Afficher la notice abrégée

dc.contributor.authorTOD, Georges
dc.contributor.authorPAVEL, Marilena
dc.contributor.authorBARRE, Pierre-Jean
dc.contributor.author
 hal.structure.identifier
GOMAND, Julien
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques [LSIS- INSM]
dc.contributor.authorMALBURET, François
dc.date.accessioned2016
dc.date.available2017
dc.date.issued2016
dc.date.submitted2016
dc.identifier.issn1270-9638
dc.identifier.urihttp://hdl.handle.net/10985/11326
dc.descriptionThe authors thank Joost Venrooij, Project Leader at the Max Planck Institute for Biological Cybernetics, for providing the experimental results obtained on SIMONA flight simulator (TU Delft).
dc.description.abstractThe paper reassesses the mechanism of biodynamical feedthrough coupling to helicopter body motion in lateral-roll helicopter tasks. An analytical bio-aeroelastic pilot–vehicle model is first developed and tested for various pilot's neuromuscular adaptions in the lateral/roll axis helicopter tasks. The results demonstrate that pilot can destabilize the low-frequency regressing lead-lag rotor mode; however he/she is destabilizing also the high-frequency advancing lag rotor mode. The mechanism of pilot destabilization involves three vicious energy circles, i.e. lateral-roll, flap-roll and flap-lag motions, in a very similar manner as in the air resonance phenomenon. For both modes, the destabilization is very sensitive to an increase of the steady state rotor coning angle that increases the energy transfers from flap to lag motion through Coriolis forces. The analytical linear time-invariant model developed in this paper can be also used to investigate designs proneness to lateral/roll aeroelastic rotorcraft–pilot couplings.
dc.description.sponsorshipThis work was supported by the “Complex Mechanical Systems Dynamics” Chair – Airbus Group Foundation and the engineering school Arts et Metiers Paristech.
dc.language.isoen
dc.publisherElsevier
dc.rightsPost-print
dc.subjectRotorcraft–pilot couplings
dc.subjectPilot biodynamics
dc.subjectAeroelastic stability
dc.subjectHelicopters
dc.titleUnderstanding pilot biodynamical feedthrough coupling in helicopter adverse roll axis instability via lateral cyclic feedback control
ensam.embargo.terms2017-07-01
dc.identifier.doi10.1016/j.ast.2016.10.003
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Aix en Provence
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
ensam.audienceInternationale
ensam.page18-31
ensam.journalAerospace Science and Technology
ensam.volume59
ensam.peerReviewingOui
hal.statusunsent


Fichier(s) constituant cette publication

Thumbnail

Cette publication figure dans le(les) laboratoire(s) suivant(s)

Afficher la notice abrégée