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ABSTRACT

The analysis of materials mechanical behavior involves many computational challenges. In
this work, we are addressing the transient simulation of the mechanical behavior when
the time of interest is much larger than the characteristic time of the mechanical response.
This situation is encountered in many applications, as for example in the simulation of
materials aging, or in structural analysis when small-amplitude oscillatory loads are applied
during a long period, as it occurs for example when characterizing viscoelastic behaviors
by calculating the complex modulus or when addressing fatigue simulations. Moreover, in
the case of viscoelastic behaviors, the constitutive equation is many times expressed in
an integral form avoiding the necessity of using internal variables, fact that results in an
integro-differential model. In order to efficiently simulate such a model, we explore in this
work the use of a space-time separated representation.

RESUME

L'analyse du comportement mécanique des matériaux entraine de nombreuses difficultés
du point de vue numérique. Dans ce travail, nous allons nous focaliser sur I'une d’entre
elles, celle associée a la simulation transitoire du comportement mécanique quand
I'intervalle temporel d'intérét est substantiellement plus long que le temps caractéristique
associé a la réponse mécanique. Cette situation est fréquemment retrouvée dans la
caractérisation rhéologique des matériaux viscoélastiques (pour la détermination du
module complexe) ainsi que quand on s'attaque a la simulation de la fatigue. De plus, dans
le cas des matriaux viscoélastiques, le comportement est généralement décrit par une loi
de comportement intégrale qui évite le besoin d'utiliser des variables internes, donnant lieu
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a un modele mécanique integro-différentiel. Pour une résolution efficace, nous analysons
ici l'utilisation d’'une représentation séparée en espace-temps.

1. Introduction

The present work focuses on the efficient treatment of models involving transient fields that must be solved in large
time intervals using very small time steps. In this context, if one uses standard incremental time-discretizations, in the
general case (models involving time-dependent parameters, non-linear models, etc.), one must solve at least a linear system
at each time step. When the time step becomes too small as a consequence of the stability requirements, and the simulation
time interval is large enough, standard incremental simulations become inefficient. They must be replaced with other more
efficient techniques.

Model order reduction—MOR—techniques consider reduced bases on which the solution is projected. As such bases
involve in general few functions, compared with the standard approximation bases in which an interpolation function is
attached to each node of a mesh, one must consider a reduced discrete model whose solution can be in many cases solved
in real time.

There are three main strategies based on MOR. The first one concerns the so-called Proper Orthogonal Decomposition—
POD—that proceeds by extracting the most significant functions involved in the model’s solution. For that purpose, the
high-fidelity model is solved by using a standard discretization technique and different snapshots are extracted (solution
at different times). Then, by applying the proper orthogonal decomposition, the most significant modes are identified and
then used for projecting the solution to “similar” problems. By similar problems, we understand models involving slightly
different parameters, boundary conditions, geometries, than the ones involved in the original model that served for ex-
tracting the reduced basis. There is an extensive literature regarding this issue. The interested readers can refer to [1-12]
and the numerous references therein. The extraction of the reduced basis is the key point when using POD-based model
order reduction, as well as its adaptivity when addressing scenarios far from the ones considered in the construction of the
reduced basis [13,14].

Another family of model order reduction techniques well adapted to the solution to parametric models lies in the used
of reduced bases—RB—constructed by combining a greedy algorithm and an a priori error indicator driving the exploration
of the parametric space. Thus, RB techniques need for some amount off-line work, but then the reduced basis can be
used online for solving different models with a perfect control of the solution accuracy because of the availability of error
bounds. When the error is inadmissible, the reduced basis can be enriched by invoking again the same greedy algorithm.
The interested readers can refer to [15-18] and the references therein.

Many years ago, P. Ladeveze proposed the use of space-time separated representations, at the heart of the third kind of
MOR strategies here addressed and that was coined as Proper Generalized Decomposition—PGD. He introduced the space-
time separated representation as one of the main bricks composing the LATIN method, a powerful nonlinear solver. The
interested reader can refer to [19-24] and the valuable references therein.

