angle dk around the x3 axis. In Eqs.
(15) and (16) T0; T1;R0;R1;U0 and U1 are the polar parameters of
the in-plane reduced stiffness matrix of the lamina, while T;R,
and U are those of the transverse shear stiffness matrix: all of these
parameters solely depend upon the ply material properties (e.g. if
the ply is orthotropic the polar parameters of QðdkÞ½ � depend upon

E1; E2;G12 and m12, while those of ½ bQ ðdkÞ� depend upon G23 and G13).
In order to better analyse and understand the mechanical

response of the laminate it is useful to homogenise the units of
its characteristic stiffness matrices to those of the ply reduced stiff-
ness matrices:

½A�� ¼ 1
h
½A�; B�½ � ¼ 2

h2 B½ �; D�½ � ¼ 12

h3 D½ �;

½E�� ¼ 8

h4 ½E�; F�½ � ¼ 80

h5 F½ �; H�½ � ¼ 448

h7 H½ �;

½bA�� ¼ 1
h
½bA�; ½bD�� ¼ 12

h3 ½bD�; ½bF�� ¼ 80

h5 ½bF�:
ð17Þ

In the framework of the polar formalism it is possible to express
all of the previous matrices in terms of their polar parameters. In
particular, matrices ½A��; ½B��; ½D��; ½E��; ½F�� and ½H�� behave like a

fourth-rank elasticity-like plane tensor while matrices ½bA��; ½bD��
and ½bF�� behave like a second-rank symmetric plane tensor.
Moreover, the polar parameters of these matrices can be expressed
as functions of the polar parameters of the lamina reduced stiffness
matrices and of the geometrical properties of the stack (i.e. the
layer orientation and position). The polar representation of
the homogenised stiffness matrices of the laminate can be stated
as:



T0A� ¼ T0;

T1A� ¼ T1;

R0A�ei4U0A� ¼ 1
n

R0ei4U0
Xn

k¼1

ei4dk ;

R1A�ei2U1A� ¼ 1
n

R1ei2U1
Xn

k¼1

ei2dk ;

ð18Þ

T0B� ¼ 0;

T1B� ¼ 0;

R0B�ei4U0B� ¼ 1
n2 R0ei4U0

Xn

k¼1

bkei4dk ;

R1B�ei2U1B� ¼ 1
n2 R1ei2U1

Xn

k¼1

bkei2dk ;

ð19Þ

T0D� ¼ T0;

T1D� ¼ T1;

R0D�ei4U0D� ¼ 1
n3 R0ei4U0

Xn

k¼1

dkei4dk ;

R1D�ei2U1D� ¼ 1
n3 R1ei2U1

Xn

k¼1

dkei2dk ;

ð20Þ

T0E� ¼ 0;
T1E� ¼ 0;

R0E�ei4U0E� ¼ 1
n4 R0ei4U0

Xn

k¼1

ekei4dk ;

R1E�ei2U1E� ¼ 1
n4 R1ei2U1

Xn

k¼1

ekei2dk ;

ð21Þ

T0F� ¼ T0;

T1F� ¼ T1;

R0F�ei4U0F� ¼ 1
n5 R0ei4U0

Xn

k¼1

f kei4dk ;

R1F�ei2U1F� ¼ 1
n5 R1ei2U1

Xn

k¼1

f kei2dk ;

ð22Þ

T0H� ¼ T0;

T1H� ¼ T1;

R0H�ei4U0H� ¼ 1
n7 R0ei4U0

Xn

k¼1

hkei4dk ;

R1H�ei2U1H� ¼ 1
n7 R1ei2U1

Xn

k¼1

hkei2dk ;

ð23Þ

TbA� ¼ T;

RbA�ei2UbA� ¼ 1
n

Rei2U
Xn

k¼1

e�i2dk ;
ð24Þ

TbD� ¼ T;

RbD�ei2UbD� ¼ 1
n3 Rei2U

Xn

k¼1

dke�i2dk ;
ð25Þ

TbF� ¼ T;

RbF�ei2UbF� ¼ 1
n5 Rei2U

Xn

k¼1

f ke�i2dk :
ð26Þ

The above equations have been derived by following the same log-
ical procedure used in the case of the polar analysis of the FSDT, see
[20]. After a quick glance to Eqs. (18)–(26) the following aspects can
be highlighted:

� the isotropic polar moduli of matrices ½A��; ½D��; ½F�� and ½H�� are
equal to those of the in-plane reduced stiffness matrix of the
elementary ply;
� the isotropic part of matrices ½B�� and ½E�� is null;

� the isotropic modulus of matrices ½bA��; ½bD�� and ½bF�� is equal to
that of the transverse shear stiffness matrix of the constitutive
lamina;

