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Artem Gerasimenkoa,b, Mikhail Guskova, Jérôme Duchemina, Philippe Loronga,*, Alexander
Gouskovb

aPIMM Laboratory, Arts et Metiers ParisTech, 151 bd de l’Hopital, Paris 75013, France
bBauman Moscow State Technical University, 2-eme Baumanskaya, 5, Moscow 105005, Russia

∗ Corresponding author. Tel.: 33-1-44246285. E-mail address: philippe.lorong@ensam.eu

Abstract

Thin tubular parts are often subject to turning process during manufacturing. The increasing compliance of the workpiece, which is associated to
tool displacement and to matter removal, can give rise to chatter, leading to poor surface quality or premature machine/tool damage. The present
work addresses an experimental case of turning a steel thin-walled tube featuring intense vibrations with variable parameters. Observations of
transient records during the pass suggest a strong influence of the matter removal on the eigenfrequencies of the system, while the tool’s motion
implies strong variation of the modal projection of the cutting force. Another characteristic phenomenon is the intermittency of the vibrations and
discontinuous chatter frequency evolution. These phenomena are reproduced and analyzed numerically. By means of a finite element modeling,
the part’s geometry variation during the pass is taken into account. Finally, a stability analysis is carried out for several states of this evolutive
system in order to gather insight into the steady cutting conditions.

Keywords: Turning; Chatter ; Predictive Model.

1. Introduction

Stability of quasi-stationary cutting, such as turning or
drilling, is a subject studied since a long time. In 1958, Tobias
[1] has proposed a delay-based description of regenerative chat-
ter mechanism which has since been widely used, especially in
the framework of so-called stability lobes diagrams based on
Laplace domain analysis. Recent versions of SDOF and MDOF
protocols for stability lobes construction can be found in text-
books by Altintas [6] or Cheng [7].

In practice, most turning stability studies concern cases of
massive parts, representable by rigid solid or rod models. A re-
cent review of these methods is provided by Siddhpura and Pau-
robally [8]. Nevertheless, thin-walled parts constitute a particu-
lar subject that is also addressed in literature, although scarcely.
In a work of Arnold, 1961 [9] an experimental study of steel
tubular parts (gun cradles) reveals multiple zones subject to vi-
brations during turning. In 2002, Mehdi et al. [10, 11] have
investigated aluminum tubular parts turning via numerical or
analytical part modeling and experimental tests for various cut-
ting conditions. In 2011, Lorong et al. [12] have presented
an experiment accompanied with full time domain simulations
featuring strong chatter and bringing forward the impact of the
damping on the instability onset. All of these works highlight

the importance of the damping on the onset of instability. An-
other important aspect for thin-walled structures is the frequent
occurrence of strong changes in the workpiece dynamical stiff-
ness and eigenfrequencies during one pass.

In this paper we focus on the straight turning of a thin tubu-
lar part. As it is often the case of thin-walled workpieces, the
matter removal leads to a significant variation of stiffness and
eigenfrequencies of the part and plays a major role in the ob-
served phenomena. The investigation concerns a pass featuring
multiple regenerative chatter instabilities. We propose to use
a stability approach to figure out different aspects of the ex-
perimental observations on the machined surface and measured
vibrations.

In section 2 we present the design of the experiment, chosen
in order to have an increase in compliance of workpiece while
the tool progresses. After this description of the experimental
setup, the section 3 presents the numerical modeling approach,
based on evolutive FE models. In section 4, the stability anal-
ysis methodology including modal decomposition is explained.
Finally, the application to the present case is depicted in section
5 and the results are presented and discussed in the section 6.
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2. Experimental setup and measurements

On the cross-section given on Figure 1 one can see the shape
of the machined tube. The horizontal axis is the revolution axis
of the workpiece. On this figure one can also see the contact
point P(t) between the tool and the workpiece, where t stands
for the time, evolving from the left to right at a constant speed,
feed per revolution f and rotational speed Ω of the workpiece
being constant. The more the tool goes to the right the more the
workpiece is flexible. On Figure 1 is also represented the cut
section whose area is equal to ap f = b h, where ap is the depth
of cut, h is the cut thickness and b the width of cut. Those last
quantities are linked with the cutting edge angle κr: b sin κr = ap

and f sin κr = h. This operation was carried out with a square
insert (Sandvik SCMT 432-PR). Lastly two direct orthonormal
bases are defined on Figure 1: (n, a, g) linked to the rake face
and cutting edge of the tool (defined and used in section 3.2)
and (x, y, z) linked to the tool, x being the revolution axis of the
workpiece and the feed direction, y being in the radial direction
and z being tangent to the tube circumference. In the studied
case, n and z are identical.
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Fig. 1. Geometry of the machined tube – Cut section and associated bases