When using space-time separated representations, the approximation of a transient field u(x,t), xe Qc R?, D=1,2,3
and t e Z=(0,T]CR, is expressed as

N
U, 0~ Y Xi(X) - Ti(t) (1)
i=1

The constructor of such a separated representation consists of a double iteration loop: the first associated with the
calculation of each term (Xp(X) - Ty(t)), Vn € [1,---, N], of the finite sum (1), and the other for solving the nonlinear
problem related to the calculation of each couple of functions (X, (x) and T,(t)) because both being unknown the problem
results nonlinear. The numerical algorithm was deeply reported in our former works, but for the sake of completeness it
has been summarized in Appendix A.

An additional advantage of separated representations is that they can be applied to the solution to problems defined in
highly dimensional spaces because they allow circumventing the so-called curse of dimensionality. Thus, we applied such
kind of separated representations for solving models involving many conformational coordinates encountered in quantum
chemistry, kinetic theory descriptions of materials or cell signaling processes [25-29]. Moreover, we proposed adding model
parameters as extra-coordinates for constructing parametric solutions that can be seen as computational vademecums from
which we can perform, in real time, optimization, inverse analysis, and simulation-based control [30-35].

The interested reader can also refer to the recent reviews [36-39] and the references therein.

1.1. Non-incremental versus incremental time integrations

It is useful to reflect on the considerable difference between the above PGD strategy and traditional, incremental time
integration schemes.



Indeed, the PGD allows for a non-incremental solution to time-dependent problems. Let Q, denote the number of
non-linear iterations required to compute the new term Xj(x) - T,(t) at enrichment step n. Then, the entire PGD procedure
to obtain the N-term approximation (1) involves the solution to a total of Q@ = (Q1 + --- + Qy) decoupled, boundary and
initial value problems. The BVPs are defined over the space domain €2, and their computational complexity scales with the
mesh used to discretize them. The IVPs are defined over the time interval Z, and their complexity is usually negligible
compared to that of the BVPs, even when extremely small time steps are used for their discretization.

This is vastly different from a standard, incremental solution procedure. If P is the total number of time steps for the
complete simulation, i.e. P =7 /At, an incremental procedure involves the solution to a BVP in Q at each time step, i.e. a
total of P BVPs. This can be a very large number indeed, as the time step At must be chosen small enough to guarantee
the stability of the numerical scheme.

Numerical experiments with the PGD show that the Qs rarely exceed ten, while N is a few tens. Thus, the complexity
of the complete PGD solution is a few hundreds of BVP solutions in . This is in many applications several orders of
magnitude less than the total of P BVPs that must be solved using a standard incremental procedure.

This and other related advantages in using space-time separated representations were analyzed in [26,40,41] and [42].

1.2. Separating the physical space

Sometimes, the domain 2, assumed to be three-dimensional, can be fully or partially separated, and consequently it can
be expressed as 2 = Qy x Q) x Q; or Q = Qyy x Q, respectively. The first decomposition is related to hexahedral domains,
whereas the second one is related to plate, beams or extruded domains. Both were widely considered in [43,37,44-47]. We
consider below the approximations related to both scenarios.

(i) The spatial domain €2 is partially separable. In this case Eq. (1) can be rewritten as:

N
ux.z.t) =Y Xi(X)- Zi(2) - Ti(t) ()
i=1

where X=(x, y) € Qxy, z€ Q; and t € L.
Thus, iteration p of the alternating direction strategy at a given enrichment step n consists in the following three tasks,
employing the notation introduced in Appendix A:
(a) solve in 4y a two-dimensional BVP to obtain the function xP,
(b) solve in €, a one-dimensional BVP to obtain the function Z?,
(c) solve in Z a one-dimensional IVP to obtain the function T7.
We can repeat our discussion regarding the complexity of this PGD non-incremental strategy versus standard incremen-
tal schemes. Clearly, what will dominate the cost of the PGD procedure is the total of Q two-dimensional BVPs to be
solved in Qyy. The BVPs in 2, and IVPs in Z being one-dimensional, their complexity is comparatively negligible. Thus,
the computational cost of the PGD simulation will be orders of magnitude smaller than that of a standard incremental
procedure, which requires the solution to a three-dimensional BVP at each time step.