Moreover (as in the case of the definition of the laminate homo-
genised transverse shear stiffness matrix in the context of the
FSDT) it can be proved that both the deviatoric modulus and the

polar angle of matrices ½bA��; ½bD�� and ½bF �� can be expressed as a lin-
ear combination of the anisotropic polar modulus R1M� and the
related polar angle U1M� of matrices A�½ �; D�½ � and F�½ �, respectively
(see [20] for the details on the mathematical passages):

RbA�ei2UbA� ¼ R
R1

R1A�e
i2 UþU1�U1A�ð Þ;

RbD�ei2UbD� ¼ R
R1

R1D�ei2 UþU1�U1D�ð Þ;

RbF�ei2UbF� ¼ R
R1

R1F�ei2 UþU1�U1F�ð Þ:

ð27Þ

Eq. (27) means that, when the material of the elementary ply is fixed a
priori, the overall elastic response of the laminate depends only on the
anisotropic part of matrices ½A��; ½B��; ½D��; ½E��; ½F�� and ½H��. In particu-
lar, the designer can act, through a variation of the geometric parame-
ters of the stack, only on the anisotropic polar moduli and polar angles
of the laminate in-plane stiffness matrices in order to achieve the
required mechanical response (the deviatoric part of the shear stiffness

matrices ½bA��; ½bD�� and ½bF�� being directly linked to the anisotropic
terms of their in-plane counterparts). Moreover, as it clearly appears
from Eq. (27), the ratio between the deviatoric part of matrices

½bA��; ½bD�� and ½bF�� and the anisotropic term R1M�ei2U1M� of their
in-plane counterparts is constant once the material of the constitutive
layer is chosen: such a ratio does not depend upon the layers orienta-
tions and positions, rather it solely varies with the material properties
of the constitutive layer. Finally, due to the relationships (27) if one of
the matrices ½A��; ½D�� and ½F�� is characterised by a square symmetric
behaviour (i.e. R1M� ¼ 0) the corresponding transverse shear stiffness
matrix will exhibit an isotropic behaviour (the deviatoric part of the
matrix becomes null, i.e. RbM� ¼ 0).

3.2. Definition of some new classes of laminates

When looking at Eqs. (18)–(27) one can notice that the laminate
elastic behaviour is governed, at the macro-scale, by an overall
number of 39 polar parameters: six for each one of the matrices
½A��; ½B��; ½D��; ½E��; ½F�� and ½H�� together with the isotropic polar

moduli of matrices ½bA��; ½bD�� and ½bF�� (the deviatoric part being
linked to the anisotropic part of their in-plane counterparts). In
this set the isotropic moduli of ½B�� and ½E�� are null while those
of the remaining matrices are equal to the isotropic moduli of
the lamina reduced stiffness matrices. The only polar parameters
which depend upon the geometrical characteristics of the stack
are the anisotropic moduli R0M� and R1M� as well as the related
polar angles U0M� and U1M� of the laminate in-plane stiffness matri-
ces for an overall number of 24 polar parameters on which the
designer can intervene to get the desired mechanical response at
the macro-scale.



The set of polar parameters to be designed can be further
reduced by generalising to the case of the TSDT the concept of a
quasi-homogeneous laminate initially introduced by Vannucci and
Verchery [21]. To this purpose let us introduce the laminate homo-
geneity matrices ½C�1�; ½C

�
2� and ½C�3�, which are defined as:

C�1

 �

¼ ½A�� � ½D��; C�2

 �

¼ ½D�� � ½F��; C�3

 �

¼ ½F�� � ½H��: ð28Þ

In the framework of the TSDT the following definitions apply:

1. a laminate is defined fully uncoupled if and only if

½B�� ¼ ½E�� ¼ ½O�; ð29Þ
2. a laminate is said homogeneous in bending if and only if

½C�2� ¼ ½C
�
3� ¼ ½O�; ð30Þ

3. a laminate is said homogeneous in membrane and bending if and
only if

½C�1� ¼ ½C
�
2� ¼ ½C

�
3� ¼ ½O�; ð31Þ

4. a laminate is defined fully uncoupled and homogeneous if and
only if

½B�� ¼ ½E�� ¼ ½C�1� ¼ ½C
�
2� ¼ ½C

�
3� ¼ ½O�: ð32Þ

It is noteworthy that, since the deviatoric part of the laminate
transverse shear stiffness matrices depends upon the anisotropic
one of their in-plane counterparts, Eqs. (30) and (31) imply that
the resulting laminate will be homogeneous also in terms of its
shear stiffness properties.