Figure 2 shows the machined surface with chatter marks,
resulting from the experiment under consideration. Sev-
eral stripe-shaped zones of chatter defects are distinguishable.
These zones can be clearly associated to recorded vibration
bursts presented below (Figure 8). The radial depth of the de-
fects is amounts to 0.2 mm at maximum (free end of the shell).

Fig. 2. Surface of the tube after the last tool path

The experimental set up is shown in Figure 3. Some of the
measurements made during the experiment were done to verify
that the workpiece is the weak part of the system. That is the
case, for example, with accelerometer ’a1’ on spindle support
and with the two accelerometers ’a2’ and ’a3’ on the tool (Fig-
ure 3). The optic sensor ’o1’ (Figure 3) was used to obtain an
accurate value of the rotational rate of the spindle. This value is
Ω = 79.39±0.02 rad/s (758.15±0.2 rev/min) which correspond
to a period T = 79.14 ± 0.02 ms. It also helped to verify that
we have no significant variation of Ω during the machining.

During the test we have made several tool paths until vibra-

tions were observed during machining. It is this last path that is
concerned by our investigation. These vibrations generated de-
fects on the machined surface as it is visible on Figure 2. This
occurred for a thickness e of the tube going from 5.4 mm to 4.4
mm. Before and after this last path a hammer test gave us the 2
transfer functions (the impacts were applied near accelerometer
’a5’ while the latter gave the response, Figure 3) given Figure 4.
The experimental data given in table 2 and table 3 are coming
from these transfer functions.
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Fig. 3. Experimental setup

Fig. 4. Transfer function before and after the last tool path

For the measurement of the workpiece vibration during ma-
chining we used the eddy current sensor ’m1’ fixed on the ma-
chine frame. This sensor is placed in front of the right extremity
of the workpiece where the largest displacements are present.
The evolution of the workpiece surface displacement measured
at this point is given at the bottom of Figure 8. On the right side
of this graphic the observed oscillations correspond to those vis-
ible on the workpiece surface on Figure 2. On the spectrogram
computed from this displacement curve from the ’m1’ sensor
(Figure 5) one can see the evolution of the resonance of the
tube close to the evolution of its eigenfrequencies.

On Figure 3 one can also see the eddy current sensor ’m2’
but due to presence of chips inside the tube the data this sensor
accumulated was not exploitable. Accelerometer ’a4’ was posi-
tioned on ’m2’ sensor support to measure the vibrations of this
support.



Fig. 5. Spectrogram issued from the measurement of the eddy current sensor
’m1’, dB

Table 1. Eigenfrequency evolution (Hz) during tool progression

Modal form Order

2 lobes 1102 1084 1089 1108 1&2
1 flexion 1567 1552 1579 1658 3&4
3 lobes 1943 1914 1849 1672 5&6
4 lobes 3386 3365 3208 2827 7&8
torsion 2909 2923 2980 3070 9

Progress (mm) : 0 55 115 165

3. Numerical models

3.1. Dynamic model of the workpiece

The dynamic behavior of the workpiece is based on a 3D fi-
nite element model using 10 nodes parabolic tetrahedrons (Fig-
ure 6). The material data (C38 steel) are: Young modulus
E = 2.1e11 Pa, density ρ = 7 800 kg/m3, poisson coefficient
ν = 0.3. This model allows to take into account the effect of the

Fig. 6. Finite element model. Left: workpiece mesh for a machining evolution
at the middle of workpiece. Right: eigenmode of interest

tool progression as matter removal modifies the thickness of the
workpiece, an thus its mass and stiffness. On Figure 6 (left) one
can see the thickness variation (with noticeable exaggeration on
this figure in order to render it clearly visible).