(ii) The spatial domain 2 is fully separable. In this case, Eq. (1) can be rewritten as:

N
U, y,z,0) =y Xi(x) - Yi(y) - Zi(2) - Ti(t) 3)
i=1

Iteration p of the alternating direction strategy at a given enrichment step n consists in the following four tasks:

(a) solve in €2, a one-dimensional BVP to obtain the function X7,

(b) solve in 2y a one-dimensional BVP to obtain the function YrP,

(c) solve in €, a one-dimensional BVP to obtain the function Z7,

(d) solve in Z a one-dimensional IVP to obtain the function T?.

The cost savings provided by the PGD are potentially phenomenal when the spatial domain is fully separable. Indeed,
the complexity of the PGD simulation now scales with the one-dimensional meshes used to solve the BVPs in €,
Qy and g, regardless of the time step used in the solution to the decoupled IVPs in Z. The computational cost is
thus orders of magnitude smaller than that of a standard incremental procedure, which requires the solution to a
three-dimensional BVP at each time step.

Even when the domain is not fully separable, a fully separated representation could be considered by using appropriate
geometrical mappings or by immersing the non-separable domain into a fully separable one. The interested reader can refer
to [48] and [49].

After this short introduction in Section 2, we define the integro-differential viscoelastic model within the small trans-
formations framework whose space discretization will be carried out in Section 3. In Section 4, the space-time separated
representation will be introduced and its construction will be considered in detail in Section 5. Finally, in Section 6, we



address some numerical examples for verifying the proposed strategy and to prove its ability to address efficiently complex
scenarios.

2. Linear viscoelastic integral model

The mechanical model is defined in the domain 2 whose boundary dQ2 =T is decomposed into I'p and I'y in which
velocities and tractions are prescribed respectively.
We consider the standard momentum balance equation neglecting the inertia and mass terms:

V.X=0 (4)

where X is the standard Cauchy’s stress tensor.
The boundary conditions write:

[v(xe Tp,t€T) =Vg(XxeTp, teT) 5)

Yxel'n,tel) - nxel'n) =tg(xeI'n, t€l)
where n is the unit outwards vector defined on the boundary I'y, v the prescribed velocities on I'p and tg the applied
tractions on I'y. It was assumed that the mechanical problem is linear implying both a linear constitutive law and small
displacements and strains. Thus, we assume that domain € remains unchanged all along the time and then unaffected by

the kinematics induced by the applied boundary conditions.
The weak form related to the momentum balance at each time t consists in looking for the velocity field v € V, with

V= {v(x, t) e (7-{,1(9))3,v(xe I'p,tel)=vg(xelp,t eI)} such that

/D*:):dx:/v*-tgdx, Wt e V* (6)
Q I'n

with V' = [v'(x,0) € (H'( @) v (xe Tp,t e T) =0},

In Eq. (6), D is the usual rate of strain tensor and we use ¥ instead of the usual o notation for the stress tensor because
in what follows o will refer to the vector form of the stress tensor.

Using vector notations, integral (6) writes

fd*~adx:/v*-tgdx (7)

Q I'n

where d is the vector form of the rate of strain tensor D.
The constitutive equation here considered consists of the standard viscoelastic integral form
t t
Y= / At —1) Tr(D(7)) -1dt + / 2u(t—1t)D(t)dt (8)
—00 —00
where Tr() refers to the trace operator and A and p are two memory functions.
Even if here we only address the simplest viscoelastic constitutive model, all the developments can be extended to

generalized viscoelastic models involving several relaxation times.
By using vector notations, the constitutive equation can be written as

t
a:/C(t—r)-d(r) dr (9)

being d the vector form of the strain rate tensor D. In plane strain, with

X1
o=| Zn (10)
212
and
D11
d= Dy (11)

2D1



the expression of C(t — T) writes:

110 200
Chk—)=At-7)| 110 |+ut—=7)| 020 | =x(t—-1)G\ + u(t —1)Gy (12)
000 001
The vector form of the strain rate tensor reads:
0
— 0
0x
0 v
= 0 - . X
d ay ("y) (13)
0o 9
ay dIx

where vy and vy, are the velocity vector components: vl = (vy, vy).
3. Space discretization
We can assume a standard finite element approximation of the velocity field, involving a mesh M consisting in A" nodes

with coordinates X;, i =1,2,---,N. Thus, if N;(x) denotes the shape function related to node X;, that by construction
verifies the Kroenecker delta property N;(X;) = §;j, the velocity field van be written as