As a conclusive remark, it can be noticed that when the elastic
uncoupling condition is met, the laminate mechanical response is
governed by a set of 16 polar parameters, whilst if the laminate
is fully uncoupled and homogeneous the number of polar parame-
ters whereon the designer can act reduces from 24 to four, i.e. the
anisotropic polar moduli and the related polar angles of matrix ½A��.
This last class of laminates is rather fundamental for design pur-
poses: despite the kinematic model on which the TSDT relies is
‘‘richer’’ and more general than that of the CLT, in this case the
number of independent tensor invariants characterising the
mechanical response of the laminate and on which the designer
can intervene is the same as the case of the CLT.

4. Elastic symmetries of the laminate: the polar approach in the
framework of the TSDT

In this section, the problem of designing the laminate elastic
symmetries is generalised to the theoretical framework of the
TSDT. This problem was initially introduced by Vannucci [22] for

Table 1
Material properties of the carbon-epoxy lamina.

Technical constants Polar parameters of ½Q � Polar parameters

of ½ bQ �
E1 161000 MPa T0 23793:3868 MPa T 5095:4545 MPa
E2 9000 MPa T1 21917:8249 MPa R 1004:5454 MPa
G12 6100 MPa R0 17693:3868 MPa U 90 deg
m12 0:26 R1 19072:0711 MPa
m23 0:1 U0 0 deg

U1 0 deg

Density and thickness

q 1:58� 10�6 kg/mm3

tply 0:125 mm

Table 2
Genetic parameters of the GA BIANCA for problem (33).

Genetic parameters

Npop 1
Nind 500
Ngen 500
pcross 0:85
pmut 1=Nind

Selection Roulette-wheel
Elitism Active

Table 3
Numerical results of problem (33) for cases 1;2 and 3.

Case
n.

Solution
n.

Stacking sequence Residual

1 1 [72/14/�63/�80/�48/70/3/37/�25/
�10/11/77/�19/62/11/�54/�88/�54/
19/77]

6:0009� 10�6

2 [�1/�14/88/51/�73/�88/�32/24/20/
62/�49/22/�44/�81/72/�9/�75/73/16/
�15]

4:8924� 10�5

2 1 [�31/35/32/�31/�32/30/35/�70/�21/
�38/�70/59/43/�31/�34/21/36/�29/
�38/31]

1:7476� 10�4

2 [35/�43/�25/�27/23/32/56/�40/30/56/
41/�31/�37/12/�41/�38/33/47/25/
�31]

1:9490� 10�4

3 1 [78/�51/�2/10/41/89/�44/2/42/�82/
71/�53/�19/17/�8/�87/87/62/�46/11]

6:6123� 10�4

2 [�3/�75/69/90/�11/5/26/�74/6/�10/
80/86/83/�66/�5/6/�89/�19/18/88]

8:1274� 10�4

Table 4
Laminate polar parameters for the best stacking sequence of case 1 (N.D. = not defined, i.e. meaningless for the considered combination of laminate elastic symmetries).

Polar parameters ½A�� ½B�� ½D�� ½E�� ½F�� ½H��

In-plane elastic behaviour
T0 [MPa] 23793:3868 0 23793:3868 0 23793:3868 23793:3868
T1 [MPa] 21917:8249 0 21917:8249 0 21917:8249 21917:8249
R0 [MPa] 3003:1984 51:76233 4107:1180 79:6684 4586:8578 5700:1396
R1 [MPa] 13:5942 31:1562 4739:5619 36:0186 6416:5852 8244:9550
U0 [deg] 0 N.D. 9 N.D. 3 �4
U1 [deg] N.D. N.D. 85 N.D. 75 70

Polar parameters ½bA�� ½bD�� ½bF��
Out-of-plane elastic behaviour
T [MPa] 5095:4545 5095:4545 5095:4545
R [MPa] 0:7160 249:6376 337:9681
U [deg] N.D. 5 15



the case of the CLT, later it has been modified and extended to the
case of laminates with variable number of plies [19] and to the
conceptual framework of the FSDT [20].

As widely discussed in [22], this problem can be stated as an
unconstrained minimisation problem in the space of the laminate
polar parameters. The goal of this problem is to find at least one

Fig. 2. Polar diagrams of the laminate stiffness matrices for the best solution of case 1. First Cartesian component of (a) ½A��; ½B��; ½D�� and (b) ½E��; ½F��; ½H��; the three Cartesian
components of (c) ½bA��, (d) ½bD�� and (e) ½bF��.