During the progression of the tool the eigenfrequencies of
the system are changing. In table 2 the five first eigenfrequen-
cies are given for different steps of the tool progression going

Table 2. Experimental and numerical eigenfrequencies before tool passage

Frequency Exp. (Hz) 1108.4 1937.2 3384.5
Frequency FE (Hz) 1102 1943 3386

Error (%) -0.58 0.30 0.04

Modal damping 0.0105 0.00076 0.00051

Modal form 2 lobes 3 lobes flexion 2

from the beginning of the machining, 0 mm, to its end, 165 mm.
Due to the cyclic symmetry of the system (tube and clamping)
non axial or torsional modes are twin modes.

Table 2 and table 3 list the values of the eigenfrequencies,
as well as modal damping factors, issued from the experiment
(curves on Figure 4), before and after the last path of the tool.
The comparison with numerical values are also given show-
ing that numerical and experimental eigenfrequencies are quite
close.

Table 3. Experimental and numerical eigenfrequencies after tool passage

Frequency Exp. (Hz) 1100.2 1661.1 2798
Frequency FE (Hz) 1108 1672 2827

Error (%) 0.7 0.66 1.04

Modal damping 0.0077 0.00070 0.00078

Modal form 2 lobes 3 lobes 4 lobes

3.2. Cutting law

We choose to utilize a Kienzle cutting law [5][4] in order
to determine the cutting forces applied on the workpiece with
respect to the depth of cut h and the width of cut b (Fig. 1). For
each component of the cutting force, this kind of cutting law
uses 2 parameters:

F j = K j b̃ h̃n j with b̃ =
b
h0
, h̃ =

h
h0
, j ∈ {n, a, g} (1)

The reference length h0 = 1 mm is used to achieve a dimen-
sionless form for the the cutting law. Specific cutting pressures
K j are in Newton. The three components F j are defined in the
basis (n, a, g) (Fig. 1) associated to the rake face of the tool:

• n : unit outward normal to the rake face (here supposed to
be flat),

• a : unit vector parallel to the cutting edge,
• g : unit vector parallel to the rake face and perpendicular

to n and a and directed towards the tool.

The basis (n, a, g) is direct.

F = Fn n + Fa a + Fg g (2)

The used coefficients of the cutting law are given in the table 4.



Table 4. Kienzle cutting law coefficients

Component K j(N) n j

Fn 1278. 0.5843
Fa 0.0 0.0
Fg 402.8 0.3405

4. Stability analysis

4.1. Equation of perturbed motion

In the studied example, the system is very close to an ax-
isymmetric problem. In this context, as it is often the case in
turning, the analysis can be carried out in the fixed [global in-
ertial] frame Ro, with respect to which the cutting process is
driven by a frequency Ω (workpiece rotation rate).

In this frame the FE model conducts to the classical matrix
equation of motion :

Mq̈(t) + Dq̇(t) + Kq(t) = fc(t,q(t) − qT (t), q̇(t)). (3)

where M, D, and K stand for mass, generalized damping and
stiffness matrices of the unloaded system respectively, t time
variable, q, fc, mean generalized displacements and load forces

vectors respectively, T =
2π
Ω

delay due to the cutting interac-
tion history and qT (t) = q(t − T ). The loads fc are induced by
the tool-workpiece interaction. Let n be the size of this sys-
tem, n is the number of degrees of freedom of the FE model.
The matrices D and K may contain non galilean effects such as
Coriolis effect due to workpiece rotation [2].

To analyze the stability of a given reference solution

q = q0 (4)

satisfying the equation (3), the perturbed motion q is studied:

q = q0 + p; q̇ = q̇0 + ṗ; q̈ = q̈0 + p̈ (5)

with p standing for the perturbation.
In case of turning, q0 is a constant resulting from steady-

state deflection under nominal tool-workpiece interaction. For
small p, a linearized problem can be derived from (3), by sub-
tracting the reference (q0-related) part due to (4):

Mp̈ + Dṗ + Kp =
∂fc

∂q
p +

∂fc

∂q̇
ṗ +

∂fc

∂qT
pT . (6)

As
∂fc

∂qT
= −

∂fc

∂q
and with Kc = −

∂fc

∂q
and D′ = D −

∂fc

∂q̇
we

finally have:

Mp̈(t) + D′ṗ(t) + Kp(t) = −Kc (p(t) − p(t − T )) . (7)

The Laplace transform of (7) would yield:[
s2 M + sD′ + K + Kc

(
1 − e−sT

)]
P = 0. (8)

4.2. Stability threshold

The cutting operation under consideration is defined by the
workpiece rotation velocity Ω and by a cut depth-related pa-
rameter that we will note p and it is on the plane Ω—p that the

stable zones are sought. The parameter p is classically [3] re-
lated to the chip width b (Fig. 1) and we have then Kc = pKc0.