N
V=Y Ni(®) vx(X;) =N" - Vy
N (14)
vy =Y Nix) vy(X;)) =N"-V,
i=1
where Vy and V), are the vectors that contain the nodal velocity components v, (X;) and v, (X;) (i=1,2,---, \) respectively

and N the vector containing the different shape functions.
This approximation can be written in a more compact form according to:

T oT
() ()

where 07 is the row vector of size A/ with null entries.
Thus, the vector form of the rate of strain d reads:

8_NT of
0X
aNT
da=| ot &= | (Vx)=B.v (16)
ay Vy
aNT oNT
ay 0x

Now, coming back to the weak form (7), its left member results

t

/d*~adx:V*T(t)- /{A(t—r)l(x+,u(t—r)l(u}-V(t)dt (17)
Q —00
with
K,\:/BT-G,\-de
“ (18)
I(M=/BT-GM-de
Q



On the other hand, the right-hand-side member of Eq. (6) writes:

/v*(x, £)-tg(x, t) dx=V*". /MT “Mdx § - f(t) = V() - F(t) (19)
I'n 'y
Thus finally, after discretizing in space, the problem reads:

t
vT(t) . f (At = DKy + (¢ — DKy} -V(r) dT ¢ =V (1) -F(t) (20)
—0o0
which leads to the linear system:

t
/ (At = DK, + pt — DKy} - V() dT =F(0) (21)

—00

complemented with the Dirichlet boundary conditions applying on I'p.
Eq. (21) can be rewritten as

t t

K, - / At —T)V(T)dT + K, - / w(t —7)V(r) dt =F(t) (22)

—00 —00
4. Space-time separated representation

Now, we consider Eq. (22) and assume that both the applied traction F(t) and the velocity field V() can be written in
a separated form, respectively:

Np
F(t) ~ Z S; Si(t) (23)
i=1
and
Ny
V() ~ > X Xi(t) (24)

i=1
Thus, Eq. (22) results:

Ny t £ Nr
Z K, - X - / At =D (T)dT + K, - X - / nt—1t)Xi(r)dr ; = Z‘si Si(t) (25)
i=1 % 5 i=1

The time integrals can be approximated by using an adequate numerical quadrature. If we assume that F(t) and V(t)
vanish at t <0, and consider discrete times t;, = nAt, then we can write:

5]

/g(t) dt~ g(t1) At

0
5]

/g(t) dt ~ g(t1) At + g(t2) At
0

(26)

tn

/ gty de~ ) gt At

5 i=1

that applied to the integrals in Eq. (25), for example those involving Xj(t), results,



t

/?»(tl — T)Ai(7) dT ~ A(to) Xi(t1) At

0

t

/?»(tz — D)X (1) dT & A(to) Xi(t2) At + A(t1) Xi(t1) At

0 (27)
5 n

/A(tn —T)X(T) dT ~ Y Altn — £)Xi(t)) At

0 J=1

whose matrix form reads:
ty
/A(ﬁ —D)Xi(t)dr

0
F AMtg) O  --- O Xi(ty)
/k(tz - T)A(7) dt AMt) Alto) -+ O Xi(t2)

0

= At =AtL, - X; (28)

MEp) Mtpr) - Ato) )\ Xicep)
tp
/A(tp —1)Ai(7r)dt
0

with PAt="T.
Considering now the integral involving the memory function w(t — 7) and using the same quadrature, it results:

t

fu(ﬁ —1)Ai(r) dt

0
2 pto) 0 -~ 0 Xi(t1)

/M(Q—T)Xi(f)df u(t) (o) --- 0 Xi(t2)
0 . . . . ‘ .

= At =AtL, - X (29)

uitp) puitp—t) - nto) )\ Xicep)
tp
fu(tp - 1)X(r) dt
0

For evanescent memory, functions A(t;) and w(ty,) vanish up to a certain value n, and consequently only m diagonals of
L, and L, must be computed.