(a) (b)

(c) (d)

(e)



stacking sequence meeting the elastic requirements for the multi-
layer plate (in terms of the elastic symmetries of the different stiff-
ness matrices governing the laminate behaviour) provided by the
problem at hand. In the context of the TSDT this unconstrained
minimisation problem can be stated as:

min
d1 ;...;dnf g

W d1; . . . ; dnð Þ ¼ ff gT W½ � ff g; ð33Þ

where W is the overall objective function expressing the laminate
elastic response and dk is the orientation angle of the kth layer
ðk ¼ 1; . . . nÞ. ff g is the vector of the partial objective functions (each
one linked to a particular elastic symmetry) while ½W� is a positive
semi-definite diagonal matrix of weights whose terms can be equal
to either zero or one (depending on the considered combination of
elastic symmetries). The components of the vector ff g as well as the
related physical meaning are listed here below:

� f1 ¼ k B�½ �k
k Q½ �k is the membrane/bending uncoupling condition;

� f2 ¼ k E�½ �k
k Q½ �k is the higher-order membrane/bending uncoupling

condition;

� f2þj ¼
k½C�j �k
k Q½ �k with j ¼ 1;2;3 are the homogeneity conditions;

� f5þi ¼ U0M� �U1M� �KM�p=4
p=4 , with KM� ¼ 0;1, is the ordinary ortho-

tropy condition for the generic homogenised in-plane stiffness
matrix ½M�� of the laminate;
� f9þi ¼ R0M�

R0
is the R0-orthotropy condition for ½M��;

� f13þi ¼ R1M�
R1

is the square symmetry condition for ½M��;

� f17þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 M� þ4R2
1M�

p ffiffiffiffiffiffiffiffiffiffiffiffi
R2

0þ4R2
1

p is the isotropy condition for ½M��;

� f21þi ¼ R0M� �bR0 M�bR0 M�
represents a condition on the value of the first

anisotropic modulus of ½M�� which can be used in the cases of
ordinary orthotropy or square symmetry (but not in the cases
of both R0-orthotropy and isotropy);

� f25þi ¼ R1M� �bR1 M�bR1 M�
represents a condition on the value of the sec-

ond anisotropic modulus of ½M�� which can be used in the cases
of ordinary orthotropy or R0-orthotropy (but not in the cases of
both square symmetry and isotropy);

� f29þi ¼ U0M� � bU0 M�
p=4 represents a condition on the value of the ori-

entation of the main orthotropy axis of ½M�� which can be used
in the case of square symmetry (but not in the cases of ordinary
orthotropy, R0-orthotropy and isotropy);

� f33þi ¼ U1M� � bU1 M�
p=4 represents a condition on the value of the ori-

entation of the main orthotropy axis of ½M�� which can be used
in the cases of ordinary orthotropy or R0-orthotropy (but not in
the cases of both square symmetry and isotropy);

In the previous formulae ½M�� ¼ ½A��; ½D��; ½F��; ½H�� when
i ¼ 1;2;3;4, respectively: the considered elastic condition can be
imposed on each one of the homogenised in-plane stiffness matri-
ces of the laminate, depending on the elastic requirements pro-
vided by the problem at hand.

It can be noticed that all of the components of the vector ff g are
expressed in terms of the polar parameters of the laminate homo-
genised in-plane stiffness matrices and that they have been nor-
malised with the corresponding counterparts of the matrix ½Q �.
Moreover, the expression of the matrix norm used for the first five
partial functions is that proposed by Kandil and Verchery [27]:

k Q½ �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

0 þ 2T2
1 þ R2

0 þ 4R2
1

q
; ð34Þ

an analogous relationship applies for matrices ½B��; ½E��; ½C�1�; ½C
�
2�

and ½C�3�. Of course, the terms belonging to the diagonal of the
weight matrix ½W� cannot be all different from zero at the same
time: for instance it is not possible to design a laminate which
is simultaneously orthotropic and isotropic in membrane, or a
laminate which is homogeneous in bending with ½D�� showing
an orthotropic response while ½F�� and ½H�� having an isotropic
behaviour (indeed if the laminate is homogeneous in bending it
is characterised by the same elastic behaviour for ½D��; ½F�� and
½H��), etc. Therefore a particular care must be taken in tuning the
terms of the weight matrix.

As a conclusive remark it is noteworthy that the objective func-
tion W is a dimensionless, positive semi-definite convex function in
the space of laminate polar parameters whose absolute minima are
known a priori since they are the zeroes of this function. On the
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Fig. 3. Best values of the objective function along generations, case 1.

Table 5
Laminate polar parameters for the best stacking sequence of case 2 (N.D. = not defined, i.e. meaningless for the considered combination of laminate elastic symmetries).