Then, by introducing the dynamic stiffness matrix function
Q(s) of the unloaded system

Q(s) = (s2M + sD′ + K) (9)

and by enforcing the stability threshold condition (zero-real part
of s) s = iω, the equation of perturbation in the Laplace domain
(8) can be rewritten as follows:

(Q(iω) − p(1 − e−iωT )Kc0)P = 0 (10)

or in a more compact way:

(Q(iω) − λK′c0)P = 0; (11)

with

λ = p(1 − e−iωT ) (12)

Thus, for givenω, one can compute λ from the eigenproblem
(11). As p is a positive real, after representing λ in exponential
form:

λ = λ0eiψ, (13)

one can state the following condition:

Im
(
(1 − e−iωT )e−iψ

)
= 0 (14)

which would yield sin(ωT +ψ)− sinψ = 0 giving place to two
possibilities:

1. ωT = 2πk
2. ωT + ψ = π − ψ + 2πk (15)

with k ∈ Z. The first option in (15), corresponding to λ = 0,
is of no practical interest. The second case in (15) gives the
following relationship between ω and T :

ωT = −2ψ + (2k + 1)π, k ∈ Z (16)

Here the index k defines the instability harmonic number. Fi-
nally, a value of p can be found from (12) and (16).

4.3. Working in a modal basis

In order to reduce the size of the dynamical problem it is
very interesting, and classical, to use a truncated modal basis
Φ =

[
φ1, φ2, . . . , φN

]
composed of N eigenmodes φi coming

from the homogeneous conservative system Mq̈+Kq = 0 so as
to approximate q and
vp:

q ≈ Φq and p ≈ Φp (17)

with

qT
= 〈q0, q1, . . . qN〉 and pT

= 〈p0, p1, . . . pN〉. (18)

In this modal basis the stability eigenproblem (11)can be
rewritten as:(
Q(iω) + λKc0

)
P = 0 (19)

with

Q(iω) = ΦT (−ω2 M + iωD′ + K)Φ and Kc0 = ΦT Kc0Φ. (20)



4.4. Computation of Kc0

In the FE framework the displacement interpolation, at any
point M of the structure, can be written in the following form :

u(M, t) = N(M)q(t) (21)

where u(M, t) is the column containing the 3 components of the
displacement vector at M and t, N(M) is the rectangular [3 × n]
matrix of the FE shape function at M.

In turning the action of the tool on the workpiece can be
modeled by a unique cutting force vector ~Fc applied on the con-
tact point P between the tool and the workpiece. This cutting
force vector conducts, in the FE approach, to the generalized
cutting force column fc defined by :

fc(t) = NT (P) Fc(t) (22)

present in eq. (3) and where Fc is the column containing the 3
components of ~Fc. The cutting stiffness matrix Kc can then be
compute in the following way

−Kc =
∂fc

∂q
=

∂fc

∂u(P)
∂u(P)
∂q

= NT (P)
∂Fc

∂u(P)
N(P) (23)

and thus finally

−Kc =
∂fc

∂q
=

∂fc

∂u(P)
∂u(P)
∂q

= NT (P)
∂Fc

∂u(P)
N(P) (24)

Kc0(P) = −
1
p
ΦT NT (P)

∂Fc

∂u(P)
N(P)Φ. (25)

∂Fc

∂u(P)
is a [3 × 3] square matrix, and the rank of this matrix

would define the rank of the modal matrix Kc0. Two properties
of this matrix are of interest for our investigation:

• the local apparent cutting stiffness depends on the tool po-
sition (point P) and thus evolves during the machining of
the tube,

• for a given ω, the number of eigenvalues in the eigenprob-
lem (19) cannot be greater than 3.

5. Application to tube turning case

A preliminary analysis accounting for 10 first eigenmodes
has shown that the mode corresponding to the observed chatter
frequency systematically features the lowest stability threshold
in terms of apparent cutting stiffness. Thus, for a detailed in-
vestigation, only that eigenmode has been retained.