5. Separated representation constructor

We consider the previous discrete form (25)

Ny t ¢ Nr
> K,\~Xi-/k(t—r))(,-(r)d‘c +K,L~Xl~~/.u(t—r)Xi(t) dr ¢ =) S Si) (30)
i=1 % % i=1

and assume that at present iteration we already computed the g — 1 first terms of the finite sum (24), with ¢ — 1 < Ny,
leading to the (q — 1)-approximate:

q—1
VIl =) X (o) (31)
i=1
At the present iteration, we look for the g-approximate of V(t) that can be written as



q
VI =) X Xi(0) = VI 4+ Xy X (0) (32)
i=1

Now, in order to apply the rationale described in Appendix A, we consider the test function
V;‘:X*Xq(t)—i-XqX*(t) (33)

and from (25) the extended weak form:

-
f (XX (1) + Xg X" (1))
0
q t t NFr
> I(A.x,-./A(t—r)x,»(r)drﬂ(u.xi./M(r—r)x,-(r)dr =) SiSit) pde=0 (34)
i=1 —00 00 i=1
that can be rewritten under the form:
T t t
f(x*xq(t)+qu*(r))- K;\-Xq-f)»(t—t)/\’q(‘r)d‘c+l(#-xq~/u(t—r)Xq(r) dr ¢ dt
0 —00 —00
-
:—/(X*Xq(t)—f-XqX*(t))
0
q—1 A t NE
> I(A~X,'~/A(t—t))(,'(t) dr+l(M-Xi-/u(t—r)X,'(t)dr - SiSi) pdt (35)
i=1 —00 00 i=1

that contains the unknown fields in the left-hand-side member and the known (already computed) fields in the right-hand-
side one.

Now, as described in Appendix A, for computing the couple of unknown functions Xg and Xjg(t), we are considering
again an alternated directions fixed point strategy that computed X, by assuming Xg(t) known (it is randomly chosen at
the beginning of the process), and then updating Xy (t) from the just calculated Xg4. The process continue until reaching
convergence, that is, the fixed point.

In what follow we are developing both steps.

5.1. Calculation of X4

When calculating Xg, Xy(t) is assumed known (X™*(t) =0 in Eq. (35)), and with it all functions depending on time. Thus,
all time integrals can be performed, leading to a linear problem for calculating the unknown vector Xg.
The first integral in Eq. (35) concerns

T t
/Xq(t) / Mt —T)X(7) dT ¢ dt (36)
0 —o0
that using the notation previously introduced results
T t
aQ:/Xq(t) /k(t—r)Xq(t)dr dt = A X7 Ly - X (37)
0 —00

Similarly, we can define:
T t
ap = / Xy(b) / ot — T) X (1) dT ¢ dt = At* Xp - Ly - X, (38)
0

—0Q0

T t
ag,,:fxq(t) /k(t—r))(i(t) dr pdr= AP X)L - X, (39)
0

—00



T t
aé‘,I.:qu(t) /M(t—t))(i(r) dr ¢ dt = At? X;LM-X;'
0 —00

Vie[l,2,---,q—1]; and

-
Bq.i :/Xq(t)'si(t) de
0

Vie[l,2,---, Ng]; from with Eq. (35) reduced to:
q—1 Ng
X oo Xq + ol Ky Xe} =X 3 {0 1 X+ ol K Xi| = D BoiSi
i=1

i=1
or its associated linear system
q—1

Nf

A n A w

fot - X + oKy Xgh = 4D fod o X+ o K- Xi| = 3
i=1 i=1

that can be solved for calculating Xg
q—1

N
fog ko + e} - Xg = 4 37 ot X+ 0l B Xi| = 3 BaiSi
i=1 i=1

or

q—1 NF
-1
Xo = {ogt + a7 3 ok K X+l K Xi) = D B
i=1

i=1

5.2. Calculation of Xy(t)

(40)

(43)

(44)

(45)

When calculating X (t), Xq is assumed known (X* = 0 in Eq. (35)). Thus, all matrix products in Eq. (35) can be calculated,

from which the next scalars result:

Yo =Xq Ky - X

P = X0 K X,

A o_yT .