Polar parameters ½A�� ½B�� ½D�� ½E�� ½F�� ½H��

In-plane elastic behaviour
T0 [MPa] 23793:3868 0 23793:3868 0 23793:3868 23793:3868
T1 [MPa] 21917:8249 0 21917:8249 0 21917:8249 21917:8249
R0 [MPa] 9047:8225 103:2427 10636:4139 438:0223 11013:4808 11103:5897
R1 [MPa] 5078:2024 16:6008 7845:7886 151:2313 8020:8991 8034:9545
U0 [deg] �45 N.D. 45 N.D. 45 45
U1 [deg] �6 N.D. 0 N.D. 0 0

Polar parameters ½bA�� ½bD�� ½bF��
Out-of-plane elastic behaviour
T [MPa] 5095:4545 5095:4545 5095:4545
R [MPa] 267:4741 413:2457 422:4689
U [deg] �84 90 90



other hand W is a highly non-convex non-linear function in the
space of plies orientation angles, i.e. the true design variables of
problem (33), because the laminate polar parameters depend upon

circular functions of these angles, see Eqs. (18)–(23). For more
details about the nature of this problem the reader is addressed
to [19,25].

Fig. 4. Polar diagrams of the laminate stiffness matrices for the best solution of case 2. First Cartesian component of (a) ½A��; ½B��; ½D�� and (b) ½E��; ½F��; ½H��; the three Cartesian
components of (c) ½bA��, (d) ½bD�� and (e) ½bF��.

(a) (b)

(c) (d)

(e)



5. Studied cases and results

In this section some meaningful numerical examples concern-
ing the problem of designing the laminate elastic behaviour are
illustrated in order to numerically prove the existence of the new
classes of laminates presented in Section 3. Moreover, such exam-
ples show on one hand the effectiveness of using the polar
approach in the framework of the TSDT, while on the other hand
they show the effectiveness of non-conventional lay-ups which
satisfy (for each considered case) the prescribed set of elastic
requirements imposed by the problem. In particular, the problem
of designing the laminate elastic symmetries is formulated and
solved in the following cases:

� fully uncoupled laminate with square symmetric membrane
behaviour;
� fully uncoupled laminate homogeneous in bending with an

orthotropic behaviour;
� fully uncoupled and homogeneous laminate with a square sym-

metric behaviour.

Since the elastic behaviour of the laminate depends upon the
elastic properties of the constitutive lamina, the results must refer
to a given material. In the case of the numerical examples illus-
trated in this section a transverse isotropic unidirectional car-
bon/epoxy ply has been chosen, whose material properties are
listed in Table 1. In addition the number of layers n composing
the laminated plate is fixed equal to 20.

Due to the nature of the optimisation problem of Eq. (33), i.e. a
highly non-convex unconstrained minimisation problem in the
space of the layers orientations, a genetic algorithm, BIANCA
[24,25,28], has been employed to find a solution. In this case, each
individual has a genotype composed of n chromosomes, i.e. one for

each ply, characterised by a single gene coding the layer orienta-
tion. It must be pointed out that the orientation angle of each lam-
ina can get all the values in the range ½�89�;90�� with a
discretisation step of 1�. Such a discretisation step has been chosen
in order to prove that laminates with given elastic properties can
be easily obtained by abandoning the well-known conventional
rules for tailoring the laminate stack (e.g. symmetric-balanced
stacks) which extremely shrink the search space for the problem
at hand. Therefore, the true advantages in using non-
conventional staking sequences are at least two: on one hand
when using such a discretisation step for the plies orientations it
is possible to explore the overall design space of problem (33),
while on the other hand the polar-genetic approach leads to find
very general stacks (nor symmetric neither balanced) that fully
meet the elastic properties with a fewer number of plies (hence
lighter) than the standard ones. For more details about these
aspects the reader is addressed to [19,25].

Finally, regarding the value of the genetic parameters for the GA
BIANCA they are listed in Table 2. For more details on the numer-
ical techniques developed within the BIANCA code and the mean-
ing of the values of the different parameters tuning the GA the
reader is addressed to [25,28].

5.1. Case 1: fully uncoupled laminate with square symmetric
membrane behaviour

The aim of this first case is the design of a fully uncoupled lam-
inate with the membrane stiffness matrix A�½ � characterised by a
square symmetric behaviour with a prescribed orientation of the

main orthtropy axis, i.e. in this case cU0 A� ¼ 0�. Moreover, when
imposing this kind of symmetry on matrix A�½ � the designer can

automatically obtain an isotropic behaviour for matrix ½bA��, as a
consequence of Eq. (27). In this case, the expression of the overall
objective function W of Eq. (33) can be obtained by setting
W11 ¼W22 ¼W1414 ¼W3030 ¼ 1 and the rest of the terms of the
diagonal matrix ½W� equal to zero:

W ¼ k B�½ �k
k Q½ �k

� �2

þ k E�½ �k
k Q½ �k

� �2

þ R1A�

R1

� �2

þ U0A� � cU0 A�

p=4

!2

: ð35Þ

Table 3 shows two examples of laminate stacking sequences
satisfying the criteria of Eq. (35). The residual in the last column
is the value of the objective function W for each solution (recall
that exact solutions correspond to zeros of the objective function,
see [22] for more details). It can be noticed that the optimal stack-
ing sequences are really general: they are nor symmetric neither
balanced and they fully meet the elastic symmetry requirements
imposed on the laminate through Eq. (35) with only 20 plies.