This mode is the first 3 lobes eigenmode (Fig. 6, right).This
eigenmode, and in fact all the eigenmodes having a low level
damping (and corresponding with multi-lobes eigenmodes) ex-
hibits the following properties :

• ux = u · x ≈ 0

•
∂Fc

∂uz
<<

∂Fc

∂ux
and

∂Fc

∂uz
<<

∂Fc

∂uy

we have thus to compute only k0 =
∂Fc

∂uy
in the direction of

radial displacement, i.e. radial stiffness. The orientation of the

basis (n, a, g) with respect to the basis (x, y, z) is defined via κr

(Figure 1).
The tool displacement (motion of point P) would induce not

only a variation of the apparent modal cutting stiffness Kc0(P)
but also of the dynamic behavior of the workpiece. All matri-
ces M, D, K evolve with the position of P. Indeed, the mat-
ter removal causes an evolution in eigenfrequencies and mode
shapes. Thus for any position of P a particular stability lobes
diagram has to be computed.

A cubic polynomial interpolation has been applied to the
data from Table 1 in order to approximate the evolution of the
eigenfrequency as well as of the radial component of the eigen-
mode under the tool during the pass, i.e. as a function of the
tool position along the x axis. The resulting reduced system is
described by a SDOF equation:

p̈ + 2ω(x) ζ ṗ + ω2(x) p = k0 φ
2(x) (pT − p), (26)

here ω(x), φ(x) and ζ are respectively eigenfrequency, modal
radial displacement magnitude under tool tip and damping for
given eigenmode, dependent from the axial tool position x.

6. Results and discussion

The Figure 7 features stability lobes charts for two different
tool positions x. One can notice that as the tool progresses, the
lobes shift down and left. Thus, the point representing our sys-
tem meets different lobes during the pass. In our case the rota-
tion rate is constant during the pass and the stability chart can be
presented as a function of x. The assembly of the stability lobe

Fig. 7. Stability lobes charts for different tool positions x

slices corresponding to Ω = 758.15 rev/min for various tool
positions x is presented on the top chart in Figure 8. This re-
sult is in agreement with the experimental data shown below on
the same figure: the eigenfrequency ω(x) remains close to the
resonance frequency that can be observed on the spectrogram.
Moreover, the intermittent character of the vibrations that can
be observed in the time and frequency domain data can be ex-
plained by exiting stability lobes. The location and the vibrated
areas on the machined surface (see Figure 2) would correspond
to the high-magnitude vibration bursts and to resonance spots
on the spectrogram.



One can notice that the resonance frequency evolution is not
continuous but rather has a ”stair-case”-shaped pattern, with
each step height close to 12Hz which corresponds to the work-
piece rotation frequency.

Fig. 8. Evolution during the last tool path of the stability limit (top) for
Ω = 758.15 rev/min, the spectrogram (middle) and the displacement at ’m1’
(bottom)

Such pattern is in agreement with the fact that the eigenfre-
quency varies in quite a large range (from 1940 down to 1660
Hz which would correspond to the number of lobes the system
goes through during the pass). It is of interest to notice that
for x > 120 mm the system evolves continuously in the unsta-
ble zone. Nevertheless, when leaving one instability zone, the
system changes discontinuously the response frequency.

Finally, it can be observed that the uncertainty on the sys-
tem’s constitutive properties can also impact the resulting ma-
chined surface in a discontinuous way: on Figure 9 one can
see that a 30% variation in damping can quite easily add to or
diminish the occurrence of the instability zones.

Fig. 9. Stability limit evolution during for different damping values

7. Conclusion

An experimental investigation of a straight turning operation
on a thin-walled structure (tube) reveals the instabilities of the

quasi-steady cutting under variable conditions, due to the struc-
ture’s mass and compliance variation. A numerical modeling
of the workpiece including variable thickness enables the re-
production of the system’s eigenfrequencies which are visible
as resonances in the experimental data. A general modal ap-
proach for the stability evaluation is developed. In our case, the
system’s behavior concerning the instability, proves to be rele-
vantly reproduced using only one eigenmode. This framework
enables an insight into the intermittance of the stationary cut-
ting. However, the accuracy of system’s constitutive parameters
is important in order to detect correctly the instability areas.
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