Yq.i _Xq Ky - X

Vi =Xg K- Xi
Vie[l,2,---,q—1]; and

8q,i = Xg - S;

Viell,2,---,Nf].
By using previous notation, Eq. (35) reduces to:

T t t
/X*(t) yq’\/)\(t—r)é’(q(r) dr—i—yq“//L(t—t)Xq(r)dr dt
0 —00 —00
T g-1 t t Ng
:—/X*(t) > yqfi/ur—r)x,-(r)dqu’f,. / (it — DX (T)dT ¢ =Y 80:Sit) ¢ dt
0 i=1 0 5 i=1

or

q-1 Nr
AP XAyt 4 ) X ==X AR L+ vl X — Ay 8080
i=1

i=1

(46)
(47)
(48)
(49)

(50)

(51)



where S; is the vector that contains the value of S;j(t) at times n- At, n€[1,2,---, P]. Thus the strong form related to (52)
results

q—1
Vb + v} X = Z{yqll)“—i_yQIqu’} Z5quz(f) (53)
i=1

from which it finally results:
e
=L LT Y v v X Zaq,S ® (54)
i=1

5.3. Separated representation constructor overwiew

- Assuming at iteration q > 1 vectors X; and Xj(t), i [1,2,---,q — 1], known

- while [VI71(t) — VI2(t)|| > € calculate VI(t) = VI~ (t) + XqX;(t) by solving until reaching the fixed point the two
problems below:
- calculate X, from Eq. (45)

q—1 F
-1
Xg = {o} Ko + K, ) - Z{ K Xi+ ol Ky, x,}—Zﬁq,,-s,» (55)
i=1 i

- calculate &g (t) from Eq. (54)

q—1

Np
={yeb+ v Y v v X - t23q,i8i(t) (56)
i=1 i=1

6. Numerical results

In this section, we are first verifying the proposed strategy by solving a quite simple problem and then addressing a
more complex problem close to the one found in assembled systems involving elastomers. As we are considering here
linear behaviors, it is expected that after a certain time the response becomes steady harmonic, with a certain phase angle
with respect to the applied load. Thus, simulations in the linear case do not need to cover the entire life period, but only
the transient regime.

6.1. Strategy verification

For strategy verification, we consider the plane deformation quasi-incompressible viscoelastic model in 2 = (0, L) x
(0, H), with L=1 and H=1; and Z = (0, 7], with 7 =0.25 (all units in the metric system).

A harmonic traction is applied to the upper boundary y = H given by tg(x, y = H, t) = (sin(wt), 0)", with @ = 27. The
lateral sides are free, that is t;(x =0, y,t) =tg(x =1L, y,t) = 0. On the lower boundary, the displacement and velocities are
enforced to zero, that is v(x, y=0,t) =0.

We considered the viscoelastic law given by the Maxwell’s model (assuming small displacements and strains)

dx
QE—}-E:ZGQD (57)

where G denotes the shear modulus and 6 the relaxation time.
The integral counterpart of the Maxwell model (57) reads:

t
z(r)zfzce—%’ndr (58)
0

Using the notation introduced in the previous sections we consider:

{A(t):Aeet (59)
W) =2Ge b

In the numerical tests carried out, we considered A large enough for ensuring the model incompressibility and 2 G = 0.3356.



Using the strategy described in the previous section we computed the velocity field related to the applied load, and the
displacement was obtained by integrating the calculated velocity. For Maxwell’s model it is well known that the tangent of
the phase angle (angle between the applied load and the resulting displacement), tan(¢), is related to the relaxation time
and the applied frequency from:

1
tan(p) = 20 (60)
Thus, it follows from Eq. (60) that the knowledge of the phase angle ¢ allows identifying the relaxation time 6. To check
it, we solved the just-presented model for three different values of the relaxation time: #; = 0.05, 6, = % and 63 =2. By
solving the three viscoelastic problems, we obtained the three associated displacement fields u;(x,t), i =1, 2, 3. Now, the
post-treatment of the obtained results allows calculating the three phase angles ¢;, i =1,2,3 and from them the three
relaxation times that were in perfect agreement with the ones that were chosen for performing the calculation.

6.2. Analysis of a rigid-viscoelastic joining

In the present analysis, we consider again a square domain Q = (—L, L) x (—H, H), with L =3 and H = 3, containing a
circular hole H(C, R) centered at C =0 and of radius R = 1. The system was analyzed in the time interval Z = (0, 7], with
T = 20. The velocity was prescribed on the domain boundary I' = 92, consisting of the external boundary I'. and of the
internal one (hole boundary) I'i=0H, ' =T, UTj:

Vg(x € T¢, ) = (sin(0.17rt2), 0)T

(61)
vg(xeT;,t)=0

The behavior law was given by

_t _t
A(t):A(ale b +aye bz)
(62)

t _t
ut)y=7 <c1 e 9 +4ce d2>

with a; =az =c1 =c2=1,b1 =5,b =0.1,d1 =10, d, = 0.5, A = g7, ¥ = 557, E=1and v=03.