Table 4 lists the value of the laminate polar parameters for the
best stacking sequence (solution n. 1) of Table 3, while Fig. 2
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Fig. 5. Best values of the objective function along generations, case 2.

Table 6
Laminate polar parameters for the best stacking sequence of case 3 (N.D. = not defined, i.e. meaningless for the considered combination of laminate elastic symmetries).

Polar parameters ½A�� ½B�� ½D�� ½E�� ½F�� ½H��

In-plane elastic behaviour
T0 [MPa] 23793:3868 0 23793:3868 0 23793:3868 23793:3868
T1 [MPa] 21917:8249 0 21917:8249 0 21917:8249 21917:8249
R0 [MPa] 3160:6773 403:7186 3449:9296 410:40234 3176:0704 3497:94823
R1 [MPa] 40:9970 164:6285 71:8450 503:3974 231:5776 237:4147
U0 [deg] 0 N.D. 0 N.D. 0 0
U1 [deg] N.D. N.D. N.D. N.D. N.D. N.D.

Polar parameters ½bA�� ½bD�� ½bF��
Out-of-plane elastic behaviour
T [MPa] 5095:4545 5095:4545 5095:4545
R [MPa] 2:1594 3:7842 12:1974
U [deg] N.D. N.D. N.D.



illustrates the related polar diagrams for the first Cartesian compo-
nent of matrices ½A��; ½B��; ½D��; ½E��; ½F��; ½H�� and the three Cartesian

components of matrices ½bA��; ½bD�� and ½bF��. One can notice that,

according to the theoretical result of Eq. (27), the laminate is char-
acterised both by a square symmetric membrane stiffness beha-
viour (whose main orthotropic axis is oriented at 0�, see Table 4)

(a) (b)

(c) (d)

(e)
Fig. 6. Polar diagrams of the laminate stiffness matrices for the best solution of case 3. First Cartesian component of (a) ½A��; ½B��; ½D�� and (b) ½E��; ½F��; ½H��; the three Cartesian
components of (c) ½bA��, (d) ½bD�� and (e) ½bF��.



and by an isotropic elastic response for matrix ½bA��. In addition the
laminate is practically uncoupled (B�xx and E�xx reduce to a small
point in the centre of the plot) while it is completely anisotropic
in bending because no elastic requirements have been imposed
on ½D��; ½F�� and ½H��. Moreover, as a consequence of the anisotropy
of matrices ½D�� and ½F��, the higher-order transverse shear matrices

½bD�� and ½bF�� show a general orthotropic behaviour (the deviatoric
modulus of these matrices does not vanish, see Table 4). It is note-
worthy that such results have been found with very general stacks
composed of a few number of plies: it is really difficult (if not
impossible) to obtain the same laminate mechanical response with
standard multilayer plates, i.e. plates characterised by a symmet-
ric, balanced lay-up.

As a final remark, Fig. 3 shows the variation of the value of the
objective function of the best solution (of Table 3) along genera-
tions for problem (33) for this first case. One can easily see that
the optimum solution has been found only after 210 generations.
Since the problem is highly non-convex, at the end of the genetic
calculation it is possible to find within the population not only
the best solution but also some fitting quasi-optimal solutions like
solution n. 2 of Table 3: the presence of such solutions (whereof
solution n. 2 is only an example among the others composing the
final population) can be effectively exploited by the designer which
wants to deeply investigate their mechanical response with
respect to different design criteria (e.g. buckling, natural frequen-
cies, etc.).

5.2. Case 2: fully uncoupled laminate homogeneous in bending with an
orthotropic behaviour

For this second case the goal consists in designing a fully uncou-
pled laminate which must be simultaneously homogeneous in
bending and characterised by a flexural orthotropic behaviour
(with KD� ¼ 1) with a prescribed direction of the main orthotropy

axis (in this case cU1 D� ¼ 0�).
The expression of the overall objective function W of Eq. (33)

can be obtained by setting W11 ¼W22 ¼W44 ¼W55 ¼W77 ¼
W3535 ¼ 1 and the rest of the terms of the diagonal matrix ½W�
equal to zero:

W ¼ k B�½ �k
k Q½ �k

� �2

þ k E�½ �k
k Q½ �k

� �2

þ k½C�2�k
k Q½ �k

� �2

þ k½C�3�k
k Q½ �k

� �2

þ U0D� �U1D� � p=4
p=4

� �2

þ U1D� � cU1 D�

p=4

!2

: ð36Þ

Two examples of laminate stacking sequences satisfying the cri-
teria of Eq. (36) are listed in Table 3. Table 5 lists the value of the
laminate polar parameters for the best stacking sequence (solution
n. 1) of Table 3, while Fig. 4 illustrates the related polar diagrams of
the stiffness matrices of the laminate. One can notice that the lam-
inate is orhtotropic in bending because the shape of the polar dia-
grams for the matrices ½D��; ½F�� and ½H�� shows two axes of
orthogonal symmetry with the main orthotropy axis oriented at
0�. In addition, the laminate is really homogeneous in bending
because the previous diagrams are superposed: this superposition
also applies for the polar diagrams of the components of matrices

½bD�� and ½bF��. Furthermore, the laminate is fully uncoupled (B�xx and
E�xx reduce to a small point in the centre of the plot) while it is com-
pletely anisotropic in terms of the elastic response of the matrix
½A��.

Finally, Fig. 5 shows the variation of the value of the objective
function for the best solution (of Table 3) along generations for
problem (33) for this second case. It can be noticed that the

optimum solution has been found after 185 generations. For the
rest, the considerations already done for case 1 can be repeated
here.

5.3. Case 3: fully uncoupled and homogeneous laminate with a square
symmetric behaviour

The aim of this example is the design of a fully uncoupled
homogeneous laminate with an overall square symmetric elastic
behaviour (both in extension and bending) and with the main axis

of symmetry oriented at cU0 A� ¼ 0�.
The expression of the overall objective function W of Eq. (33)

can be obtained by setting
W11 ¼W22 ¼W33 ¼W44 ¼W55 ¼W1414 ¼W3030 ¼ 1 and the rest
of the terms of the diagonal matrix ½W� equal to zero:

W ¼ k B�½ �k
k Q½ �k

� �2

þ k E�½ �k
k Q½ �k

� �2

þ k½C�1�k
k Q½ �k

� �2

þ k½C�2�k
k Q½ �k

� �2

þ k½C�3�k
k Q½ �k

� �2

þ R1A�

R1

� �2

þ U0A� � cU0 A�

p=4

!2

: ð37Þ

Two examples of laminate stacking sequences satisfying the cri-
teria of Eq. (37) are listed in Table 3: also in this case the optimal
stacks are very general stacks. Table 6 lists the value of the lami-
nate polar parameters for the best stacking sequence (solution n.
1) of Table 3, while Fig. 6 illustrates the related polar diagrams
for all the stiffness matrices of the multilayer plate. It is notewor-
thy that, due to the theoretical result of Eq. (27), the laminate is
characterised both by an overall square symmetric elastic response
(for each one of the in-plane stiffness matrices) and by a global iso-
tropic out-of-plane shear behaviour. Moreover the laminate is fully
uncoupled and homogeneous (the polar diagrams of matrices
½A��; ½D��; ½F�� and ½H�� are in fact superposed). Finally, the main axis
of symmetry for every in-plane stiffness matrix is oriented at 0�.

As a final remark of this section, Fig. 7 shows the variation of the
value of the objective function for the best solution (of Table 3)
along generations for problem (33) for this last case: the optimum
solution has been found after about 105 generations. For the rest,
the considerations already done for cases 1 and 2 can be repeated
here.

6. Conclusions

In this work the Verchery’s polar method for representing
plane tensors has been employed within the conceptual frame-
work of the classical Reddy’s Third-order Shear Deformation
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Fig. 7. Best values of the objective function along generations, case 3.



Theory of laminates. The following major results were analyti-
cally derived.

1. A mathematical formulation based upon tensor invariants has
been proposed for all the laminate stiffness matrices.

2. As a consequence of the application of the polar formalism to
the higher-order in-plane and transverse shear stiffness matri-
ces a generalisation of the concept of quasi-homogeneous lami-
nates has been proposed together with the definition of some
new classes of laminates.

3. The elastic symmetries of the laminate out-of-plane shear stiff-
ness matrices (basic and higher-order terms) depend upon those
of their in-plane counterparts: in particular, the isotropic beha-
viour of the laminate shear stiffness matrices is closely related
to the square symmetric behaviour of their in-plane counterparts.