The solution V(t) involves only six modes for the prescribed precision (X;, Xj), i=1,---,6, whose four most significant
are depicted in Fig. 1. The time-associated functions Xj(t), i =1,---,4, are depicted in Fig. 2. In Fig. 3 the applied dis-
placement and the associated traction are represented. From this figure, it can be noticed that when the frequency of the
applied displacement increases, the tension amplitude decreases and the phase angle increases, as expected for viscoelastic

behaviors.
7. Conclusions

In this work, we extended the domain of applicability of space-time separated representations to integro-differential
models describing viscoelastic behaviors. The advantages in using such decomposition follow from the fact that space and
time are discretized independently and then a fine resolution of both discretizations can be considered, without affecting
the global efficiency of the coupled model. Depending on the analyzed case, the speeding up can reach some orders of
magnitude.

Here we used the most direct formulation that only involves kinematic degrees of freedom (velocities); however, a mixed
formulation (stress velocity) as in the LATIN method (see [19]) could be envisaged in order to separate the global linear
problem from the local one that depends on the history despite of its linearity.

Another appealing possibility in using such kind of separated representations is the fact of introducing some model
parameter as extra-coordinate in order to calculate a general parametric solution to the transient integer-differential model.
This possibility, and the consideration of nonlinear viscoelastic behaviors, constitute some work in progress.
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Appendix A. Space-time separated representation constructor

For the sake of simplicity, we consider here the one-dimensional problem of computing the field u(x, t) governed by

au 9%u
o ke =1 (©)
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Fig. 2. (Color online.) Four most significant modes Xj(t), i=1,---,4.

in the space-time domain Q = Q, x Q; = (0, L) x (0, t]. The diffusivity k and source term f are assumed to be constant. We
specify homogeneous initial and boundary conditions, i.e. u(x,t =0) =u(x=0,t) =u(x =L, t) = 0. More complex scenarios
were addressed in [50].

The weighted residual form of (63) reads

du  d%u
| — —k— — dxdt =0 64
/ ! <8t 2 f) X (64)

QXXQt
for all suitable test functions u*.



Fig. 3. (Color online.) Applied displacement (blue curve) versus its associated tension (green curve).

Our objective is to obtain a PGD approximate solution in the separated form

N
u(x, ) ~ Y Xi(x) - Ti(t) (65)

i=1

We do so by computing each term of the expansion at each step of an enrichment process, until a suitable stopping
criterion is met.

A.1. Progressive construction of the separated representation

At enrichment step n, the n — 1 first terms of the PGD approximation (65) are known:

n—1
u" X ) =) Xi(x) - Ti(t) (66)

i=1
We now wish to compute the next term X, (x) - T, (t) to get the enriched PGD solution
n—1

U0 =u"T (D) + Xn(0) - Ta() = Xi(®) - Tit) + Xn (%) - Ta(0) (67)
i=1

One must thus solve a non-linear problem for the unknown functions X;(x) and T,(t) by means of a suitable iterative
scheme. We rely on the simple but robust alternating direction scheme.
At enrichment step n, the PGD approximation u™P obtained at iteration p is given by

umP(x, t) =u" T (x, 0) + XE ) - TR (1) (68)

Starting from an arbitrary initial guess T,? (t), the alternating direction strategy computes X2 (x) from T} -1 (t), and then
TP (t) from XF (x). These non-linear iterations proceed until reaching a fixed point within a user-specified tolerance e, i.e.

IXP o0 - YE () = XE 7 0 - YE () < € (69)

where | - || is a suitable norm.

The enrichment step n thus ends with the assignments X, (x) <— X7 (x) and T, (t) < TF (¢).

The enrichment process itself stops when an appropriate measure of error £(n) becomes small enough, i.e. £(n) < €.
One can apply the stopping criteria discussed in [51,52].