4. For a special class of laminates, i.e. for fully uncoupled and homo-
geneous laminates, the number of independent tensor invari-
ants characterising the mechanical response of the laminate
remains unchanged when passing from the context of the CLT
to that of the TSDT.
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Fig. A.1. Variation of the laminate stiffness coefficients (a) bk , (b) dk , (c) ek , (d) f k and (e) hk vs. the layer position k (for the case n ¼ 30).



5. The unified formulation of the problem of designing the lami-
nate elastic symmetries has been modified and extended to
the context of the TSDT.

To the best of the author’s knowledge, this is the first time that a
mathematical formulation based upon tensor invariants (namely
the polar method) has been applied to the conceptual framework
of the TSDT. The mechanical response of the laminated plate is rep-
resented by means of the polar formalism that offers several
advantages: (a) the polar invariants are directly linked to the ten-
sor elastic symmetries, (b) the polar method allows for eliminating
from the procedure redundant mechanical properties and (c) it
allows for easily expressing the change of reference frame.

The effectiveness of the proposed approach has been proved
both analytically and numerically by means of some new and
meaningful numerical examples. The numerical results presented
in this work (which have been found in the context of the
polar-genetic approach) show that when the well-known hypothe-
ses and rules for tailoring laminates are abandoned (i.e. when
using symmetric, balanced stacks and when considering a small
set of layer orientations shrunk to the values 0�;�45� and 90�) it
is possible to design laminates with enhanced mechanical proper-
ties, very difficult (if not impossible) to be obtained otherwise.

Finally, it is opinion of the author that the polar-genetic
approach can be extended also to the theoretical framework of
more accurate theories such as higher-order theories coupled with
equivalent single layer kinematic models: research is ongoing on
these topics.

Appendix A. Analytical expression of the coefficients of the
laminate stiffness matrices in the case of identical plies

In order to determine the analytical expression of the coefficients
that intervene in the formulation of the stiffness matrices of a lami-
nate composed of identical plies, see Eqs. (13) and (14), the first step
is the definition of the thickness coordinate for both the bottom and
the top faces of the kth elementary layer. Since the laminate is com-
posed of n identical plies and being h its overall thickness, the
expressions of zk�1 and zk can be stated as (see Fig. 1):

zk�1 ¼ �
h
2
þ ðk� 1Þ h

n
; zk ¼ �

h
2
þ k

h
n
; k ¼ 1; . . . ;n: ðA:1Þ

To derive the expression of the laminate characteristic coefficients
bk;dk; ek; f k and hk it suffices to substitute Eq. (A.1) in Eq. (11).
Whilst the calculation of coefficients bk and dk is trivial and represents
a classical result that can be found in literature [29], on the other hand
the determination of the analytical expression of coefficients ek; f k and
hk is quite hard and needs the support of a symbolic-based computa-
tional software, such as Mathematica�. By means of this language it is
possible to derive the following relationships:

bk ¼ 2k� n� 1;
dk ¼ 12k2 � 12kðnþ 1Þ þ 3n2 þ 6nþ 4;

ek ¼ 8k3 � 12k2ðnþ 1Þ þ 2kð3n2 þ 6nþ 4Þ � ðn3 þ 3n2 þ 4nþ 2Þ;
f k ¼ 80k4 � 160k3ðnþ 1Þ þ 40k2ð3n2 þ 6nþ 4Þ
�40kðn3 þ 3n2 þ 4nþ 2Þ
þ5n4 þ 20n3 þ 40n2 þ 40nþ 16;

hk ¼ 448k6 � 1344k5ðnþ 1Þ þ 560k4ð3n2 þ 6nþ 4Þþ
�1120k3ðn3 þ 3n2 þ 4nþ 2Þ þ 84k2ð5n4 þ 20n3

þ40n2 þ 40nþ 16Þþ
�28kð3n5 þ 15n4 þ 40n3 þ 60n2 þ 48nþ 16Þþ
þ7n6 þ 42n5 þ 140n4 þ 280n3 þ 336n2 þ 224nþ 64:

ðA:2Þ

The variation of the previous coefficients as function of the ply posi-
tion k is depicted in Fig. A.1. It can be noticed that coefficients bk

and ek have a skew-symmetric trend with respect to the laminate
middle plane, whilst the rest of the coefficients show a symmetric
variation. By means of the software Mathematica� one can also
determine the following fundamental analytical properties charac-
terising the laminate stiffness coefficients:Xn

k¼1

bk ¼ 0;
Xn

k¼1

dk ¼ n3;
Xn

k¼1

ek ¼ 0;

Xn

k¼1

f k ¼ n5;
Xn

k¼1

hk ¼ n7:

ðA:3Þ

It is noteworthy that the sum of coefficients bk and ek is null and
that this result agrees with the skew-symmetric variation of these
coefficients within the laminate thickness.
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