Let us look at one particular alternating direction iteration at a given enrichment step.

A.2. Alternating direction strategy

Each iteration of the alternating direction scheme consists in the following two steps.



- Calculating X? (x) from T2~ (o).
At this stage, the approximation is given by

n—1
u"(x.0) =Y Xi®) - Ti®) + X ) - TE ' (0) (70)
i=1

where all functions but X? (x) are known.
The simplest choice for the weight function u* in (64) is

ut(x, 1) = XE) - TV () (71)

which amounts to consider a Galerkin formulation of the diffusion problem.
Introducing (70) and (71) into (64), we obtain

N arP~' a@x?
XE. TP 1-(}(5- C’;t —k dxz” STPTT) dxde
Qx X Q2
n—1
_ dT; d2X; _
- / X5 TP VZ(X,-.d—t‘—kWZ‘.T,») dx dt + / XE TP fdxdt (72)
Qux i=1 QX

As all functions of time t are known, we can evaluate the following integrals:

axzf(T,f_](t))z dt
Qt 1
o
Q
y,.X:/T}f*](t)-T,-(t) de (73)
Q¢
8f=/T,’:_1(t)~ ch{t(t) dt
Q
o= (1170 ra
Q

Eq. (72) then takes the form

-1
o dlef X xP dx = ® S I X dzxi_(gx. ) d x| gX g 4
Xy - k-a” - ) + 8% Xy | dx= Xn'E k- v e 0 Xi)dx + [ X, & dx (74)
Qy i=1

Qx

X

This defines a one-dimensional boundary value problem (BVP), which is readily solved by means of a standard finite-
element method to obtain an approximation of the function X?. As another option, one can go back to the associated
strong form

2vD n—1

d?X d?X;
—k-a*- "+ﬂ"-Xf=Z(k-yf‘- ‘—5;‘.x,~>+.§" (75)

dx2 4 dx?
i=1

and then solve it using any suitable numerical method, such as finite differences for example. The strong form (75) is
a second-order differential equation for X? due to the fact that the original diffusion equation (63) involves a second-
order x-derivative of the unknown field u.

The homogeneous Dirichlet boundary conditions X! (x = 0) = X?(x = L) = 0 are readily specified with either weak or
strong formulations.

- Calculating T,’,7 (t) from the just-computed X,’f (x).

The procedure mirrors what we have just done. It suffices to exchange the roles played by the relevant functions of x
and ¢t.



The current PGD approximation reads

n—1
w0 =Y Xi() - Tit) + XF (0 - TF (©) (76)

i=1

where all functions are known except TF ().
With the Galerkin weight function

u*(x,t) = XJ (%) - T () (77)

the weighted residual form (64) becomes

drt d2x?
fx,ﬁ’m,;ﬂ(x,’f. Tk ——2.TF) dxdt

dt dx?
QX Q2
n—-1
dT; d2X;
=_ / x,‘,’-T,f-Z(X,-.d—t’—k dx2’~T,->dxdt+ / XP T} fdxdt (78)
Qux i=1 QX Q¢

Since all functions of x are known, we can perform the following integrals

oztz/(xrlz’(x))2 dx
o 2P
d2XP ()
,3f=/x,€’(x)-de
N
yi = / X2 (%) - Xi(x) dx (79)
Q2
d2X; (%)
t__ p L7
Qx
¢ = [ xfeo- s ax
Qx

Eq. (78) then becomes

drp = dr; i}
/T;;.(af- d; _1<.,3r.T5> dtzfrg.iX;(—yf.d—t‘+k.55.r,~) dt + an-sfdt (80)
Qt =

Q¢

Q¢

We have thus obtained an initial value problem (IVP) for the function T?. The weighted residual form (80) can be
solved by means of any stabilized finite-element scheme (e.g., discontinuous Galerkin’s scheme). The associated strong
form reads:

dTp n-1 dT
ol dtn —k.ﬂf.Tp:Z<—V,'t'd_tl+k'81t'Ti>+‘§t (&1
i=1

Since the original diffusion equation involves a first-order derivative of u with respect to t, we have thus obtained a
first-order ordinary differential equation for T7. Any classical numerical technique can be used to solve it. The initial
condition TF (t =0) = 0 is readily specified with either weak or strong form.
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